https://www.ahs.ac.cn/images/0513-353X/images/top-banner1.jpg|#|苹果
https://www.ahs.ac.cn/images/0513-353X/images/top-banner2.jpg|#|甘蓝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner3.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner4.jpg|#|灵芝
https://www.ahs.ac.cn/images/0513-353X/images/top-banner5.jpg|#|桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner6.jpg|#|黄瓜
https://www.ahs.ac.cn/images/0513-353X/images/top-banner7.jpg|#|蝴蝶兰
https://www.ahs.ac.cn/images/0513-353X/images/top-banner8.jpg|#|樱桃
https://www.ahs.ac.cn/images/0513-353X/images/top-banner9.jpg|#|观赏荷花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner10.jpg|#|菊花
https://www.ahs.ac.cn/images/0513-353X/images/top-banner11.jpg|#|月季
https://www.ahs.ac.cn/images/0513-353X/images/top-banner12.jpg|#|菊花

Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 345-358.doi: 10.16420/j.issn.0513-353x.2021-0921

• Research Papers • Previous Articles     Next Articles

Morphology and Microstructure Characteristics of Diploid and Tetraploid Hedychium coronarium Cut Flowers

ZHANG Ailing, TU Hongyan, XIAO Wang*(), ZHONG Xiaoqing, LU Qiuchan, CHENG Liping, LIN Xiaoping, MAI Yuling   

  1. Development Center of Applied Ecology and Ecological Engineering in Guangdong Universities,College of Biology and Food Engineering,Guangdong University of Education,Guangzhou 510303,China
  • Received:2022-08-26 Revised:2022-11-07 Online:2023-02-25 Published:2023-03-06
  • Contact: *(E-mail:xiaowang@gdei.edu.cn)

Abstract:

With diploid and tetraploid Hedychium coronarium as test material,the developmental process of cut flowers were observed. Micrographic changes of the flower stem base,corolla tube and petals were identified by scanning and transmission electron microscopy. With the bent neck of corolla tube and initial wilting of petal as markers,the developmental process of florets was divided into six stages:bracts cracking stage,initial opening stage,blooming stage,neck bending stage,initial wilting stage,and wilting stage. Neck bending of the floret corolla tube preceded petal wilting,and the senescence of corolla tube cells arose earlier than the petal cells. The diameter of the corolla tube of the tetraploid was extremely significantly more than that of the diploid,and the ratio of the corolla tube length out of bracts to the total length of the tetraploid was significantly less than that of the diploid. During the whole vase life,the cut flowers of tetraploid were in the state of net water absorption for longer time and the basal vessel of cut flower stem were blocked more slightly than those of the diploid. The neck bending of the tetraploid floret arose later than that of the diploid,and damages of mitochondria of corolla tube and petal cells were posterior to those of the diploid. In total,neck bending of the corolla tube was the landmark for the beginning of senescence of H. coronarium floret. The significant longer longevity of the tetraploid cut flowers may be due to the thicker corolla tube and stronger support from bracts to florets,the postponed senescence of corolla tube and petal cells,and stronger water absorption and anti-blocking ability of the flower stems.

Key words: Hedychium coronarium, tetraploid, cut flower, senescence, corolla tube

CLC Number: