https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (9): 1983-1996.doi: 10.16420/j.issn.0513-353x.2023-0085

• Genetic & Breeding · Germplasm Resources · Molecular Biology •     Next Articles

Identification of Peach NAC Gene Family and Role of PpNAC050 in Promoting Fruit Fructose Accumulation

LIU Jianhao1,2, JING Yanfu2, LIU Yuexin1,2, XU Yaoguang2, YU Yang2, GE Xiuxiu1,**(), XIE Hua1,2,**()   

  1. 1 College of Bioscience and Resources Environment,Beijing University of Agriculture,Beijing 102206,China
    2 Biotechnology Research Institute,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
  • Received:2024-05-17 Revised:2024-07-16 Online:2024-09-25 Published:2024-09-19
  • Contact: GE Xiuxiu, XIE Hua

Abstract:

The plant-specific NAC(NAM,ATAF1/2,CUC2)transcription factors play important roles in regulating fruit quality. To explore the role of the NAC in the regulation of soluble sugars in peach (Prunus persica)fruit quality,a total of 117 potential peach NAC members(PpNAC)were identified with an uneven distribution across all eight chromosomes as well as a scaffold. Phylogenetic analyses indicated that these PpNAC were classified into 13 subgroups. The NAC gene PpNAC050 that is highly expressed during later fruit development were further characterized,and it was in nucleus with transcriptional activation. Transient overexpression of PpNAC050 in peach fruits significantly increased fructose content and glucose content in peach fruit flesh. EMSA and dual-luciferase assays showed that PpNAC050,being a transcriptional repressor,directly bound to the promoters of PpERDL6-1PpERDL16),a vacuolar membrane monosaccharide transporter gene regulating fructose content,suggesting that PpNAC050 positively regulated fructose accumulation by repressing PpERDL6-1 gene expression.

Key words: peach, fructose, NAC gene family, PpNAC050, PpERDL6-1