Acta Horticulturae Sinica ›› 2024, Vol. 51 ›› Issue (7): 1529-1546.doi: 10.16420/j.issn.0513-353x.2024-0067
• Reviews • Previous Articles Next Articles
ZHENG Chuanqi1,2, TANG Yuchao3, YANG Panpan1, PENG Fuhai2, XU Leifeng1, TANG Le2, ZHI Yongming2, MING Jun1,*()
Received:
2024-03-15
Revised:
2024-06-13
Online:
2024-07-25
Published:
2024-07-19
Contact:
MING Jun
ZHENG Chuanqi, TANG Yuchao, YANG Panpan, PENG Fuhai, XU Leifeng, TANG Le, ZHI Yongming, MING Jun. Advances in Bitter Taste of the Horticultural Plants[J]. Acta Horticulturae Sinica, 2024, 51(7): 1529-1546.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2024-0067
植物名 Plant name | 主要苦味化合物 Main bitter compound | 参考文献 Reference | ||
---|---|---|---|---|
蜜柚、柑橘、脐橙、柠檬Honey pomelo,citrus,navel orange,lemon | 柚皮苷、新橙皮苷、枸杞苷、柠檬苦素、宜昌素、诺米林酸、诺米林、奥巴叩酮及配糖体Naringin,neohesperidin,goyaglycoside,limonin,ichangensin,nomilin acid,nomilin,obacunone and glycosome | 毕静莹, | ||
苹果Apple | 根皮素、儿茶素和原花青素Phloretin,catechins and proanthocyanidins | 乜兰春和孙建设, | ||
桃、李、杏仁 Peach,plum,almond | 表儿茶素、槲皮素、绿原酸、新绿原酸、苦杏仁甙、野黑樱苷和洋李甙 Epicatechin,quercetin,chlorogenic acid,neochlorogenic acid,amygdalin,prunasin and prunin | Bolarinwa et al., | ||
红枣、骏枣Red dates,Junzao | 没食子酸、原儿茶酸、对羟基苯甲酸、儿茶素、表儿茶素、迷迭酸、鞣花酸、咖啡酸、阿魏酸、香豆酸、香豆素Gallic acid,protocatechuic acid,p-hydroxybenzoic acid,catechin,epicatechin,rosmarinic acid,ellagic acid,caffeic acid,ferulic acid,coumaric acid,coumarin | Xie et al., | ||
拟南芥、花椰菜、青花菜Arabidopsis thaliana,cauliflower,broccoli | 硫代葡萄糖苷、甲状腺肿素、前致甲状腺肿素、芸薹葡糖硫苷、新葡萄糖芸薹素、黑介子苷Glucosinolate,gottrin,progoitrin,glucobrassicin,neoglucobrassicin,sinigrin | Zabaras et al., | ||
莴苣Lettuce | 莴苣素、山莴苣苦素Lactucin,lactucopicrin | 火国涛 等, | ||
蒲公英Dandelion | 木犀草素、芦丁、槲皮素、萜类成分、蒲公英甾、咖啡酸、绿原酸 Luteolin,rutin,quercetin,terpenoid component,taraxasterol,caffeic acid,chlorogenic acid | 石爱文 等, | ||
苦丁菜 Lxeris denticulata | 生物碱、萜类、黄酮类、木犀草素、槲皮素、糖苷类 Alkaloids,terpene,flavanoids,luteolin,quercetin,glycoside | 孙为刚, | ||
苦瓜、黄瓜、甜瓜 Momordica charantia,cucumber,muskmelon | 奎宁葫芦素A、B、C、D和E(其中葫芦素B、D和E在葫芦科植物中普遍存在,葫芦素A和C只在黄瓜属中发现,Momordicoside K、L与Momordicines Ⅰ、Ⅱ在苦瓜中分离得到) Quinine,Cucurbitins A,B,C,D and E(The cucurbitaceae family widely contains cucurbitins B,D,and E,while cucumber exclusively possesses cucurbitins A and C. Additionally,momordicoside K,L along with momordicinesⅠand Ⅱ are specifically isolated from the genus Momordicines.) | Chen, | ||
马铃薯Potato | 糖基生物碱(a-龙葵碱、a-卡茄碱和β2-卡茄碱)Glycoalkaloids(a-Solanine,a-carsolanine and β2-carsolanine) | Zarzecka et al., | ||
番茄Tomato | 糖基生物碱(番茄苷)Glycoalkaloids(tomatine) | Tohge et al., | ||
青花椒 Zanthoxylum schinifolium | 熊果苷、表儿茶素、金丝桃苷、异槲皮苷、伞形酮、番石榴苷、槲皮素、槲皮苷、山奈酚、异鼠李素、原花青素B2 Arbutin,epicatechin,hyperoside,isoquercitrin,umbelliferone,guajavarin,quercetin,quercitrin,kaempferol,isorhamnetin,proanthocyanidin b2 | 黄山, | ||
红花椒 Pericarpium zanthoxyli bungeani | 苯丙氨酸、缬氨酸、异亮氨酸、zanthoamide A、木兰花碱、小檗碱、槲皮素、槲皮苷、槲皮素-3-O-α-L-阿拉伯糖苷、异鼠李素、芥子酸、水杨酸、熊果苷和腺苷 Phenprobamate,valine,l-isoleucine,zanthoamide A,magnolflorine,berbine,quercetin,quercitrin,guajavarin,isorhamnetin,sinapic acid,salicylic acid,arbutin and adenosine | 梅小飞, | ||
苦茶 Bitter tea | 可可碱、缬氨酸、苦茶碱、儿茶素、苦味肽、咖啡因 Theobromine,valine,tetramethyluric acid,catechin,bitter peptide,caffeine theobromine | Yu & Yang, | ||
绿茶 Green tea | γ-氨基丁酸、咖啡碱、表没食子儿茶素、表没食子儿茶素没食子酸酯、表儿茶素没食子酸酯Caffeine,epigallocatechin,epigallocatechin gallate,epicatechin gallate 4-aminobutyric acid | 黄藩 等, | ||
燕麦 Oat | Avenacoside A、Avenacoside B、燕麦蒽酰胺2c、燕麦蒽酰胺2p、燕麦蒽酰胺1p、9-羟基-顺,反-10,12-十八碳二烯-1-单甘油酯 Avenacoside A,avenacoside B,avenanthramide 2c,avenanthramide 2p,avenanthramide 1p,9-hydroxy-cis,trans-10,12-octadecadiene-1-monoglycerol ester | 金文苑, | ||
黄连 Coptis chinensis | 黄连素Berberine | 陈维萍 等, | ||
厚朴 Mangnolia officinalis | 厚朴酚与和厚朴酚Magnolol and honokiol | 荆文光 等, | ||
穿心莲Andrographis paniculata | 穿心莲内酯、新穿心莲内酯、14-脱氧穿心莲内酯、脱氢穿心莲内酯 Andrographolide,neoandrographolide,14-deoxyandrographolide,andrographolide | Zhang et al., | ||
桔梗Platycodon grandiflorus | 去芹糖桔梗皂苷D、桔梗皂苷D2、桔梗皂苷D、远志皂苷D Desapioplatycodin D,platycodin D2,platycodin D,polygalacin-D3 | 陆海洋 等, | ||
百合Lily | 百合皂苷、儿茶素、表儿茶素、飞燕草色素、咖啡酸、哌啶、根皮素、木犀草素、槲皮素 Lilium saponin,catechin,epicatechin,delphinidin,caffeic acid,piperidine,phloretin,luteolin,quercetin | 代丽凤 等, | ||
吴茱萸 Fructus evodiae | 吴茱萸苦素、茱萸苦素乙酸酯、Calodendrolide,6β-乙酰氧基-5-表柠檬苦素、加洁茉里苦素、石虎柠檬素、吴茱萸内酯醇、黄柏酮、evodirutaenin A、格罗苦素甲Rutaevin,rutaevine acetate,calodendrolide,6β-acetoxy-5-epillimonin,jangomolide,limonexic acid,evodol,obacunon,evodirutaenin A,agropicrin | 孔奕丹 等, | ||
氨基酸及其苦味肽 Amino acids and their bitter peptides | 人体中必需氨基酸均具有苦味,并以苯丙氨酸和色氨酸的苦味最强;肽分子质量在3 kDa以下时才具有苦味,且苦味强度与疏水氨基酸的含量呈正相关 All essential amino acids in the human body have a bitter taste,with phenylalanine and tryptophan exhibiting the strongest bitterness. Peptides with a molecular weight below 3 kDa are perceived as bitter,and the intensity of bitterness is directly related to the presence of hydrophobic amino acids | 彭静和孙威江, |
Table 1 Common plants and their bitter compounds
植物名 Plant name | 主要苦味化合物 Main bitter compound | 参考文献 Reference | ||
---|---|---|---|---|
蜜柚、柑橘、脐橙、柠檬Honey pomelo,citrus,navel orange,lemon | 柚皮苷、新橙皮苷、枸杞苷、柠檬苦素、宜昌素、诺米林酸、诺米林、奥巴叩酮及配糖体Naringin,neohesperidin,goyaglycoside,limonin,ichangensin,nomilin acid,nomilin,obacunone and glycosome | 毕静莹, | ||
苹果Apple | 根皮素、儿茶素和原花青素Phloretin,catechins and proanthocyanidins | 乜兰春和孙建设, | ||
桃、李、杏仁 Peach,plum,almond | 表儿茶素、槲皮素、绿原酸、新绿原酸、苦杏仁甙、野黑樱苷和洋李甙 Epicatechin,quercetin,chlorogenic acid,neochlorogenic acid,amygdalin,prunasin and prunin | Bolarinwa et al., | ||
红枣、骏枣Red dates,Junzao | 没食子酸、原儿茶酸、对羟基苯甲酸、儿茶素、表儿茶素、迷迭酸、鞣花酸、咖啡酸、阿魏酸、香豆酸、香豆素Gallic acid,protocatechuic acid,p-hydroxybenzoic acid,catechin,epicatechin,rosmarinic acid,ellagic acid,caffeic acid,ferulic acid,coumaric acid,coumarin | Xie et al., | ||
拟南芥、花椰菜、青花菜Arabidopsis thaliana,cauliflower,broccoli | 硫代葡萄糖苷、甲状腺肿素、前致甲状腺肿素、芸薹葡糖硫苷、新葡萄糖芸薹素、黑介子苷Glucosinolate,gottrin,progoitrin,glucobrassicin,neoglucobrassicin,sinigrin | Zabaras et al., | ||
莴苣Lettuce | 莴苣素、山莴苣苦素Lactucin,lactucopicrin | 火国涛 等, | ||
蒲公英Dandelion | 木犀草素、芦丁、槲皮素、萜类成分、蒲公英甾、咖啡酸、绿原酸 Luteolin,rutin,quercetin,terpenoid component,taraxasterol,caffeic acid,chlorogenic acid | 石爱文 等, | ||
苦丁菜 Lxeris denticulata | 生物碱、萜类、黄酮类、木犀草素、槲皮素、糖苷类 Alkaloids,terpene,flavanoids,luteolin,quercetin,glycoside | 孙为刚, | ||
苦瓜、黄瓜、甜瓜 Momordica charantia,cucumber,muskmelon | 奎宁葫芦素A、B、C、D和E(其中葫芦素B、D和E在葫芦科植物中普遍存在,葫芦素A和C只在黄瓜属中发现,Momordicoside K、L与Momordicines Ⅰ、Ⅱ在苦瓜中分离得到) Quinine,Cucurbitins A,B,C,D and E(The cucurbitaceae family widely contains cucurbitins B,D,and E,while cucumber exclusively possesses cucurbitins A and C. Additionally,momordicoside K,L along with momordicinesⅠand Ⅱ are specifically isolated from the genus Momordicines.) | Chen, | ||
马铃薯Potato | 糖基生物碱(a-龙葵碱、a-卡茄碱和β2-卡茄碱)Glycoalkaloids(a-Solanine,a-carsolanine and β2-carsolanine) | Zarzecka et al., | ||
番茄Tomato | 糖基生物碱(番茄苷)Glycoalkaloids(tomatine) | Tohge et al., | ||
青花椒 Zanthoxylum schinifolium | 熊果苷、表儿茶素、金丝桃苷、异槲皮苷、伞形酮、番石榴苷、槲皮素、槲皮苷、山奈酚、异鼠李素、原花青素B2 Arbutin,epicatechin,hyperoside,isoquercitrin,umbelliferone,guajavarin,quercetin,quercitrin,kaempferol,isorhamnetin,proanthocyanidin b2 | 黄山, | ||
红花椒 Pericarpium zanthoxyli bungeani | 苯丙氨酸、缬氨酸、异亮氨酸、zanthoamide A、木兰花碱、小檗碱、槲皮素、槲皮苷、槲皮素-3-O-α-L-阿拉伯糖苷、异鼠李素、芥子酸、水杨酸、熊果苷和腺苷 Phenprobamate,valine,l-isoleucine,zanthoamide A,magnolflorine,berbine,quercetin,quercitrin,guajavarin,isorhamnetin,sinapic acid,salicylic acid,arbutin and adenosine | 梅小飞, | ||
苦茶 Bitter tea | 可可碱、缬氨酸、苦茶碱、儿茶素、苦味肽、咖啡因 Theobromine,valine,tetramethyluric acid,catechin,bitter peptide,caffeine theobromine | Yu & Yang, | ||
绿茶 Green tea | γ-氨基丁酸、咖啡碱、表没食子儿茶素、表没食子儿茶素没食子酸酯、表儿茶素没食子酸酯Caffeine,epigallocatechin,epigallocatechin gallate,epicatechin gallate 4-aminobutyric acid | 黄藩 等, | ||
燕麦 Oat | Avenacoside A、Avenacoside B、燕麦蒽酰胺2c、燕麦蒽酰胺2p、燕麦蒽酰胺1p、9-羟基-顺,反-10,12-十八碳二烯-1-单甘油酯 Avenacoside A,avenacoside B,avenanthramide 2c,avenanthramide 2p,avenanthramide 1p,9-hydroxy-cis,trans-10,12-octadecadiene-1-monoglycerol ester | 金文苑, | ||
黄连 Coptis chinensis | 黄连素Berberine | 陈维萍 等, | ||
厚朴 Mangnolia officinalis | 厚朴酚与和厚朴酚Magnolol and honokiol | 荆文光 等, | ||
穿心莲Andrographis paniculata | 穿心莲内酯、新穿心莲内酯、14-脱氧穿心莲内酯、脱氢穿心莲内酯 Andrographolide,neoandrographolide,14-deoxyandrographolide,andrographolide | Zhang et al., | ||
桔梗Platycodon grandiflorus | 去芹糖桔梗皂苷D、桔梗皂苷D2、桔梗皂苷D、远志皂苷D Desapioplatycodin D,platycodin D2,platycodin D,polygalacin-D3 | 陆海洋 等, | ||
百合Lily | 百合皂苷、儿茶素、表儿茶素、飞燕草色素、咖啡酸、哌啶、根皮素、木犀草素、槲皮素 Lilium saponin,catechin,epicatechin,delphinidin,caffeic acid,piperidine,phloretin,luteolin,quercetin | 代丽凤 等, | ||
吴茱萸 Fructus evodiae | 吴茱萸苦素、茱萸苦素乙酸酯、Calodendrolide,6β-乙酰氧基-5-表柠檬苦素、加洁茉里苦素、石虎柠檬素、吴茱萸内酯醇、黄柏酮、evodirutaenin A、格罗苦素甲Rutaevin,rutaevine acetate,calodendrolide,6β-acetoxy-5-epillimonin,jangomolide,limonexic acid,evodol,obacunon,evodirutaenin A,agropicrin | 孔奕丹 等, | ||
氨基酸及其苦味肽 Amino acids and their bitter peptides | 人体中必需氨基酸均具有苦味,并以苯丙氨酸和色氨酸的苦味最强;肽分子质量在3 kDa以下时才具有苦味,且苦味强度与疏水氨基酸的含量呈正相关 All essential amino acids in the human body have a bitter taste,with phenylalanine and tryptophan exhibiting the strongest bitterness. Peptides with a molecular weight below 3 kDa are perceived as bitter,and the intensity of bitterness is directly related to the presence of hydrophobic amino acids | 彭静和孙威江, |
奎宁/(× 10-6 mol · L-1)Quinine | 苦味描述 Bitter taste description | 苦味值 Bitter tastevalue | 盐酸小檗碱/(mmol · L-1)Berberine hydrochloride | 苦味描述 Bitter taste description | 苦味等级 Bitterness rating |
---|---|---|---|---|---|
3 | 不苦 Imperceptible | 0 | 0 | 不苦Imperceptible | Ⅰ |
6 | 微苦Slight | 1 | 0.027 | 微苦Slight | Ⅱ |
12 | 中等苦Moderate | 2 | 0.134 | 中等苦度Moderate | Ⅲ |
24 | 较苦Quite | 3 | 0.269 | 很苦,但仍可接受 Great,but acceptable | Ⅳ |
48 | 苦Great | 4 | 1.344 | 极苦,几乎不能接受 Extreme,almost unacceptable | Ⅴ |
96 | 很苦Extreme | 5 | — | — | — |
Table 2 Scoring criteria and grades of bitter compounds
奎宁/(× 10-6 mol · L-1)Quinine | 苦味描述 Bitter taste description | 苦味值 Bitter tastevalue | 盐酸小檗碱/(mmol · L-1)Berberine hydrochloride | 苦味描述 Bitter taste description | 苦味等级 Bitterness rating |
---|---|---|---|---|---|
3 | 不苦 Imperceptible | 0 | 0 | 不苦Imperceptible | Ⅰ |
6 | 微苦Slight | 1 | 0.027 | 微苦Slight | Ⅱ |
12 | 中等苦Moderate | 2 | 0.134 | 中等苦度Moderate | Ⅲ |
24 | 较苦Quite | 3 | 0.269 | 很苦,但仍可接受 Great,but acceptable | Ⅳ |
48 | 苦Great | 4 | 1.344 | 极苦,几乎不能接受 Extreme,almost unacceptable | Ⅴ |
96 | 很苦Extreme | 5 | — | — | — |
分类 Classification | 目的 Purpose | 优点 Advantage | 缺点 Defect |
---|---|---|---|
非靶向代谢组学 Untargeted metabolomics | 代谢物检测(主要是初级代谢物),寻找潜在生物标记物 Metabolite detection(primarily primary metabolites),the aim of identifying potential biomarkers | 无偏向性,覆盖率高,操作简单,可以发现新的标记物 Impartiality,extensive scope,simplicity,and discovery of new markers | 灵敏度低,低丰度代谢物检测低,需依赖公共数据库,准确鉴定代谢物难,验证困难 Low sensitivity and abundance,reliance on public databases,accurate identification of metabolites is challenging,and verification is difficult |
靶向代谢组学 Targeted metabolomics | 少量目标代谢物检测,关注目标通路代谢物,可以进行临床标记物验证,研究调控机制 The detection of a small amount of target metabolites,focusing on the metabolites of the target pathway,can validate them as clinical markers and study the regulatory mechanism | 灵敏度高,绝对定性定量 Sensitivity,absolute qualitative,and quantitative | 需要标准品,需构建标准曲线Standards are required,and standard curves are constructed |
广泛靶向代谢组学 Broadly targeted metabolomics | 初生与次生代谢物检测,寻找潜在的生物标记物,关注目标代谢物通路,研究其调控机制Primary and secondary metabolite detection,searching for potential biomarkers,focusing on target metabolite pathways,and studying their regulatory mechanisms | 灵敏度高,覆盖率高 High sensitivity and high coverage | 相对定性定量,需要数据库,准确鉴定代谢物难 Relatively qualitative and quantitative,reliance on public databases,accurate identification of metabolites is difficult |
Table 3 Classification of metabonomics
分类 Classification | 目的 Purpose | 优点 Advantage | 缺点 Defect |
---|---|---|---|
非靶向代谢组学 Untargeted metabolomics | 代谢物检测(主要是初级代谢物),寻找潜在生物标记物 Metabolite detection(primarily primary metabolites),the aim of identifying potential biomarkers | 无偏向性,覆盖率高,操作简单,可以发现新的标记物 Impartiality,extensive scope,simplicity,and discovery of new markers | 灵敏度低,低丰度代谢物检测低,需依赖公共数据库,准确鉴定代谢物难,验证困难 Low sensitivity and abundance,reliance on public databases,accurate identification of metabolites is challenging,and verification is difficult |
靶向代谢组学 Targeted metabolomics | 少量目标代谢物检测,关注目标通路代谢物,可以进行临床标记物验证,研究调控机制 The detection of a small amount of target metabolites,focusing on the metabolites of the target pathway,can validate them as clinical markers and study the regulatory mechanism | 灵敏度高,绝对定性定量 Sensitivity,absolute qualitative,and quantitative | 需要标准品,需构建标准曲线Standards are required,and standard curves are constructed |
广泛靶向代谢组学 Broadly targeted metabolomics | 初生与次生代谢物检测,寻找潜在的生物标记物,关注目标代谢物通路,研究其调控机制Primary and secondary metabolite detection,searching for potential biomarkers,focusing on target metabolite pathways,and studying their regulatory mechanisms | 灵敏度高,覆盖率高 High sensitivity and high coverage | 相对定性定量,需要数据库,准确鉴定代谢物难 Relatively qualitative and quantitative,reliance on public databases,accurate identification of metabolites is difficult |
[1] |
doi: 10.1016/s0092-8674(00)80705-9 pmid: 10761934 |
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
doi: 10.1093/molbev/msu254 pmid: 25180257 |
[10] |
|
[11] |
|
毕静莹. 2019. 柑橘酒苦味物质及其控制技术研究[博士论文]. 杨凌: 西北农林科技大学.
|
|
[12] |
|
[13] |
pmid: 11839611 |
[14] |
doi: 10.1002/lio2.26 pmid: 27819057 |
[15] |
|
[16] |
|
[17] |
|
[18] |
doi: S0888-7543(20)30172-5 pmid: 32234434 |
[19] |
|
[20] |
|
陈维萍, 南楚, 刘怡伽, 苏丹颖. 2023. 黄连素通过调控丝裂原活化蛋白激酶信号通路治疗各科疾病的药理机制研究进展. 环球中医药, 16 (8):1707-1714.
|
|
[21] |
doi: 10.16420/j.issn.0513-353x.2015-0537 |
崔竣杰, 李波, 程蛟文, 胡开林. 2015. 苦瓜苦味物质及其生物合成研究进展. 园艺学报, 42 (9):1707-1718.
doi: 10.16420/j.issn.0513-353x.2015-0537 |
|
[22] |
|
[23] |
|
[24] |
|
戴丽, 霍海如, 隋峰, 姜廷良. 2015. 基于苦味受体挖掘苦寒(味)中药药性的现代科学内涵. 世界科学技术-中医药现代化, 17 (5):923-928.
|
|
[25] |
|
代丽凤, 罗理勇, 罗江琼, 常睿, 柳岩, 曾亮. 2020. 植物苦味物质概况及其在食品工业的应用. 中国食品学报, 20 (11):305-318.
|
|
[26] |
|
戴伟民. 2011. 人类苦味受体的分子模拟研究[博士论文]. 南京: 南京大学.
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
付金玉, 刘莉, 华德平. 2019. 甜瓜苦味物质及其生物合成研究进展. 中国农学通报, 35 (8):33-38.
doi: 10.11924/j.issn.1000-6850.casb18030040 |
|
[32] |
|
[33] |
|
高晓洁, 白明学, 桂新景, 王艳丽, 王君明, 姚静, 张璐, 施钧瀚, 李学林, 刘瑞新. 2022. 基于苦味阈值浓度的药物分子苦度定量方法研究. 中草药, 53 (3):696-703.
|
|
[34] |
|
[35] |
|
顾兴芳, 方秀娟, 张孟玉, 张天明. 2000. 黄瓜苦味研究概况. 园艺学报, 27 (S1):504-508.
|
|
[36] |
|
郝晓霞. 2008. 苦味物质研究概况. 黄冈师范学院学报, 28 (S1):90-92.
|
|
[37] |
|
[38] |
pmid: 10570481 |
[39] |
|
黄藩, 罗凡, 胥亚琼, 张翔, 尧渝, 李兰英, 冯德建. 2023. 四川绿茶滋味品质分析及风味轮构建. 西南农业学报, 36 (5):943-951.
|
|
[40] |
|
黄山. 2023. 不同生长期青花椒果皮苦味形成的研究[硕士论文]. 重庆: 西南大学.
|
|
[41] |
|
黄岩, 史伊格, 梁莉, 蒲丹丹, 郑向东, 张玉玉. 2023. 食品中苦味物质的感知与调控研究进展. 食品科学, 44 (11):185-195.
|
|
[42] |
|
皇甫文倩, 金文苑, 胡新中. 2019. 燕麦加工中苦味物质的分离与初步鉴定. 食品安全质量检测学报, 10 (15):4890-4895.
|
|
[43] |
|
火国涛, 葛国军, 贺淑萍, 刘元军, 龙萍, 刘鸿艳, 罗利军, 魏仕伟. 2023. 红色叶用莴苣新品种‘红珊瑚’. 园艺学报, 50 (S2):65-66.
|
|
[44] |
|
[45] |
|
江飞凤, 胡鹏刚, 田太江, 谭晓辉, 潘雪梅, 闫锦. 2021. 柚子酒酶法脱苦工艺优化及香气成分分析. 现代食品科技, 37 (8):275-285.
|
|
[46] |
|
金文苑. 2018. 燕麦中苦味物质来源及脱苦方法研究[硕士论文]. 西安: 陕西师范大学.
|
|
[47] |
|
荆文光, 赵小亮, 张权, 程显隆, 马双成, 魏锋. 2022. 基于电子舌和多成分定量技术的厚朴“苦味”药性物质基础研究. 中国现代中药, 24 (2):258-264.
|
|
[48] |
|
[49] |
|
孔奕丹, 齐英, 崔娜, 张志宏, 孙延平, 曾元宁, 王长福, 匡海学, 王秋红. 2023. 吴茱萸化学成分及药理作用研究进展. 中医药信息, 40 (5):79-83,89.
|
|
[50] |
|
[51] |
doi: 10.1523/JNEUROSCI.1225-04.2004 pmid: 15537898 |
[52] |
|
[53] |
doi: 10.1038/s41598-019-45456-w pmid: 31222082 |
[54] |
|
[55] |
|
[56] |
|
[57] |
|
李晨旭, 任延娜, 姚静, 王艳丽, 高晓洁, 李涵, 郭晓帆, 刘瑞新, 李学林. 2023. 基于经典人群口尝法的苦味药物“比苦度”定量方法研究. 中草药, 54 (9):2758-2764.
|
|
[58] |
|
李学林, 张杏芬, 刘瑞新, 李慧玲, 仇继玺, 吴子丹. 2013. 药物苦度的定量及其与浓度的关系研究. 世界科学技术(中医药现代化), 15 (4):667-671.
|
|
[59] |
doi: 10.19540/j.cnki.cjcmm.20190628.201 pmid: 31602867 |
李轩豪, 苏锦松, 刘秀华, 龙伟, 邹忠梅, 孟宪丽, 张艺, 唐策. 2019. 基于分子对接技术的藏族药翼首草“苦味”成分研究. 中国中药杂志, 44 (15):3157-3161.
pmid: 31602867 |
|
[60] |
|
林晓琴, 杨培全. 1997. 葫芦烷型四环三萜化合物的研究. 华西药学杂志, 12 (2):106-109.
|
|
[61] |
pmid: 24926369 |
[62] |
|
陆海洋. 2018. 桔梗皂苷类物质积累及其苦味的关系研究[硕士论文]. 合肥: 安徽中医药大学.
|
|
[63] |
doi: 10.3389/fphys.2019.00861 pmid: 31379593 |
[64] |
doi: 10.19540/j.cnki.cjcmm.20220810.103 pmid: 36604930 |
吕朝耕, 康传志, 杨健, 王升, 王瑞杉, 万修福, 郭兰萍. 2022. 食药物质类中药材发展面临的问题与分化发展思路分析. 中国中药杂志, 47 (24):6810-6816.
pmid: 36604930 |
|
[65] |
doi: S0896-6273(18)30249-6 pmid: 29681531 |
[66] |
|
[67] |
|
[68] |
doi: 10.1074/jbc.R100054200 pmid: 11696554 |
[69] |
|
[70] |
|
梅小飞. 2020. 红花椒果皮苦味形成的关键苦味物质研究[硕士论文]. 重庆: 西南大学.
|
|
[71] |
doi: 10.1093/chemse/bjp092 pmid: 20022913 |
[72] |
|
[73] |
|
乜兰春, 孙建设. 2005. 苹果果实酚类物质含量与果实苦涩关系的研究. 园艺学报, 32 (5):13-17.
|
|
[74] |
doi: 10.1002/iub.1694 pmid: 29130618 |
[75] |
doi: 10.1016/j.brainres.2010.10.060 pmid: 20971092 |
[76] |
|
[77] |
|
彭静, 孙威江. 2017. 茶叶苦味研究进展. 食品工业, 38 (1):244-248.
|
|
[78] |
|
[79] |
|
蒲云峰. 2019. 骏枣苦味物质鉴定及形成机理研究[博士论文]. 杭州: 浙江大学.
|
|
[80] |
|
戚淑叶, 耿利华, 赵悦, 王晨, 朱俐, 姚尚辰, 宁保明. 2023. 电子舌在药品口感评价中的应用进展. 药学学报, 58 (11):3151-3159.
|
|
[81] |
|
秦春莲, 袁群琛, 庄柳静, 李蓉, 王平. 2021. 基于苦味受体表达的多组织细胞传感器及其应用. 仪器仪表学报, 42 (12):127-135.
|
|
[82] |
|
任树龙, 王亚静, 郑银, 孟亚飞, 邓新焕. 2014. 基于苦味产生机制的掩味策略与评价. 中南药学, 12 (6):562-566.
|
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
doi: 10.1126/science.1259215 pmid: 25430763 |
[88] |
|
石爱文, 姚佳靖, 王庆, 张玉珊, 王雷, 边帅杰, 刘莉, 齐滨. 2024. 蒲公英化学成分和药理作用研究进展及其质量标志物预测分析. 中华中医药学刊, https://link.cnki.net/urlid/21.1546.r.20231108.1528.002.
|
|
[89] |
|
[90] |
|
时羽杰, 邬晓勇, 糜加轩, 赵倩, 刘欢欢, 万雪琴. 2021. 核桃内种皮苦涩味品质代谢组学分析. 西北农林科技大学学报(自然科学版), 49 (6):54-64.
|
|
[91] |
doi: 10.1146/annurev-physiol-021317-121332 pmid: 29029594 |
[92] |
|
孙为刚. 2023. 苦菜. 走向世界,(12):84-85.
|
|
[93] |
|
孙小雯. 2018. 枳雀中主要苦味物质的鉴定及其提取工艺研究[硕士论文]. 武汉: 华中农业大学.
|
|
[94] |
doi: S0960-9822(19)31161-3 pmid: 31543453 |
[95] |
doi: 10.1104/pp.18.00922 pmid: 30297455 |
[96] |
doi: 10.7506/spkx1002-6630-20210309-120 |
田霄艳, 郑斐庭, 冯涛, 喻晨, 宋诗清, 孙敏, 姚凌云. 2022. 大豆蛋白水解物苦味评价方法研究. 食品科学, 43 (3):25-32.
|
|
[97] |
|
[98] |
doi: 10.1093/jxb/ert443 pmid: 24446507 |
[99] |
|
[100] |
doi: 10.1126/science.aao3264 |
[101] |
|
[102] |
|
[103] |
|
王艺宸. 2020. 汉语味觉词的隐喻义及其对外汉语教学研究[硕士论文]. 苏州: 苏州大学.
|
|
[104] |
|
魏沙沙, 彭静, 陈志丹, 孙威江, 林琳. 2021. 尤溪苦茶苦味相关物质检测及与苦味的关联分析. 茶叶科学, 41 (3):337-349.
|
|
[105] |
|
[106] |
|
[107] |
|
伍铁平. 1989. 不同语言的味觉词和温度词对客观现实的不同切分—语言类型学研究. 语言教学与研究,(1):120-137.
|
|
[108] |
|
肖丽琼. 2014. 米香型白酒苦味物质形成机理及控制措施研究[硕士论文]. 广州: 仲恺农业工程学院.
|
|
[109] |
doi: 10.16420/j.issn.0513-353x.2019-0237 |
解林峰, 任传宏, 张波, 徐昌杰, 李鲜. 2019. 植物类黄酮生物合成相关UDP-糖基转移酶研究进展. 园艺学报, 46 (9):1655-1669.
doi: 10.16420/j.issn.0513-353x.2019-0237 |
|
[110] |
|
[111] |
doi: 10.1126/science.abo1633 pmid: 36108005 |
[112] |
|
[113] |
|
[114] |
|
[115] |
doi: 10.16420/j.issn.0513-353x.2021-0811 |
叶广继, 郑贞贞, 纳添仓, 王舰. 2022. 马铃薯资源糖苷生物碱含量评价及合成相关基因表达分析. 园艺学报, 49 (11):2357-2366.
doi: 10.16420/j.issn.0513-353x.2021-0811 |
|
[116] |
doi: 10.16420/j.issn.0513-353x.2020-0441 |
余歆, 张晓楠, 赵晓春. 2021. 柑橘果皮的生物活性物质和重要园艺性状. 园艺学报, 48 (4):825-836.
doi: 10.16420/j.issn.0513-353x.2020-0441 |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
张慧敏, 张雷, 马永硕, 尚轶, 王深浩, 杨清, 黄三文. 2014. 调控黄瓜苦味基因Bi的AP2/ERF家族转录因子. 园艺学报, 41 (4):672-680.
|
|
[122] |
|
张俊环, 张美玲, 姜凤超, 杨丽, 王玉柱, 于文剑, 孙浩元. 2023. 杏仁中苦味物质的检测方法及苦味物质在杏仁发育过程中的分布研究. 中国果树,(10):39-44,142.
|
|
[123] |
|
[124] |
|
张玲, 郭宣宣, 朱丽丽. 2019. 桔梗中苦味物质的分布与动态积累研究. 中药新药与临床药理, 30 (5):586-591.
|
|
[125] |
|
[126] |
|
张璇, 莫皓然, 赵会, 李鑫, 何雨, 黄名正, 唐维媛. 2024. 不同烹饪方式对草鱼肉挥发性风味成分的影响. 食品工业科技, 45 (10):263-272.
|
|
[127] |
|
[128] |
|
[129] |
|
[1] | WANG Chenyu, LIU Mengjun, WANG Lixin, LIU Zhiguo. Research Progress of CRISPR/Cas9 Technology and Its Application in Horticultural Plants [J]. Acta Horticulturae Sinica, 2024, 51(7): 1439-1454. |
[2] | JIN Zhou, LU Shan, JIANG Junhao, LI Shouren, ZHANG Nan, JIANG Xiaoyu, WU Fan. Research Progress on Influencing Factors and Mechanisms of Flower Bud Differentiation in Horticultural Plants [J]. Acta Horticulturae Sinica, 2023, 50(5): 1151-1164. |
[3] | YANG Linlin, HUANG Yuntong, FU Zeyuan, XU Qijiang. Research Progress on the Epigenetic Mechanisms of Sex Determination in Horticultural Plants [J]. Acta Horticulturae Sinica, 2022, 49(7): 1602-1610. |
[4] | SHI Caiyun, LIU Li, WEI Zhifeng, GAO Dengtao, LIU Yongzhong. Research Progress of Proton Pumps and Their Regulation in Organic Acid Accumulation in Horticultural Plants [J]. Acta Horticulturae Sinica, 2022, 49(12): 2611-2621. |
[5] | XIANG Yuanping, WANG Yidan, HE Hongjun, and XU Qijiang, . Plant Transposable Elements and the Effects of Insertion Mutations on Flower Development in Horticultural Plants [J]. Acta Horticulturae Sinica, 2020, 47(11): 2247-2266. |
[6] | DANG Jiangbo1,SONG Qin1,LI Cai2,GUO Qigao,and LIANG Guolu1,*. Application Status and Breeding Prospects of Triploid in Horticultural Plant [J]. ACTA HORTICULTURAE SINICA, 2018, 45(9): 1813-1830. |
[7] | ZHAO Yujie,ZHANG Taikui,LUI Cuiyu,HUANG Xianbin,and YUAN Zhaohe*. Progress on Sex Determinant Mechanism in Horticultural Plants [J]. ACTA HORTICULTURAE SINICA, 2018, 45(11): 2228-2242. |
[8] | LIAO Jingjing,NIU Congcong,XIE Qunjie,XING Qiaojuan,and QI Hongyan*. The Recent Advances of Transient Expression System in Horticultural Plants [J]. ACTA HORTICULTURAE SINICA, 2017, 44(9): 1787-1795. |
[9] | SHU Qiaoli1,CHEN Zhi3,DANG Jiangbo1,YANG Xing1,SUN Haiyan1,LIANG Guolu1,HONG Qibin2,*,and XIANG Suqiong1,*. Progress of Chromosome Identification Technology and Application on Horticultural Plants [J]. ACTA HORTICULTURAE SINICA, 2017, 44(9): 1772-1786. |
[10] | ZHANG Yu-Jing;WANG Kun;WANG Yi;HAN Zhen-hai;GAO Yuan;XU Xue-feng;and ZHANG Xin-zhong;. Evaluation of Resistance to Fruit Ring Rot for Apple Germplasms [J]. ACTA HORTICULTURAE SINICA, 2010, 37(4): 539-546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd