Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (3): 583-595.doi: 10.16420/j.issn.0513-353x.2021-1280
• Research Papers • Previous Articles Next Articles
YIN Jian1,2, ZHU Xijian1,2, WU Yaoyao3, LI Canhui1,*(), ZHANG Jinzhe2,*()
Received:
2022-09-19
Revised:
2022-12-05
Online:
2023-03-25
Published:
2023-04-03
Contact:
*(E-mail:zhangjinzhe@caas.cn,ch2010201@163.com)
CLC Number:
YIN Jian, ZHU Xijian, WU Yaoyao, LI Canhui, ZHANG Jinzhe. Targets Prediction and Function Analysis of Potato miR319 Gene Family[J]. Acta Horticulturae Sinica, 2023, 50(3): 583-595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1280
用途 Usage | 引物名称 Primer name | 序列(5′-3′) Primer sequence | 退火温 度/℃ Tm | 产物大 小/bp Product size | |
---|---|---|---|---|---|
qRT-PCR 内参Reference | miR319-5p | F:AGGAAACTGTTTAGTCCAACC | 53 | 80 | |
miR319-3p | F:TTGGACTGAAGGGTTCCC | 55 | 80 | ||
miR319a-5p | F:AGAGCTTTCTTCGGTCCA | 54 | 80 | ||
miR319a-3p | F:CGTTGGACTGAAGGGAGCTC | 58 | 81 | ||
18S rRNA | F:TTAGAGGAAGGAGAAGTCGTAACAA | 56 | 270 | ||
反向引物 Reverse primer | 参照试剂盒According to the kits | ||||
克隆 | miR319 | F:AGGAAACTGTTTAGTCCAACCC | R:GAAGGGAACCCTTCAGTCCA | 56 | 177 |
Cloning | miR319a | F:AGAGCTTTCTTCGGTCCA | R:AGGGAGCTCCCTTCAGTC | 56 | 172 |
miR319b | F:GAGCTCCTTTCAGGCCAA | R:AGGAGCTCCCTTCAGTCCA | 56 | 173 | |
载体构建 Vector | miR319-infusion | F:GGGGACTCTAGAGGATCCCCGGGAG GAAACTGTTTAGTCCAACCC R:GAGCTGGTCACCAATTCACACGTGGAAGGGAACCCTTCAGTCCA | 60 | 224 | |
construction | miR319a-infusion | F:GGGGACTCTAGAGGATCCCCGGGA GAGCTTTCTTCGGTCCA R:GAGCTGGTCACCAATTCACACGTGAGGGAGCTCCCTTCAGTC | 60 | 219 | |
miR319b-infusion | F:GGGGACTCTAGAGGATCCCCGGGAGCTCCTTTCAGGCCAA R:GAGCTGGTCACCAATTCACACGTGAGGAGCTCCCTTCAGTCCA | 60 | 220 | ||
内参Reference | St-Qp-ACT | F:GGGATGGAGAAGTTTGGTGGTGG | R:CTTCGACCAAGGGATGGTGTAGC | 61 | 166 |
qRT-PCR | 07G023850.1 | F:GTCTACAGGGCGGAAAGACC | R:GCTCATCAATGGCGGGTTTC | 58 | 185 |
03G015060.1 | F:GGAGCCAAGCACCCTTTAGT | R:TGAGCCTCTCTTGGCTTGTG | 59 | 153 | |
03G022350.1 | F:CAAGATTCGAACCGTGTGGC | R:ATGTCCACCCGGTACCTTCA | 59 | 150 | |
07G025630.1 | F:GTCTCATTGATCCAGCGGGT | R:GCTTCAGCGGGGTCAGTAAT | 59 | 154 | |
04G012100 | F:TGCTGATCCCAACGTACGAA | R:ATCAATGTTCGCGCTCCCTT | 59 | 196 | |
02G018740 | F:GGGGATGCTGGATTTATGCCT | R:TGGATCAAGCATTTGCAGCAG | 59 | 171 | |
08G019310 | F:CTTGACAAGGCGGAGTTTGC | R:TCACCACCTCTCTTTGGCAC | 58 | 179 | |
10G001090 | F:CACACAAGGTGTTGTTTGGCA | R:CCTTTCGGCCTTAACCAAGC | 58 | 200 | |
11G005050 | F:TAGCCTCTCATTTGCAAGGGG | R:ACAGCTGAGCTTTCCATGTC | 59 | 190 | |
03G033500 | F:GAGGCCAGAGTCGGAAACAA | R:GGATCTGAACTGCCTTCGGT | 59 | 173 | |
08G015120 | F:AGGTGTCTGGCTCAGGATTC | R:CCATCGTCTTCATCGATGCCT | 60 | 187 | |
01G032600 | F:TGCACTTGCGTATGAAGGCT | R:GTCCACACGCATAGCAGGTA | 60 | 187 | |
06G017770 | F:CCTTCGAAATTCCTCCGGCT | R:CAGCTGCAATCATCGCGAAA | 60 | 186 | |
05G018750 | F:TGGTGGCTCAAAGTGTGTTCT | R:GCACCAAGGGCATTGATTGG | 59 | 172 | |
03G029210 | F:CTCTGCCAAGAGTGGAGCAA | R:GTCTTGCAAGCCCGATACCA | 60 | 165 | |
01G025250 | F:TGCAACGATGATTGCTGTGC | R:CCAACAAGGCCGCACATTAG | 59 | 150 | |
12G005850 | F:ACAGCTGCCTAAGTTGGCTT | R:AGGCATCCAGCTTTCTTGCT | 59 | 194 | |
04G019680 | F:CTATGGTCAATGGAGCGCGA | R:TTCAACAACTGCGCAACCTG | 59 | 181 | |
08G030230 | F:GTGCCAATCTGTGCATCGAC | R:AATGCGAGGGTGCCATAGAC | 59 | 170 | |
08G000520 | F:TGGTGACTGGGACAACACAT | R:TGGTCCAGAGTCCTCGAGTT | 59 | 188 | |
08G015810 | F:TGTCCCGTGGAGAGGTAGAG | R:ATCACCCGAAACACGCTTCA | 59 | 173 | |
03G015040 | F:TTCTATGTGGACGGAACGCC | R:ACTAAAGGGTGCTTGGCTCC | 59 | 168 |
Table 1 The primers used in this study
用途 Usage | 引物名称 Primer name | 序列(5′-3′) Primer sequence | 退火温 度/℃ Tm | 产物大 小/bp Product size | |
---|---|---|---|---|---|
qRT-PCR 内参Reference | miR319-5p | F:AGGAAACTGTTTAGTCCAACC | 53 | 80 | |
miR319-3p | F:TTGGACTGAAGGGTTCCC | 55 | 80 | ||
miR319a-5p | F:AGAGCTTTCTTCGGTCCA | 54 | 80 | ||
miR319a-3p | F:CGTTGGACTGAAGGGAGCTC | 58 | 81 | ||
18S rRNA | F:TTAGAGGAAGGAGAAGTCGTAACAA | 56 | 270 | ||
反向引物 Reverse primer | 参照试剂盒According to the kits | ||||
克隆 | miR319 | F:AGGAAACTGTTTAGTCCAACCC | R:GAAGGGAACCCTTCAGTCCA | 56 | 177 |
Cloning | miR319a | F:AGAGCTTTCTTCGGTCCA | R:AGGGAGCTCCCTTCAGTC | 56 | 172 |
miR319b | F:GAGCTCCTTTCAGGCCAA | R:AGGAGCTCCCTTCAGTCCA | 56 | 173 | |
载体构建 Vector | miR319-infusion | F:GGGGACTCTAGAGGATCCCCGGGAG GAAACTGTTTAGTCCAACCC R:GAGCTGGTCACCAATTCACACGTGGAAGGGAACCCTTCAGTCCA | 60 | 224 | |
construction | miR319a-infusion | F:GGGGACTCTAGAGGATCCCCGGGA GAGCTTTCTTCGGTCCA R:GAGCTGGTCACCAATTCACACGTGAGGGAGCTCCCTTCAGTC | 60 | 219 | |
miR319b-infusion | F:GGGGACTCTAGAGGATCCCCGGGAGCTCCTTTCAGGCCAA R:GAGCTGGTCACCAATTCACACGTGAGGAGCTCCCTTCAGTCCA | 60 | 220 | ||
内参Reference | St-Qp-ACT | F:GGGATGGAGAAGTTTGGTGGTGG | R:CTTCGACCAAGGGATGGTGTAGC | 61 | 166 |
qRT-PCR | 07G023850.1 | F:GTCTACAGGGCGGAAAGACC | R:GCTCATCAATGGCGGGTTTC | 58 | 185 |
03G015060.1 | F:GGAGCCAAGCACCCTTTAGT | R:TGAGCCTCTCTTGGCTTGTG | 59 | 153 | |
03G022350.1 | F:CAAGATTCGAACCGTGTGGC | R:ATGTCCACCCGGTACCTTCA | 59 | 150 | |
07G025630.1 | F:GTCTCATTGATCCAGCGGGT | R:GCTTCAGCGGGGTCAGTAAT | 59 | 154 | |
04G012100 | F:TGCTGATCCCAACGTACGAA | R:ATCAATGTTCGCGCTCCCTT | 59 | 196 | |
02G018740 | F:GGGGATGCTGGATTTATGCCT | R:TGGATCAAGCATTTGCAGCAG | 59 | 171 | |
08G019310 | F:CTTGACAAGGCGGAGTTTGC | R:TCACCACCTCTCTTTGGCAC | 58 | 179 | |
10G001090 | F:CACACAAGGTGTTGTTTGGCA | R:CCTTTCGGCCTTAACCAAGC | 58 | 200 | |
11G005050 | F:TAGCCTCTCATTTGCAAGGGG | R:ACAGCTGAGCTTTCCATGTC | 59 | 190 | |
03G033500 | F:GAGGCCAGAGTCGGAAACAA | R:GGATCTGAACTGCCTTCGGT | 59 | 173 | |
08G015120 | F:AGGTGTCTGGCTCAGGATTC | R:CCATCGTCTTCATCGATGCCT | 60 | 187 | |
01G032600 | F:TGCACTTGCGTATGAAGGCT | R:GTCCACACGCATAGCAGGTA | 60 | 187 | |
06G017770 | F:CCTTCGAAATTCCTCCGGCT | R:CAGCTGCAATCATCGCGAAA | 60 | 186 | |
05G018750 | F:TGGTGGCTCAAAGTGTGTTCT | R:GCACCAAGGGCATTGATTGG | 59 | 172 | |
03G029210 | F:CTCTGCCAAGAGTGGAGCAA | R:GTCTTGCAAGCCCGATACCA | 60 | 165 | |
01G025250 | F:TGCAACGATGATTGCTGTGC | R:CCAACAAGGCCGCACATTAG | 59 | 150 | |
12G005850 | F:ACAGCTGCCTAAGTTGGCTT | R:AGGCATCCAGCTTTCTTGCT | 59 | 194 | |
04G019680 | F:CTATGGTCAATGGAGCGCGA | R:TTCAACAACTGCGCAACCTG | 59 | 181 | |
08G030230 | F:GTGCCAATCTGTGCATCGAC | R:AATGCGAGGGTGCCATAGAC | 59 | 170 | |
08G000520 | F:TGGTGACTGGGACAACACAT | R:TGGTCCAGAGTCCTCGAGTT | 59 | 188 | |
08G015810 | F:TGTCCCGTGGAGAGGTAGAG | R:ATCACCCGAAACACGCTTCA | 59 | 173 | |
03G015040 | F:TTCTATGTGGACGGAACGCC | R:ACTAAAGGGTGCTTGGCTCC | 59 | 168 |
Fig. 1 Alignment of the miR319 mature sequences Tae:Triticum aestivum;Ghr:Gossypium hirsutum;Osa:Oryza sativa;Sly:Solanum lycopersicum;Stu:Solanum tuberosum;Ath:Arabidopsis thaliana.
Fig. 3 Tissue-specific expression patterns for Stu-miR319 gene family The tissue is compared to the root,**P ≤ 0.01;***P ≤ 0.001;ns:No significance. The same below.
Fig. 4 Relative expression level of Stu-miR319 mature sequences(A-C)and cell ploidy analysis(D-E)for Stu-miR319 overexpression lines Compared to the wild type,*P ≤ 0.05;**P ≤ 0.01;***P ≤ 0.001. The same below.
miRNA名称 miRNA name | 靶基因 Target gene | 功能注释 Function annotation |
---|---|---|
miR319-5p | Soltu.DM.04G019680 | 铵转运体1;2 Ammonium transporter 1;2 |
Soltu.DM.08G030230 | UDP-糖基转移酶家族蛋白 UDP-Glycosyltransferase superfamily protein | |
Soltu.DM.08G000520 | 硝酸盐转运体1.1 Nitrate transporter 1.1 | |
Soltu.DM.08G015810 | 双BRCT结构域蛋白 Twin BRCT domain containing protein | |
miR319-3p | Soltu.DM.05G018750 | 葡萄糖-6-磷酸盐/磷酸盐转运体 Glucose-6-phosphate/phosphate translocator |
Soltu.DM.03G029210 | RPA70-kDa亚单位B RPA70-kDa subunit B | |
Soltu.DM.01G025250 | HCO3转运体家族 HCO3-transporter family | |
Soltu.DM.12G005850 | UDP-葡糖基转移酶73B2 UDP-glucosyltransferase 73B2 | |
miR319a-5p | Soltu.DM.08G019310 | 含有DUF_B2219结构域蛋白 Protein of unknown function(DUF_B2219)domain containing protein |
Soltu.DM.10G001090 | Nudix水解酶同源物 Nudix hydrolase homolog | |
Soltu.DM.11G005050 | 磷酸化酶家族蛋白 Phosphorylase superfamily protein | |
Soltu.DM.03G033500 | 保守的假定蛋白 Conserved hypothetical protein | |
miR319a-3p | Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein |
Soltu.DM.02G018740 | ARM重复家族蛋白 ARM repeat superfamily protein | |
miR319b | Soltu.DM.08G015120 | 类胡萝卜素裂解双加氧酶 Carotenoid cleavage dioxygenase |
Soltu.DM.01G032600 | 含SPX(SYG1/Pho81/XPR1)结构域家族蛋白 Major Facilitator Superfamily with SPX(SYG1/Pho81/XPR1)domain-containing protein | |
Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein | |
Soltu.DM.06G017770 | 硝酸盐转运体1.1 Nitrate transporter 1.1 |
Table 2 Prediction of the candidate targets of Stu-miR319 gene family and their function annotations
miRNA名称 miRNA name | 靶基因 Target gene | 功能注释 Function annotation |
---|---|---|
miR319-5p | Soltu.DM.04G019680 | 铵转运体1;2 Ammonium transporter 1;2 |
Soltu.DM.08G030230 | UDP-糖基转移酶家族蛋白 UDP-Glycosyltransferase superfamily protein | |
Soltu.DM.08G000520 | 硝酸盐转运体1.1 Nitrate transporter 1.1 | |
Soltu.DM.08G015810 | 双BRCT结构域蛋白 Twin BRCT domain containing protein | |
miR319-3p | Soltu.DM.05G018750 | 葡萄糖-6-磷酸盐/磷酸盐转运体 Glucose-6-phosphate/phosphate translocator |
Soltu.DM.03G029210 | RPA70-kDa亚单位B RPA70-kDa subunit B | |
Soltu.DM.01G025250 | HCO3转运体家族 HCO3-transporter family | |
Soltu.DM.12G005850 | UDP-葡糖基转移酶73B2 UDP-glucosyltransferase 73B2 | |
miR319a-5p | Soltu.DM.08G019310 | 含有DUF_B2219结构域蛋白 Protein of unknown function(DUF_B2219)domain containing protein |
Soltu.DM.10G001090 | Nudix水解酶同源物 Nudix hydrolase homolog | |
Soltu.DM.11G005050 | 磷酸化酶家族蛋白 Phosphorylase superfamily protein | |
Soltu.DM.03G033500 | 保守的假定蛋白 Conserved hypothetical protein | |
miR319a-3p | Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein |
Soltu.DM.02G018740 | ARM重复家族蛋白 ARM repeat superfamily protein | |
miR319b | Soltu.DM.08G015120 | 类胡萝卜素裂解双加氧酶 Carotenoid cleavage dioxygenase |
Soltu.DM.01G032600 | 含SPX(SYG1/Pho81/XPR1)结构域家族蛋白 Major Facilitator Superfamily with SPX(SYG1/Pho81/XPR1)domain-containing protein | |
Soltu.DM.04G012100 | 含BTB/POZ结构域蛋白 BTB/POZ domain-containing protein | |
Soltu.DM.06G017770 | 硝酸盐转运体1.1 Nitrate transporter 1.1 |
Fig. 9 Transmission electron microscope analysis for Stu-miR319 overexpression lines A,C,E,G show the whole cells,B,D,F,H show the close-up views of the cell wall.
[1] |
Achkar N P, Cambiagno D A, Manavella P A. 2016. miRNA biogenesis:a dynamic pathway. Trends in Plant Science, 21 (12):1034-1044.
doi: 10.1016/j.tplants.2016.09.003 URL |
[2] |
Bao S, Owens R A, Sun Q, Song H, Liu Y, Eamens A L, Feng H, Tian H, Wang M B, Zhang R. 2019. Silencing of transcription factor encoding gene StTCP 23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathogens, 15 (12):e1008110.
doi: 10.1371/journal.ppat.1008110 URL |
[3] |
Bartel D P. 2004. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell, 116 (2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[4] |
Bologna N G, Iselin R, Abriata L A, Sarazin A, Pumplin N, Jay F, Grentzinger T, Peraro M, Voinnet O. 2018. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Molecular Cell, 69 (4):709-719.
doi: 10.1016/j.molcel.2018.01.007 URL |
[5] |
Cao J F, Zhao B, Huang C C, Chen Z W, Zhao T, Liu H R, Hu G J, Shangguan X X, Shan C M, Wang L J. 2020. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Molecular Plant, 13 (7):1063-1077.
doi: 10.1016/j.molp.2020.05.006 URL |
[6] |
Catala C, Rose J K C, York W S, Albersheim P, Darvill A G, Bennett A B. 2001. Characterization of a Tomato Xyloglucan Endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiology, 127 (3):1180-1192.
doi: 10.1104/pp.010481 URL |
[7] |
Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303 (5666):2022-2025.
doi: 10.1126/science.1088060 URL |
[8] |
Chuck G, Candela H, Hake S. 2009. Big impacts by small RNAs in plant development. Current Opinion in Plant Biology, 12 (1):81-86.
doi: 10.1016/j.pbi.2008.09.008 pmid: 18980858 |
[9] |
Chuck G, O’Connor D. 2010. Small RNAs going the distance during plant development. Current Opinion in Plant Biology, 13 (1):40-45.
doi: 10.1016/j.pbi.2009.08.006 pmid: 19796985 |
[10] | Cosgrove D J. 2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 6 (11):850-861. |
[11] |
Gandikota M, Birkenbihl R P, Höhmann S, Cardon G H, Saedler H, Huijser P. 2007. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal, 49 (4):683-693.
doi: 10.1111/j.1365-313X.2006.02983.x URL |
[12] | Feng Shuangshuang, Luo Jiayi, Zhu Xijian, Jiang Jibin, Huang Sanwen, Zhang Jinzhe. 2020. Homozygous mutant construction and function analysis of TCP transcription factor StBRC1a in diploid potato. Acta Horticulturae Sinica, 47 (1):63-72. (in Chinese) |
冯爽爽, 罗嘉翼, 朱曦鉴, 蒋继滨, 黄三文, 张金喆. 2020. 二倍体马铃薯StBRC1a功能缺失突变体的获得及其功能分析. 园艺学报, 47 (1):63-72.
doi: 10.16420/j.issn.0513-353x.2019-0275 |
|
[13] |
Jones-Rhoades M W, Bartel D P, Bartel B. 2006. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 57 (1):19-53.
doi: 10.1146/arplant.2006.57.issue-1 URL |
[14] |
Kim V N. 2005. MicroRNA biogenesis:coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6 (5):376-385.
doi: 10.1038/nrm1644 |
[15] |
Koyama T, Sato F, Ohme-Takagi M. 2017. Roles of miR319 and TCP transcription factors in leaf development. Plant Physiology, 175 (2):874-885.
doi: 10.1104/pp.17.00732 URL |
[16] |
Lee R C, Feinbaum R L, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[17] |
Li Ying, Meng Xianwei, Ma Zhihang, Liu Mengjun, Zhao Jin. 2022. Identification and expression analysis of microRNA families associated with phase transition in Chinesejujube. Acta Horticulturae Sinica, 49 (1):23-40. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0969 |
李莹, 孟宪巍, 马志航, 刘孟军, 赵锦. 2022. 枣树阶段转变相关microRNA家族的鉴定及其表达分析. 园艺学报, 49 (1):23-40.
doi: 10.16420/j.issn.0513-353x.2020-0969 URL |
|
[18] |
Luo Hongyu, Yang Jiangwei, Feng Ya, Zhang Huanhuan, Liu Shengyan, Zhang Ning, Si Huaijun. 2021. The effect of Stu-miR156 silencing by STTM technology on potato lateral root development. Acta Horticulturae Sinica, 48 (3):531-538. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0230 URL |
罗红玉, 杨江伟, 冯亚, 张欢欢, 刘升燕, 张宁, 司怀军. 2021. STTM 技术沉默马铃薯Stu-miR156对其侧根发育的影响. 园艺学报, 48 (3):531-538.
doi: 10.16420/j.issn.0513-353x.2020-0230 |
|
[19] |
Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y. 2014. MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinesecabbage by differential cell division arrest in leaf regions. Plant Physiology, 164 (2):710-720.
doi: 10.1104/pp.113.228007 URL |
[20] |
Marmisolle F E, Arizmendi A, Ribo Ne A, Rivarola M, García M, Reyes C A. 2020. Up-regulation of microRNA targets correlates with symptom severity in Citrus sinensis plants infected with two different isolates of citrus psorosis virus. Planta, 251 (1):1-11.
doi: 10.1007/s00425-019-03297-x |
[21] |
Martín-Trillo M, Cubas P. 2010. TCP genes:a family snapshot ten years later. Trends in Plant Science, 15:31-39.
doi: 10.1016/j.tplants.2009.11.003 pmid: 19963426 |
[22] | Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, 106 (52):22534-22539. |
[23] |
Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39 (6):787-791.
doi: 10.1038/ng2036 |
[24] |
Palatnik J F, Allen E, Wu X, Schommer C, Weigel D. 2003. Control of leaf morphogenesis by miRNAs. Nature, 425 (6955):257-263.
doi: 10.1038/nature01958 |
[25] | Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. 2012. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Functional & Integrative Genomics, 12 (2):327-339. |
[26] |
Schommer C, Debernardi J M, Bresso E G, Rodriguez R E, Palatnik J F. 2014. Repression of cell proliferation by miR319-regulated TCP4. Molecular Plant, 7 (10):1533-1544.
doi: 10.1093/mp/ssu084 pmid: 25053833 |
[27] |
Song X, Li Y, Cao X, Qi Y. 2019. MicroRNAs and their regulatory roles in plant-rnvironment interactions. Annual Review of Plant Biology, 70:489-525.
doi: 10.1146/arplant.2019.70.issue-1 URL |
[28] |
Su Liyao, Wang Peiyu, Jiang Mengqi, Huang Shuqi, Xue Xiaodong, Liu Mengyu, Xiao Xuechen, Lai Chunwang, Zhang Zihao, Chen Yukun, Lai Zhongxiong, Lin Yuling. 2021. The activity verification of pri-miR319a encode regulatory peptide in Dimocarpus longan. Acta Horticulturae Sinica, 48 (5):908-920. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2020-0579 |
苏立遥, 王培育, 蒋梦琦, 黄倏祺, 薛晓东, 刘梦雨, 肖学宸, 赖春旺, 张梓浩, 陈裕坤, 赖钟雄, 林玉玲. 2021. 龙眼pri-miR319a编码短肽活性的研究. 园艺学报, 48 (5):908-920.
doi: 10.16420/j.issn.0513-353x.2020-0579 URL |
|
[29] |
Sunkar R, Kapoor A, Zhu J K. 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 18 (8):2051-2065.
doi: 10.1105/tpc.106.041673 URL |
[30] |
Tsai H L, Li Y H, Hsieh W P, Lin M C, Ahn J H, Wu S H. 2014. HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis. The Plant Cell, 26 (7):2858-2872.
doi: 10.1105/tpc.114.126722 URL |
[31] |
Unver T, Bakar M, Shearman R C, Budak H. 2010. Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Molecular Genetics and Genomics, 283 (4):397-413.
doi: 10.1007/s00438-010-0526-7 URL |
[32] |
Wang H, Mao Y, Yang J, He Y. 2015. TCP24 modulates secondary cell wall thickening and anther endothecium development. Frontiers in Plant Science, 6:436.
doi: 10.3389/fpls.2015.00436 pmid: 26157444 |
[33] |
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C. 2005. Expression of Arabidopsis miRNA genes. Plant Physiology, 138 (4):2145-2154.
doi: 10.1104/pp.105.062943 URL |
[34] |
Yang L, Conway S R, Poethig R S. 2011. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development, 138 (2):245-249.
doi: 10.1242/dev.058578 pmid: 21148189 |
[35] |
Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 4 (9):651-654.
doi: 10.1038/s41477-018-0218-6 |
[36] |
Zhang Qianwen, Yang Xihang, Li Feng, Deng Yingtian. 2022. Advances in miRNA-mediated growth and development regulation in horticultural crops. Acta Horticulturae Sinica, 49 (5):1145-1161. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0380 URL |
张倩雯, 杨希航, 李峰, 邓颖天. 2022. miRNA调控园艺作物生长发育研究进展. 园艺学报, 49 (5):1145-1161.
doi: 10.16420/j.issn.0513-353x.2021-0380 URL |
|
[37] |
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S. 2015. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. Journal of Experimental Botany, 66 (15):4653-4667.
doi: 10.1093/jxb/erv238 URL |
[1] | WANG Kuan, QI Lipan, WU Guili, FENG Yan, WANG Lei, YIN Jiang, LUO Yating, WANG Yan, LIU Chang, GONG Xuechen, and WANG Haijun. A New Potato Cultivar‘Beifang 002’of Early Maturity and Good Yield [J]. Acta Horticulturae Sinica, 2022, 49(S2): 141-142. |
[2] | QI Lipan, FENG Yan, WANG Lei, YIN Jiang, WANG Kuan, LUO Yating, GONG Xuechen, LIU Chang, and WANG Yan. A New Potato Cultivar‘Beifang 004’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 143-144. |
[3] | LI Yanshan, SUI Qijun, JIANG Wei, YANG Qiongfen, and BAI Jianming. A New Potato Cultivar‘Yunshu 113’for Both Fresh Consumption and Starch Extraction [J]. Acta Horticulturae Sinica, 2022, 49(S2): 145-146. |
[4] | ZOU Xue, DING Fan, LIU Lifang, YU Hankaizong, CHEN Nianwei, and RAO Liping. A New Purple Potato Cultivar‘Mianziyu 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 93-94. |
[5] | LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a [J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662. |
[6] | YAN Wenyuan, QIN Junhong, DUAN Shaoguang, XU Jianfei, JIAN Yinqiao, JIN Liping, LI Guangcun. The Effect of Water-nitrogen Coupling on Potato Photosynthesis,Tuber Formation and Quality [J]. Acta Horticulturae Sinica, 2022, 49(7): 1491-1504. |
[7] | QI Lipan, LI Yue, WANG Lei, FENG Yan, WANG Kuan, YIN Jiang, GUO Huachun. Anatomical Observation on the Graft Union Between Potato and Wolfberry [J]. Acta Horticulturae Sinica, 2022, 49(4): 868-874. |
[8] | HUANG Yijin, HE Jiali, JIANG Lina, CAO Yanhong, QIN Sijun, LÜ Deguo. The Physiological and Biochemical Research Progress for the Changes of Fruit Crispy [J]. Acta Horticulturae Sinica, 2022, 49(12): 2641-2658. |
[9] | LI Ying, MENG Xianwei, MA Zhihang, LIU Mengjun, ZHAO Jin. Identification and Expression Analysis of MicroRNA Families Associated with Phase Transition in Chinese Jujube [J]. Acta Horticulturae Sinica, 2022, 49(1): 23-40. |
[10] | CHEN Jingyi, FANG Boping, ZHANG Xiongjian, HUANG Lifei, WANG Zhangying, and LUO Zhongxia. A New Leaf-vegetable Sweet Potato Cultivar‘Guangcaishu 5’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2861-2862. |
[11] | ZHANG Xiaoyi, HONG Yuhui, ZHANG Yuanyuan, LUAN Yushi. Preliminary Study on the Role of sly-miR166b and Its Target Genes in Tomato Resistance to Late Blight [J]. Acta Horticulturae Sinica, 2021, 48(8): 1595-1604. |
[12] | LUO Hongyu, YANG Jiangwei, FENG Ya, ZHANG Huanhuan, LIU Shengyan, ZHANG Ning, SI Huaijun. The Effect of Stu-miR156 Silencing by STTM Technology on Potato Lateral Root Development [J]. Acta Horticulturae Sinica, 2021, 48(3): 531-538. |
[13] | SONG Yuhao, SHI Weiling, ZHANG Jiao, DING Zhenyu, PENG Hongxian, JIANG Chunyan, MA Qiuqin, LI Zhijing, ZHAO Yong, TANG Daobin, ZHANG Kai, WANG Jichun, LIU Xun. Development and Application of an Efficient Method for the Amylose/ Amylopectin Ratio Determination in Potato Tubers [J]. Acta Horticulturae Sinica, 2021, 48(3): 600-608. |
[14] | XIE Guofang, LIU Na, SONG Yi, GUAN Chunhua, ZHANG Mingsheng. The Relationship Between Changes of Endogenous Hormones and Cell Wall Metabolism of Common Bean During Bean Development [J]. Acta Horticulturae Sinica, 2021, 48(2): 289-299. |
[15] | LIU Cheng, WANG Shiyao, SHI Weiling, SONG Yuhao, JIANG Rui, ZHAO Yong, MO Shichun, LÜ Dianqiu, WANG Jichun, LIU Xun. Multiplex PCR Detection for Late Blight Resistant Genes R8,RB and Virus Resistant Genes Rx1,Ryadg in Potato [J]. Acta Horticulturae Sinica, 2021, 48(2): 389-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd