Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 421-431.doi: 10.16420/j.issn.0513-353x.2021-1034
• Research Notes • Previous Articles Next Articles
WANG Mengmeng1,2, SUN Deling3, CHEN Rui2, YANG Yingxia2, ZHANG Guan1,2, LÜ Mingjie2, WANG Qian2, XIE Tianyu2, NIU Guobao3, SHAN Xiaozheng3, TAN Jin1,*(), YAO Xingwei3,*()
Received:
2022-10-13
Revised:
2022-11-11
Online:
2023-02-25
Published:
2023-03-06
Contact:
*(E-mail:tanjin@tjcu.edu.cn,yaoxingwei99@126.com)
CLC Number:
WANG Mengmeng, SUN Deling, CHEN Rui, YANG Yingxia, ZHANG Guan, LÜ Mingjie, WANG Qian, XIE Tianyu, NIU Guobao, SHAN Xiaozheng, TAN Jin, YAO Xingwei. Construction and Evaluation of Cauliflower Core Collection[J]. Acta Horticulturae Sinica, 2023, 50(2): 421-431.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1034
性状 Trait | 描述 Description |
---|---|
叶片颜色 Leaf color | 1 = 果绿色;2 = 浅绿色;3 = 灰绿色;4 = 深绿色;5 = 墨绿色 1 = Fruit green;2 = Light green;3 = Greyish green;4 = Dark green;5 = Blackish green |
结球期株型 Plant type at the heading stage | 1 = 合抱型;2 = 直立型;3 = 半直立型;4 = 半开张型;5 = 开张型 1 = Embrace type;2 = Vertical type;3 = Semi-upright type;4 = Semi-open type;5 = Open type |
黑腐病抗性 Resistance to black rot | 1 = 高抗;2 = 抗病;3 = 中抗;4 = 感病;5 = 高感 1 = High resistance;2 = Resistance;3 = Moderate resistance;4 = Infection;5 = High infection |
花球荚叶 Curd pod leaf | 0 = 无;1 = 有 0 = No;1 = Yes |
球面紫色 Purple of curd surface | 0 = 无;1 = 有 0 = No;1 = Yes |
花球周正度 Extent of curd regularity | 1 = 周正;2 = 较周正;3 = 五星型;4 = 不周正;5 = 无球型 1 = Extremely regular;2 = Regular;3 = The five-star;4 = Irregular;5 = No ball type |
花球颜色 Curd color | 1 = 极白;2 = 白色;3 = 乳白色;4 = 乳黄色;5 = 黄色 1 = Extremely white;2 = White;3 = Milky white;4 = Milky yellow;5 = Yellow |
花球绒毛 Curd villi | 1 = 无绒毛;2 = 少量绒毛;3 = 绒毛;4 = 中绒毛;5 = 大绒毛 1 = No fluff;2 = Less fluff;3 = Fluff;4 = Moderate fluff;5 = Big fluff |
花球质地 Curd texture | 1 = 极细嫩;2 = 细嫩;3 = 较细嫩;4 = 较粗;5 = 粗 1 = Extremely delicate;2 = Delicate;3 = Moderately delicate;4 = Moderate roughness;5 = Roughness |
球面平整度 Flatness of curd surface | 1 = 极平整;2 = 平整;3 = 较平整;4 = 不平整;5 = 极不平整 1 = Extremely flat;2 = Flat;3 = Moderate flatness;4 = Uneven;5 = Extremely uneven |
Table 1 Classification standard of grading agronomic characters
性状 Trait | 描述 Description |
---|---|
叶片颜色 Leaf color | 1 = 果绿色;2 = 浅绿色;3 = 灰绿色;4 = 深绿色;5 = 墨绿色 1 = Fruit green;2 = Light green;3 = Greyish green;4 = Dark green;5 = Blackish green |
结球期株型 Plant type at the heading stage | 1 = 合抱型;2 = 直立型;3 = 半直立型;4 = 半开张型;5 = 开张型 1 = Embrace type;2 = Vertical type;3 = Semi-upright type;4 = Semi-open type;5 = Open type |
黑腐病抗性 Resistance to black rot | 1 = 高抗;2 = 抗病;3 = 中抗;4 = 感病;5 = 高感 1 = High resistance;2 = Resistance;3 = Moderate resistance;4 = Infection;5 = High infection |
花球荚叶 Curd pod leaf | 0 = 无;1 = 有 0 = No;1 = Yes |
球面紫色 Purple of curd surface | 0 = 无;1 = 有 0 = No;1 = Yes |
花球周正度 Extent of curd regularity | 1 = 周正;2 = 较周正;3 = 五星型;4 = 不周正;5 = 无球型 1 = Extremely regular;2 = Regular;3 = The five-star;4 = Irregular;5 = No ball type |
花球颜色 Curd color | 1 = 极白;2 = 白色;3 = 乳白色;4 = 乳黄色;5 = 黄色 1 = Extremely white;2 = White;3 = Milky white;4 = Milky yellow;5 = Yellow |
花球绒毛 Curd villi | 1 = 无绒毛;2 = 少量绒毛;3 = 绒毛;4 = 中绒毛;5 = 大绒毛 1 = No fluff;2 = Less fluff;3 = Fluff;4 = Moderate fluff;5 = Big fluff |
花球质地 Curd texture | 1 = 极细嫩;2 = 细嫩;3 = 较细嫩;4 = 较粗;5 = 粗 1 = Extremely delicate;2 = Delicate;3 = Moderately delicate;4 = Moderate roughness;5 = Roughness |
球面平整度 Flatness of curd surface | 1 = 极平整;2 = 平整;3 = 较平整;4 = 不平整;5 = 极不平整 1 = Extremely flat;2 = Flat;3 = Moderate flatness;4 = Uneven;5 = Extremely uneven |
性状 Trait | 种质 Germplasm | 均值 Mean | 极差 Range | 变异系数/% Coefficient of variation | 极差符合率/% CR | 变异系数 变化率/% VR | Pt |
---|---|---|---|---|---|---|---|
全株质量/kg Whole plant weight | 原始种质Original collection 核心种质Core collection | 2.78 2.74 | 5.91 4.91 | 34.89 35.72 | 83.08 | 102.37 | 0.723 |
总叶数 Total number of leaves | 原始种质Original collection 核心种质Core collection | 22.56 22.39 | 26.20 22.02 | 17.93 18.54 | 84.05 | 101.78 | 0.676 |
最大叶长/cm Maximum leaf length | 原始种质Original collection 核心种质Core collection | 59.07 59.00 | 51.12 44.30 | 13.78 14.93 | 86.66 | 108.37 | 0.933 |
最大叶宽/cm Maximum leaf width | 原始种质Original collection 核心种质Core collection | 25.97 25.60 | 27.96 25.10 | 16.23 18.16 | 89.77 | 111.88 | 0.398 |
株型夹角/° Plant type angle | 原始种质Original collection 核心种质Core collection | 46.54 46.37 | 34.70 32.33 | 11.60 12.86 | 93.17 | 110.84 | 0.754 |
中内叶长/cm Mid-inner blade length | 原始种质Original collection 核心种质Core collection | 47.16 48.20 | 53.85 45.40 | 18.74 19.55 | 84.31 | 104.32 | 0.239 |
着球位/cm Curd loci | 原始种质Original collection 核心种质Core collection | 20.88 20.30 | 34.18 27.70 | 29.60 27.18 | 81.04 | 89.91 | 0.327 |
单球质量/kg Single curd weight | 原始种质Original collection 核心种质Core collection | 1.06 1.07 | 2.70 2.34 | 35.98 33.52 | 86.66 | 93.16 | 0.828 |
花球直径/cm Curd diameter | 原始种质Original collection 核心种质Core collection | 19.64 19.60 | 16.42 14.09 | 11.38 10.94 | 85.81 | 96.07 | 0.833 |
花球高/cm Curd height | 原始种质Original collection 核心种质Core collection | 11.75 11.62 | 13.16 11.46 | 15.35 14.81 | 87.08 | 96.51 | 0.482 |
一级枝长/cm Primary branch length | 原始种质Original collection 核心种质Core collection | 4.15 3.94 | 9.99 6.67 | 35.42 34.10 | 86.77 | 96.27 | 0.162 |
二级枝长/cm Secondary branch length | 原始种质Original collection 核心种质Core collection | 1.94 1.89 | 3.06 2.82 | 27.31 28.40 | 92.16 | 104.00 | 0.280 |
Table 2 The evaluation parameters analysis of core collection
性状 Trait | 种质 Germplasm | 均值 Mean | 极差 Range | 变异系数/% Coefficient of variation | 极差符合率/% CR | 变异系数 变化率/% VR | Pt |
---|---|---|---|---|---|---|---|
全株质量/kg Whole plant weight | 原始种质Original collection 核心种质Core collection | 2.78 2.74 | 5.91 4.91 | 34.89 35.72 | 83.08 | 102.37 | 0.723 |
总叶数 Total number of leaves | 原始种质Original collection 核心种质Core collection | 22.56 22.39 | 26.20 22.02 | 17.93 18.54 | 84.05 | 101.78 | 0.676 |
最大叶长/cm Maximum leaf length | 原始种质Original collection 核心种质Core collection | 59.07 59.00 | 51.12 44.30 | 13.78 14.93 | 86.66 | 108.37 | 0.933 |
最大叶宽/cm Maximum leaf width | 原始种质Original collection 核心种质Core collection | 25.97 25.60 | 27.96 25.10 | 16.23 18.16 | 89.77 | 111.88 | 0.398 |
株型夹角/° Plant type angle | 原始种质Original collection 核心种质Core collection | 46.54 46.37 | 34.70 32.33 | 11.60 12.86 | 93.17 | 110.84 | 0.754 |
中内叶长/cm Mid-inner blade length | 原始种质Original collection 核心种质Core collection | 47.16 48.20 | 53.85 45.40 | 18.74 19.55 | 84.31 | 104.32 | 0.239 |
着球位/cm Curd loci | 原始种质Original collection 核心种质Core collection | 20.88 20.30 | 34.18 27.70 | 29.60 27.18 | 81.04 | 89.91 | 0.327 |
单球质量/kg Single curd weight | 原始种质Original collection 核心种质Core collection | 1.06 1.07 | 2.70 2.34 | 35.98 33.52 | 86.66 | 93.16 | 0.828 |
花球直径/cm Curd diameter | 原始种质Original collection 核心种质Core collection | 19.64 19.60 | 16.42 14.09 | 11.38 10.94 | 85.81 | 96.07 | 0.833 |
花球高/cm Curd height | 原始种质Original collection 核心种质Core collection | 11.75 11.62 | 13.16 11.46 | 15.35 14.81 | 87.08 | 96.51 | 0.482 |
一级枝长/cm Primary branch length | 原始种质Original collection 核心种质Core collection | 4.15 3.94 | 9.99 6.67 | 35.42 34.10 | 86.77 | 96.27 | 0.162 |
二级枝长/cm Secondary branch length | 原始种质Original collection 核心种质Core collection | 1.94 1.89 | 3.06 2.82 | 27.31 28.40 | 92.16 | 104.00 | 0.280 |
表型性状 Phenotypic trait | 多样性指数Phenotypic diversity index | t值 t-value | P值 P-value | |
---|---|---|---|---|
原始种质 Original collection | 核心种质 Core collection | |||
全株质量/kg Whole plant weight | 2.029 | 1.953 | 0.605 | 0.606 |
总叶数 Total number of leaves | 2.060 | 2.031 | -2.512 | 0.129 |
最大叶长/cm Maximum leaf length | 2.091 | 2.078 | 0.375 | 0.744 |
最大叶宽/cm Maximum leaf width | 2.059 | 2.030 | 2.177 | 0.161 |
株型夹角/° Plant type angle | 2.059 | 2.030 | 0.315 | 0.783 |
中内叶长/cm Mid-inner blade length | 2.086 | 2.045 | -0.118 | 0.917 |
着球位/cm Curd loci | 2.000 | 2.032 | -1.220 | 0.347 |
单球质量/kg Single curd weight | 1.997 | 2.033 | -0.641 | 0.587 |
花球直径/cm Curd diameter | 2.028 | 1.992 | 0.640 | 0.588 |
花球高/cm Curd height | 1.945 | 1.926 | 1.133 | 0.375 |
一级枝长/cm Primary branch length | 1.911 | 1.811 | 1.562 | 0.259 |
二级枝长/cm Secondary branch length | 1.979 | 1.870 | 4.028 | 0.056 |
Table 3 Phenotypic diversity index and t-test of original and core collection
表型性状 Phenotypic trait | 多样性指数Phenotypic diversity index | t值 t-value | P值 P-value | |
---|---|---|---|---|
原始种质 Original collection | 核心种质 Core collection | |||
全株质量/kg Whole plant weight | 2.029 | 1.953 | 0.605 | 0.606 |
总叶数 Total number of leaves | 2.060 | 2.031 | -2.512 | 0.129 |
最大叶长/cm Maximum leaf length | 2.091 | 2.078 | 0.375 | 0.744 |
最大叶宽/cm Maximum leaf width | 2.059 | 2.030 | 2.177 | 0.161 |
株型夹角/° Plant type angle | 2.059 | 2.030 | 0.315 | 0.783 |
中内叶长/cm Mid-inner blade length | 2.086 | 2.045 | -0.118 | 0.917 |
着球位/cm Curd loci | 2.000 | 2.032 | -1.220 | 0.347 |
单球质量/kg Single curd weight | 1.997 | 2.033 | -0.641 | 0.587 |
花球直径/cm Curd diameter | 2.028 | 1.992 | 0.640 | 0.588 |
花球高/cm Curd height | 1.945 | 1.926 | 1.133 | 0.375 |
一级枝长/cm Primary branch length | 1.911 | 1.811 | 1.562 | 0.259 |
二级枝长/cm Secondary branch length | 1.979 | 1.870 | 4.028 | 0.056 |
Fig. 3 Distribution and statistics of InDel loci in the whole genome of original and core collection Outer ring:The coordinate position of chromosomes;Black inner circle(original collection)and red inner circle(core collection):With the outer ring as the coordinate,the distribution of InDel sites is displayed in the form of lines.
主成分 Component | 原始种质Original collection | 核心种质Core collection | |||||
---|---|---|---|---|---|---|---|
特征值 Eigen value | 贡献率/% Variance | 累计贡献率/% Cumulativa proportion | 特征值 Eigen value | 贡献率/% Variance | 累积贡献率/% Cumulativa proportion | ||
1 | 4.969 | 41.411 | 41.411 | 5.123 | 42.691 | 42.691 | |
2 | 2.665 | 22.210 | 63.621 | 3.060 | 25.503 | 68.194 | |
3 | 1.176 | 9.803 | 73.424 | 1.186 | 9.882 | 78.076 | |
4 | 0.896 | 7.469 | 80.893 | 0.707 | 5.888 | 83.964 | |
5 | 0.596 | 4.969 | 85.863 | 0.486 | 4.051 | 88.015 | |
6 | 0.427 | 3.559 | 89.422 | 0.417 | 3.476 | 91.491 | |
7 | 0.372 | 3.103 | 92.525 | 0.329 | 2.743 | 94.234 | |
8 | 0.349 | 2.907 | 95.432 | 0.250 | 2.084 | 96.318 | |
9 | 0.231 | 1.927 | 97.358 | 0.181 | 1.511 | 97.828 | |
10 | 0.146 | 1.218 | 98.576 | 0.137 | 1.143 | 98.972 | |
11 | 0.125 | 1.040 | 99.617 | 0.084 | 0.701 | 99.673 | |
12 | 0.046 | 0.383 | 100.000 | 0.039 | 0.327 | 100.000 |
Table 4 The principal component analysis of original and core collection
主成分 Component | 原始种质Original collection | 核心种质Core collection | |||||
---|---|---|---|---|---|---|---|
特征值 Eigen value | 贡献率/% Variance | 累计贡献率/% Cumulativa proportion | 特征值 Eigen value | 贡献率/% Variance | 累积贡献率/% Cumulativa proportion | ||
1 | 4.969 | 41.411 | 41.411 | 5.123 | 42.691 | 42.691 | |
2 | 2.665 | 22.210 | 63.621 | 3.060 | 25.503 | 68.194 | |
3 | 1.176 | 9.803 | 73.424 | 1.186 | 9.882 | 78.076 | |
4 | 0.896 | 7.469 | 80.893 | 0.707 | 5.888 | 83.964 | |
5 | 0.596 | 4.969 | 85.863 | 0.486 | 4.051 | 88.015 | |
6 | 0.427 | 3.559 | 89.422 | 0.417 | 3.476 | 91.491 | |
7 | 0.372 | 3.103 | 92.525 | 0.329 | 2.743 | 94.234 | |
8 | 0.349 | 2.907 | 95.432 | 0.250 | 2.084 | 96.318 | |
9 | 0.231 | 1.927 | 97.358 | 0.181 | 1.511 | 97.828 | |
10 | 0.146 | 1.218 | 98.576 | 0.137 | 1.143 | 98.972 | |
11 | 0.125 | 1.040 | 99.617 | 0.084 | 0.701 | 99.673 | |
12 | 0.046 | 0.383 | 100.000 | 0.039 | 0.327 | 100.000 |
[1] |
Adedze Y, Lu X, Xia Y, Sun Q, Nchongboh C G, Alam M A, Liu M, Yang X, Zhang W, Deng Z, Li W, Si L. 2021. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber. Scientific Reports, 11 (1):3872.
doi: 10.1038/s41598-021-83313-x pmid: 33594240 |
[2] |
Chen Mingkun, Chen Lu, Sun Weihong, Ma Shanhu, Lan Siren, Peng Donghui, Liu Zhongjian, Ai Ye. 2022. Genetic diversity analysis and core collection of Cymbidium ensifolium germplasm resources. Acta Horticulturae Sinica, 49 (1):175-186. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0312 |
陈明堃, 陈璐, 孙维红, 马山虎, 兰思仁, 彭东辉, 刘仲健, 艾叶. 2022. 建兰种质资源遗传多样性分析及核心种质构建. 园艺学报, 49 (1):175-186.
doi: 10.16420/j.issn.0513-353x.2021-0312 |
|
[3] | Darrier B, Russell J, Milner S G, Hedley P E, Shaw P D, Macaulay M, Ramsay L D, Halpin C, Mascher M, Fleury D L, Langridge P, Stein N, Waugh R. 2019. A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Frontiers in Plant Science,10:https://doi.org/10.3389/fpls.2019.00544. |
[4] |
Guo N, Wang S, Gao L, Liu Y, Wang X, Lai E, Duan M, Wang G, Li J, Yang M, Zong M, Han S, Pei Y, Borm T, Sun H, Miao L, Liu D, Yu F, Zhang W, Ji H, Zhu C, Xu Y, Bonnema G, Li J, Fei Z, Liu F. 2021. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology, 19 (1):93-99.
doi: 10.1186/s12915-021-01031-2 |
[5] |
Hu J, Zhu J, Xu H M. 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 101 (1-2):264-268.
doi: 10.1007/s001220051478 URL |
[6] | Lei Gang, Zhou Kun-hua, Fang Rong, Wu Yin, Chen Xue-jun. 2016. Studies on the constructing of pepper core collection based on phenotypic data. Journal of Northwest Botany, 36 (4):804-810. (in Chinese) |
雷刚, 周坤华, 方荣, 吴茵, 陈学军. 2016. 基于表型数据的辣椒核心种质构建研究. 西北植物学报, 36 (4):804-810. | |
[7] | Li Hai-ying, Liang Zhi-wei, Chen Chong, Huang Hua-hong, Tong Zai-kang, Lu Yong-quan. 2011. Core germplasm of Betula luminifera screened by molecular markers. Zhejiang Forestry Science and Technology, 31 (3):1-4. (in Chinese) |
李海英, 梁志伟, 陈冲, 黄华宏, 童再康, 卢泳全. 2011. 利用分子标记早期筛选光皮桦核心种质. 浙江林业科技, 31 (3):1-4. | |
[8] | Li Hui-feng, Chen Tian-yuan, Huang Yong-mei, Wu Cui-rong, Li Yan-qing, Lu Sen-quan, Chen Xiong-ting. 2013. Sampling strategies of sweet potato core collection based on morphological traits. Journal of Plant Genetic Resources, 14 (1):91-96. (in Chinese) |
李慧峰, 陈天渊, 黄咏梅, 吴翠荣, 李彦青, 卢森权, 陈雄庭. 2013. 基于形态性状的甘薯核心种质取样策略研究. 植物遗传资源学报, 14 (1):91-96. | |
[9] | Li Jin-long, Fan Yu, Zhao Meng-yu, Kang Zhen, Yang Ke-li, Zhang Kai-xuan, Zhou Mei-liang. 2021. Construction of primary core collection of buckwheat germplasm resources based on phenotypic traits and SSR. Journal of Plant Genetic Resources, 22 (5):1240-1247. (in Chinese) |
李金龙, 范昱, 赵梦雨, 康珍, 杨克理, 张凯旋, 周美亮. 2021. 基于表型性状和SSR分子标记构建甜荞初级核心种质. 植物遗传资源学报, 22 (5):1240-1247. | |
[10] | Li Xiu-shi, Fu Yu-hua, Zhou Xiang, Li Qing, Liu Fan-zhi, Yang Cheng-long, Zhou Ming-qiang. 2020. Establishment of Coix lacryma-jobi L. core germplasm collection based on phenotypic characters. Journal of Tropical Crop, 41 (4):669-675. (in Chinese) |
李秀诗, 付瑜华, 周祥, 黎青, 刘凡值, 杨成龙, 周明强. 2020. 基于表型性状的薏苡初级核心种质库构建. 热带作物学报, 41 (4):669-675. | |
[11] | Lin Hui, Huang Ke, Li Yong-ping, Wen Qing-fang. 2008. The study of genetic diversity in cauliflower. Fujian Journal of Agricultural Sciences, 23 (2):172-177. (in Chinese) |
林珲, 黄科, 李永平, 温庆放. 2008. 花椰菜种质资源遗传多样性分析. 福建农业学报, 23 (2):172-177. | |
[12] | Liu Rong-xiu. 2016. Study on core collection construction and fine germplasm screening of Scutellaria baicalensis Georgi[M. D. Dissertation]. Beijing: Beijing University of Chinese Medicine. (in Chinese) |
刘容秀. 2016. 黄芩核心种质构建与优良种质筛选研究[硕士论文]. 北京: 北京中医药大学. | |
[13] | Liu Yun-xia. 2012. The study of genetic diversity in cauliflower[M. D. Dissertation]. Beijing: Chinese Academy of Agricultural Sciences. (in Chinese) |
刘运霞. 2012. 花椰菜种质资源遗传多样性的分析[硕士论文]. 北京: 中国农业科学院. | |
[14] | Lou Jue, Zhang Xiao-ling, Luo Tian-kuan, He Ting-ting, Jing Zan-ge, Zhu Shi-yang, Liu Qing, Tang Zheng. 2015. Analysis of the genetic diversity in cauliflower inbred lines by SSR and SRAP markers. Molecular Plant Breeding, 13 (3):605-614. (in Chinese) |
楼珏, 张小玲, 罗天宽, 何婷婷, 荆赞革, 朱世杨, 刘庆, 唐征. 2015. 利用SSR和SRAP标记分析花椰菜自交系的遗传多样性. 分子植物育种, 13 (3):605-614. | |
[15] | Lu Min, Yan Xiu-qin, Bai Jing, Zhang Huai-shan, Wang Dao-ping, An Hua-ming. 2017. Construction of core collection in wild Rosa roxburghii from Guizhou Province using EST-SSR markers and fruits quality traits. Acta Horticulturae Sinica, 44 (8):1486-1495. (in Chinese) |
鲁敏, 鄢秀芹, 白静, 张怀山, 王道平, 安华明. 2017. 基于EST-SSR标记与果实品质性状的贵州野生刺梨核心种质构建. 园艺学报, 44 (8):1486-1495.
doi: 10.16420/j.issn.0513-353x.2016-0792 |
|
[16] |
Ludivine L, Caroline D, Elisa R, Arnaud G, Rémi G, Laurence H, Charles P, Pauline L, Laurence F, Charles-Eric D. 2016. Genetic diversity,population structure,parentage analysis,and construction of core collections in the French apple germplasm based on SSR markers. Plant Molecular Biology Reporter, 34 (4):827-844.
doi: 10.1007/s11105-015-0966-7 URL |
[17] | Ma Er-lei, Wang Yan, Liu Li, Gong Yi-qin, Song Li-jun, Liu Li-wang. 2010. Cultivar identification in the loose-curd cauliflower with molecular markers. Journal of Plant Genetic Resources, 11 (5):621-624. (in Chinese) |
马二磊, 王燕, 刘莉, 龚义勤, 宋立君, 柳李旺. 2010. 松花型花椰菜主要品种鉴定的分子标记分析. 植物遗传资源学报, 11 (5):621-624. | |
[18] |
Malvar R A, Butrón A, Alvarez A, Padilla G, Cartea M E, Revilla P, Ordás A. 2006. Yield performance of the European Union maize landrace core collection under multiple corn borer infestations. Crop Protection, 26 (5):775-781.
doi: 10.1016/j.cropro.2006.07.004 URL |
[19] | Song Xiaoyu, Gan Defang, Yang Lin, Song Shunhua, Meng Shuchun. 2022. Research progress in applying molecular marker technology to identify cauliflower varieties. China Vegetables,(12):30-37. (in Chinese) |
宋晓玉, 甘德芳, 杨琳, 宋顺华, 孟淑春. 2022. 分子标记技术在花椰菜品种鉴定上的应用研究进展. 中国蔬菜,(12):30-37. | |
[20] | Wang Jian-cheng, Hu Jin, Zhang Cai-fang, Xu Hai-ming, Zhang Sheng. 2007. Evaluating para meters of rice core collections based on genotypic values and molecular marker information. Chinese Journal of Rice Science, 21 (1):51-58. (in Chinese) |
王建成, 胡晋, 张彩芳, 徐海明, 张胜. 2007. 建立在基因型值和分子标记信息上的水稻核心种质评价参数. 中国水稻科学, 21 (1):51-58. | |
[21] | Zhang Hong-mei, Zhai Wen, Jin Hai-jun, Ding Xiao-tao, Yu Ji-zhu. 2019. Genetic diversity analysis of 23 cucumber germplasms and screening of core germplasm resources using InDel markers. Shanghai Agricultural Journal, 35 (4):28-33. (in Chinese) |
张红梅, 翟文, 金海军, 丁小涛, 余纪柱. 2019. 利用InDel标记分析23份黄瓜种质的遗传多样性及核心种质资源筛选. 上海农业学报, 35 (4):28-33. | |
[22] | Zhang Yao-ting, Wang Tong-hua, Guo Yi-ming, Liu Xin-hong, Li Bao, Li Mei. 2021. Genetic diversity of core collection of Oilseed Rape from Hunan province revealed by SNP chips. Molecular Plant Breeding, https://kns.cnki.net/kcms/detail/46.1068.S.20210414.1600.010.html. (in Chinese) |
张瑶婷, 王同华, 郭一鸣, 刘新红, 李宝, 李莓. 2021. 基于SNP芯片的油菜核心种质遗传多样性分析. 分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.S.20210414.1600.010.html. | |
[23] |
Zhao Limin, Li Jiawei, Zhang Fei, Su Jiangshuo, Fang Weimin, Wang Haibin, Jiang Jiafu, Chen Sumei, Chen Fadi, Guan Zhiyong. 2022. Construction of a core collection of spray cut chrysanthemum based on phenotypic data. Acta Horticulturae Sinica, 49 (10):2273-2284. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0869 |
赵立民, 李嘉伟, 张飞, 苏江硕, 房伟民, 王海滨, 蒋甲福, 陈素梅, 陈发棣, 管志勇. 2022. 基于表型数据构建切花小菊核心种质. 园艺学报, 49 (10):2273-2284.
doi: 10.16420/j.issn.0513-353x.2021-0869 |
|
[24] |
Zhao Qing, Dou Zhenzhen, Li Xixiang, Song Jiangping, Zhang Xiaohui, Yang Wenlong, Jia Huixia, Wang Haiping. 2021. Genetic diversity of garlic germplasm resources based on SSRseq molecular markers. Acta Horticulturae Sinica, 48 (7):1397-1408. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0203 |
赵青, 都真真, 李锡香, 宋江萍, 张晓辉, 阳文龙, 贾会霞, 王海平. 2021. 利用SSRseq分子标记的大蒜种质资源遗传多样性研究. 园艺学报, 48 (7):1397-1408.
doi: 10.16420/j.issn.0513-353x.2021-0203 |
|
[25] | Zheng Fu-shun, Wang Xiao-min, Li Guo-hua, Li Hong-lei, Zhou Peng-ze, Wang Lin, Bai Sheng-yi, Liu Pei-jun, Zhang Xue-yan, Hu Xin-hua, Fu Jin-jun, Gao Yan-ming, Li Jian-she. 2021. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits. Journal of the Zhejiang University(Agriculture and Life Sciences Edition), 47 (2):171-181. (in Chinese) |
郑福顺, 王晓敏, 李国花, 李洪磊, 周鹏泽, 王林, 白圣懿, 刘珮君, 张雪艳, 胡新华, 付金军, 高艳明, 李建设. 2021. 基于表型性状的宁夏番茄种质资源核心种质构建. 浙江大学学报(农业与生命科学版), 47 (2):171-181. |
[1] | WANG Rui, HONG Wenjuan, LUO Hua, ZHAO Lina, CHEN Ying, WANG Jun. Construction of SSR Fingerprints of Pomegranate Cultivars and Male Parent Identification of Hybrids [J]. Acta Horticulturae Sinica, 2023, 50(2): 265-278. |
[2] | GUO Yan, ZHANG Shuhang, LI Ying, ZHANG Xinfang, WANG Yingjie, WANG Guangpeng. Diversity Analysis of Leaves Phenotypic Traits of Yanshan Chestnut [J]. Acta Horticulturae Sinica, 2022, 49(8): 1673-1688. |
[3] | LI Wenting, LI Cuixiao, LIN Xiaoqing, ZHENG Yongqin, ZHENG Zheng, DENG Xiaoling. Population Genetic Structure of Xanthomonas citri pv. citri in Guangdong Province Based on the STR Locus [J]. Acta Horticulturae Sinica, 2022, 49(6): 1233-1246. |
[4] | ZHANG Meng, SHAN Yuying, YANG Yebo, ZHAI Feifei, WANG Zhaoshan, JU Guansheng, SUN Zhenyuan, LI Zhenjian. AFLP Analysis of Genetic Resources of Dendrobium from China [J]. Acta Horticulturae Sinica, 2022, 49(6): 1339-1350. |
[5] | YANG Yi, LI Tingyao, LI Guojing, CHEN Hancai, SHEN Zhuo, ZHOU Xuan, WU Zengxiang, WU Xinyi, ZHANG Yan. Development and Application of Insertion-Deletion(InDel)Markers in Asparagus Bean Based on Whole Genome Re-sequencing Data [J]. Acta Horticulturae Sinica, 2022, 49(4): 778-790. |
[6] | NIE Xinghua, LI Yiran, TIAN Shoule, WANG Xuefeng, SU Shuchai, CAO Qingqin, XING Yu, QIN Ling. Construction of DNA Fingerprint Map and Analysis of Genetic Diversity for Chinese Chestnut Cultivars(Lines) [J]. Acta Horticulturae Sinica, 2022, 49(11): 2313-2324. |
[7] | LI Shifan, SHAO Yuchun, QI Haonan, YANG Lan, LI Xiaowei, XU Bingliang, CHEN Yahan. Detection and Genetic Diversity Analysis of Apple Necrotic Mosaic Virus in Gansu Province [J]. Acta Horticulturae Sinica, 2022, 49(11): 2431-2438. |
[8] | XIAO Jun, CHEN Xun, ZHAO Ying, MA Xiaoying, GONG Na, LIU Guoli. Isolation of Phenotypic Traits from Wild Cordyceps militaris Fruitbody [J]. Acta Horticulturae Sinica, 2022, 49(11): 2449-2454. |
[9] | ZHAO Limin, LI Jiawei, ZHANG Fei, SU Jiangshuo, FANG Weimin, WANG Haibin, JIANG Jiafu, CHEN Sumei, CHEN Fadi, and GUAN Zhiyong. Construction of a Core Collection of Spray Cut Chrysanthemum Based on Phenotypic Data [J]. Acta Horticulturae Sinica, 2022, 49(10): 2273-2284. |
[10] | CHEN Mingkun, CHEN Lu, SUN Weihong, MA Shanhu, LAN Siren, PENG Donghui, LIU Zhongjian, AI Ye. Genetic Diversity Analysis and Core Collection of Cymbidium ensifolium Germplasm Resources [J]. Acta Horticulturae Sinica, 2022, 49(1): 175-186. |
[11] | LI Yanhong, NIE Jun, ZHENG Jinrong, TAN Delong, ZHANG Changyuan, SHI Liangliang, XIE Yuming. Genetic Diversity Analysis and Multivariate Evaluation of Cherry Tomato by Phenotypic Traits in South China [J]. Acta Horticulturae Sinica, 2021, 48(9): 1717-1730. |
[12] | ZHAO Yujing, LU Yin, FENG Daling, LUO Lei, WU Fang, YANG Rui, CHEN Yueqi, SUN Xiaoxue, WANG Yanhua, CHEN Xueping, SHEN Shuxing, LUO Shuangxia, ZHAO Jianjun. Association Analysis Between Background Selection InDel Markers and Important Agronomic Traits in Inbred Lines of Chinese Cabbage [J]. Acta Horticulturae Sinica, 2021, 48(7): 1282-1294. |
[13] | ZHAO Qing, DU Zhenzhen, LI Xixiang, SONG Jiangping, ZHANG Xiaohui, YANG Wenlong, JIA Huixia, WANG Haiping. Genetic Diversity of Garlic Germplasm Resources Based on SSRseq Molecular Markers [J]. Acta Horticulturae Sinica, 2021, 48(7): 1397-1408. |
[14] | ZHU Shiyang, ZHANG Xiaoling, LIU Qing, ZHONG Weijie, LUO Tiankuan, TANG Zheng, XU Qian, ZHOU Yuanchang. Cytoplasmic Effect Analysis of Different CMS Sources of Cauliflower [J]. Acta Horticulturae Sinica, 2021, 48(6): 1107-1122. |
[15] | JIANG Xibing, ZHANG Pingsheng, XU Yang, WU Conglian, ZHANG Dongbei, GONG Bangchu, WU Kaiyun, LAI Junsheng. Genetic Diversity of F1 Hybrids of Chestnut Based on SSR Markers [J]. Acta Horticulturae Sinica, 2021, 48(5): 897-907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd