https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

ACTA HORTICULTURAE SINICA ›› 2020, Vol. 47 ›› Issue (7): 1264-1276.doi: 10.16420/j.issn.0513-353x.2020-0263

• Research Papers • Previous Articles     Next Articles

Research on Control of Disease Resistance by Stilbene Synthase Genes Derived from Chinese wild Vitis quinquangularis

ZHAO Kaixi,DING Xi,and WANG Yuejin*   

  1. College of Horticulture,Northwest A & F University,State Key Laboratory of Crop Stress Biology in Arid Areas,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,Yangling,Shaanxi 712100,China
  • Online:2020-07-25 Published:2020-07-25

Abstract: Two complete open reading frames of VqSTS11 and VqSTS23,were respectively isolated from Vitis quinquangularis‘Danfeng-2’using homologous cloning technique and further for overexpression vector construction. Meristematic bulk(MB)of cultivated Vitis vinifera‘Thompson Seedless’,were induced through organogenesis and further for Agrobacterium-mediated transformation to obtain transgenic plants. After PCR detection and Western blot identification,5 transgenic lines of VqSTS11 and 3 transgenic lines of VqSTS23 were verified,respectively. Transgenic plants and non-transgenic plants were artificially inoculated with powdery mildew. Microscopic observation demonstrated that the hyphae growth in transgenic lines were slower than those in non-transgenic plants and spore germination was inhibited in transgenic plants. The disease resistance of transgenic plants was further analyzed by qRT-PCR and HPLC. The results displayed that not only the expression of STSs in transgenic plants increased,and the expression of disease resistance-related genes was up-regulated,but also stilbene compounds in the transgenic plants were accumulated. The expression product of‘Danfeng-2’VqSTS11 and VqSTS23 could tolerate powdery mildew. Therefore,‘Danfeng-2’could be used to improve the disease tolerance and provide disease- tolerant candidate genes for European grape cultivars,which could be served as a breeding resources for disease-tolerant breeding.

Key words: Vitis quinquangularis, Vitis vinifera, stilbene synthase, resveratrol, powdery mildew, disease resistance, transgenic

CLC Number: