Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (2): 295-306.doi: 10.16420/j.issn.0513-353x.2021-1246
• Research Papers • Previous Articles Next Articles
SONG Yanhong1, CHEN Yaduo1, ZHANG Xiaoyu2, SONG Pan1, LIU Lifeng1, LI Gang1, ZHAO Xia1, ZHOU Houcheng1,*()
Received:
2022-08-23
Revised:
2022-11-03
Online:
2023-02-25
Published:
2023-03-06
Contact:
*(E-mail:CLC Number:
SONG Yanhong, CHEN Yaduo, ZHANG Xiaoyu, SONG Pan, LIU Lifeng, LI Gang, ZHAO Xia, ZHOU Houcheng. The Transcription Factor FvbHLH130 Activates Flowering in Fragaria vesca[J]. Acta Horticulturae Sinica, 2023, 50(2): 295-306.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1246
用途 Usage | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
FvbHLH130基因编码区克隆 Cloning the CDS of FvbHLH130 | FvbHLH130-CDS-F | ATGGATTCAAATACCCATCTCA |
FvbHLH130-CDS-R | TCAAACTATCTGATTTTGAA | |
FvbHLH130基因启动子克隆 Cloning the promoter of FvbHLH130 | FvbHLH130-Pro-F | GACATAATAACCTTGCATTT |
FvbHLH130-Pro-R | TATACACAACTCTGCTTGCC | |
构建FvbHLH130过表达载体 Cloning onstruction of FvbHLH130-overexpression vector | FvbHLH130-121-F | gagaacacgggggactctagaATGGATTCAAATACCCATCTCA |
FvbHLH130-121-R | gcccttgctcaccatggatccAACTATCTGATTTTGAACCGG | |
转基因阳性苗鉴定 Identification of transgenic positive seedlings | 35S | GACGCACAATCCCACTATCC |
GFP-R | TTACTTGTACAGCTCGTCCATG | |
草莓荧光定量内参基因 Reference genes for qRT-PCR in Fragaria vesca | Fv28S-qF | TAACCGCATCAGGTCTCCAA |
Fv28S-qR | CTCGAGCAGTTCTCCGACAG | |
拟南芥荧光定量内参基因 Reference genes for qRT-PCR in F. vesca | At18S-qF | GAGAAGTTACTCCGCAACCT |
At18S-qR | GAATGATGCGTCGCCAGCACAAAGG | |
FvbHLH130不同组织表达模式分析 Expression pattern of FvbHLH130 in different tissues | FvbHLH130-qF | ATCCCCGAAGCATTGCAGAA |
FvbHLH130-qR | GCTCGAACATCGCTCAGACT | |
拟南芥开花相关基因表达分析 Expression of flowering-related genes in Arabidopsis thaliana | AtAP1-qF | CAATGAGCCCTAAAGAGCTT |
AtAP1-qR | GGGAGGCATATTGTGGCCTT | |
AtFT-qF | CCCTGCTACAACTGGAACAA | |
AtFT-qR | TGACAATTGTAGAAAACTGCG | |
AtFUL-qF | GGAGAAGAAAACGGGTCAGC | |
AtFUL-qR | ACTCGTTCGTAGTGGTAGGAC | |
AtCO-qF | CTACAACGACAATGGTTCCATTAAC | |
AtCO-qR | CAGGGTCAGGTTGTTGC | |
酵母双杂交载体构建 Construction the vector of yeast two-hybrid system | FvARF4-AD-F | gtaccagattacgctcatatgATGGAATTTGATCTGAACCA |
FvARF4-AD-R | cagctcgagctcgatggatccTCAGACCCTAATTGCTGTTG | |
FvARF6-AD-F | gtaccagattacgctcatatgATGAGGCTTTCTTCTTCGTC | |
FvARF6-AD-R | cagctcgagctcgatggatccTTAGTAGTCAAGGGAGCCCA | |
FvARF8-AD-F | gtaccagattacgctcatatgATGAAGCTTTCCACATCAGG | |
FvARF8-AD-R | cagctcgagctcgatggatccTCAATACTCAAGTGAGCCGA |
Table 1 A list of primers used in this study
用途 Usage | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
FvbHLH130基因编码区克隆 Cloning the CDS of FvbHLH130 | FvbHLH130-CDS-F | ATGGATTCAAATACCCATCTCA |
FvbHLH130-CDS-R | TCAAACTATCTGATTTTGAA | |
FvbHLH130基因启动子克隆 Cloning the promoter of FvbHLH130 | FvbHLH130-Pro-F | GACATAATAACCTTGCATTT |
FvbHLH130-Pro-R | TATACACAACTCTGCTTGCC | |
构建FvbHLH130过表达载体 Cloning onstruction of FvbHLH130-overexpression vector | FvbHLH130-121-F | gagaacacgggggactctagaATGGATTCAAATACCCATCTCA |
FvbHLH130-121-R | gcccttgctcaccatggatccAACTATCTGATTTTGAACCGG | |
转基因阳性苗鉴定 Identification of transgenic positive seedlings | 35S | GACGCACAATCCCACTATCC |
GFP-R | TTACTTGTACAGCTCGTCCATG | |
草莓荧光定量内参基因 Reference genes for qRT-PCR in Fragaria vesca | Fv28S-qF | TAACCGCATCAGGTCTCCAA |
Fv28S-qR | CTCGAGCAGTTCTCCGACAG | |
拟南芥荧光定量内参基因 Reference genes for qRT-PCR in F. vesca | At18S-qF | GAGAAGTTACTCCGCAACCT |
At18S-qR | GAATGATGCGTCGCCAGCACAAAGG | |
FvbHLH130不同组织表达模式分析 Expression pattern of FvbHLH130 in different tissues | FvbHLH130-qF | ATCCCCGAAGCATTGCAGAA |
FvbHLH130-qR | GCTCGAACATCGCTCAGACT | |
拟南芥开花相关基因表达分析 Expression of flowering-related genes in Arabidopsis thaliana | AtAP1-qF | CAATGAGCCCTAAAGAGCTT |
AtAP1-qR | GGGAGGCATATTGTGGCCTT | |
AtFT-qF | CCCTGCTACAACTGGAACAA | |
AtFT-qR | TGACAATTGTAGAAAACTGCG | |
AtFUL-qF | GGAGAAGAAAACGGGTCAGC | |
AtFUL-qR | ACTCGTTCGTAGTGGTAGGAC | |
AtCO-qF | CTACAACGACAATGGTTCCATTAAC | |
AtCO-qR | CAGGGTCAGGTTGTTGC | |
酵母双杂交载体构建 Construction the vector of yeast two-hybrid system | FvARF4-AD-F | gtaccagattacgctcatatgATGGAATTTGATCTGAACCA |
FvARF4-AD-R | cagctcgagctcgatggatccTCAGACCCTAATTGCTGTTG | |
FvARF6-AD-F | gtaccagattacgctcatatgATGAGGCTTTCTTCTTCGTC | |
FvARF6-AD-R | cagctcgagctcgatggatccTTAGTAGTCAAGGGAGCCCA | |
FvARF8-AD-F | gtaccagattacgctcatatgATGAAGCTTTCCACATCAGG | |
FvARF8-AD-R | cagctcgagctcgatggatccTCAATACTCAAGTGAGCCGA |
Fig. 1 The gene expression pattern and prediction of the promoter cis-elements of FvbHLH130 A:Expression pattern of selected samples searched on SGR.(Style1:Styles and stigmas from just open flower;Anther9:Anthers from 9 days post-anthesis;Carpel9:Carpels from 9 days post-anthesis;Cortex1:Cortex from just open flower;Yw-15D and Yw-22D,15 days post-anthesis and 22 days post-anthesis of Fragaria vesca Yellow Wonder);B and C:Protein structure of FvbHLH130 and prediction of cis-elements in the promoter of FvbHLH130;D:The relative expression of FvbHLH130 in different tissues of F. vesca.
Fig. 4 Overexpression of FvbHLH130 accelerates flowing A. Identification of transgenic lines,the control was Arabidopsis plants with empty vector;B. The number of rosette leaves;C. Phenotypes of flowing of transgenic lines. ** indicates significantly difference at P < 0.01 level.
Fig. 5 Flowering-related genes expression analysis of FvbHLH130-overexpression lines in Arabidopsis * indicates significantly difference at P < 0.05 level;** indicates significantly difference at P < 0.01 level.
[1] |
Afifi M, Obenland D, El-Kereamy A. 2021. The complexity of modulating anthocyanin biosynthesis pathway by deficit irrigation in table grapes. Frontiers in Plant Science, 12:713277.
doi: 10.3389/fpls.2021.713277 URL |
[2] | Atchley W, Fitch W. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94:5172-5176. |
[3] |
Bailey P, Martin C, Toledo-Ortiz G, Quail P, Huq E, Heim M, Jakoby M, Werber M, Weisshaar B. 2003. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. The Plant Cell, 15:2497-2502.
doi: 10.1105/tpc.151140 URL |
[4] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J, Bilbao-Castro J, Robertson D. 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis,poplar,rice,moss,and algae. Plant Physiology, 153:1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[5] |
Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. 2003. ICE1:A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17:1043-1054.
doi: 10.1101/gad.1077503 URL |
[6] |
Clough S, Bent A. 2008. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x URL |
[7] |
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Gissot L, Turnbull C, Coupland G. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 316:1030-1033.
doi: 10.1126/science.1141752 pmid: 17446353 |
[8] |
Darwish O, Slovin J P, Kang C, Hollender C A, Geretz A, Houston S, Liu Z, Alkharouf N W. 2013. SGR:an online genomic resource for the woodland strawberry. BMC Plant Biology, 13:223.
doi: 10.1186/1471-2229-13-223 pmid: 24364888 |
[9] |
Dong X, Li Y, Guan Y, Wang S, Luo H, Li X, Li H, Zhang Z. 2021. Auxin-induced AUXIN RESPONSE FACTOR4 activates APETALA1 and FRUITFULL to promote flowering in woodland strawberry. Horticulture Research, 8:115.
doi: 10.1038/s41438-021-00550-x pmid: 33931632 |
[10] |
Ellenberger T, Fass D, Arnaud M, Harrison S C. 1994. Crystal structure of transcription factor E47:E-box recognition by a basic region helix-loop-helix dimer. Genes & Development, 8:970-980.
doi: 10.1101/gad.8.8.970 URL |
[11] |
Goetz M, Vivian-Smith A, Johnson S, Koltunow A. 2006. AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. The Plant Cell, 18:1873-1886.
doi: 10.1105/tpc.105.037192 URL |
[12] |
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 53:814-827.
doi: 10.1111/j.1365-313X.2007.03373.x pmid: 18036197 |
[13] | Goossens J, Mertens J, Goossens A. 2016. Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot, 68:erw440. |
[14] |
Gremski K, Ditta G, Yanofsky M. 2007. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134:3593-3601.
doi: 10.1242/dev.011510 URL |
[15] |
He Jie, Gu Xiu-rong, Wei Chun-hua, Yang Xiao-zhen, Li Hao, Ma Jian-xiang, Zhang Yong, Yang Jian-qiang, Zhang Xian. 2016. Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermelon. Acta Horticulturae Sinica, 43 (2):281-294. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0886 |
何洁, 顾秀容, 魏春华, 杨小振, 李好, 马建祥, 张勇, 杨建强, 张显. 2016. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析. 园艺学报, 43 (2):281-294.
doi: 10.16420/j.issn.0513-353x.2015-0886 |
|
[16] |
Heim M, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey P. 2003. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 20:735-747.
doi: 10.1093/molbev/msg088 URL |
[17] |
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 62:2465-2483.
doi: 10.1093/jxb/erq442 pmid: 21278228 |
[18] |
Hu Ruolin, Wang Jiali, Yang Huiqin, Yuan Chao, Niu Yi, Tang Qinglin, Wei Dayong, Tian Shibing, Wang Zhimin. 2022. Cloning and functional analysis of auxin response factor gene SmARF5 in Solanum melongena. Acta Horticulturae Sinica, 49 (9):1895-1906. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2021-0700 |
胡若琳, 王佳丽, 杨慧勤, 袁超, 牛义, 汤青林, 魏大勇, 田时炳, 杨洋, 王志敏. 2022. 茄子生长素响应因子SmARF5对分枝发育的影响. 园艺学报, 49 (9):1895-1906.
doi: 10.16420/j.issn.0513-353x.2021-0700 |
|
[19] | Ito S, Song Y H, Josephson-Day A R, Miller R J, Breton G, Olmstead R G, Imaizumi T. 2012. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109:3582-3587. |
[20] |
Jin Zhou, Lu Shan, Jiang Junhao, Li Shouren, Zhang Nan, Jiang Xiaoyu, Wu Fan. 2023. Research progress on influencing factors and mechanisms of flower bud differentiation in horticultural plants. Acta Horticulturae Sinica,doi:10.16420/j.issn.0513-353x.2022-0058. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2022-0058 |
金洲, 卢山, 江俊浩, 李寿仁, 张楠, 江晓钰, 吴凡. 2023. 园艺植物花芽分化影响因素及机理研究进展. 园艺学报,doi:10.16420/j.issn.0513-353x.2022-0058.
doi: 10.16420/j.issn.0513-353x.2022-0058 |
|
[21] |
Kaiser B, Finnegan P, Tyerman S, Whitehead L, Bergersen F, Day D, Udvardi M. 1998. Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science, 281:1202-1206.
pmid: 9712587 |
[22] |
Kavas M, Baloglu M, Atabay E, Ziplar U, Dasgan H, Ünver T. 2015. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol Genet Genomics, 291:1-15.
doi: 10.1007/s00438-015-1110-y URL |
[23] |
Kinmonth-Schultz H, Tong X, Lee J, Song Y, Ito S, Kim S-H, Imaizumi T. 2016. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. The New Phytologist, 211:208-224.
doi: 10.1111/nph.2016.211.issue-1 URL |
[24] |
Kiribuchi K, Sugimori M, Takeda M, Otani T, Okada K, Onodera H, Ugaki M, Tanaka Y, Tomiyama-Akimoto C, Yamaguchi T, Minami E, Shibuya N, Omori T, Nishiyama M, Nojiri H, Yamane H. 2004. RERJI,a jasmonic acid-responsive gene from rice,encodes a basic helix-loop-helix protein. Biochemical and Biophysical Research Communications, 325:857-863.
pmid: 15541369 |
[25] | Li Maofu, Yang Yuan, Wang Hua, Liu Jiashen, Jin Wanmei. 2017. Cloning and expression of bHLH gene from Rosa chinensis‘Slater’s Crimson China’and its interaction with transcription factors MYB and WD40. Acta Horticulturae Sinica, 44 (10):1949-1958. (in Chinese) |
李茂福, 杨媛, 王华, 刘佳棽, 金万梅. 2017. 月季bHLH基因的克隆、表达及其与MYB和WD40 的互作分析. 园艺学报, 44 (10):1949-1958.
doi: 10.16420/j.issn.0513-353x.2017-0183 |
|
[26] |
Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D. 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant physiology, 141:1167-1184.
doi: 10.1104/pp.106.080580 URL |
[27] |
Liljegren S, Roeder A, Kempin S, Gremski K, Ostergaard L, Guimil S, Reyes D, Yanofsky M. 2004. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell, 116:843-853.
doi: 10.1016/s0092-8674(04)00217-x pmid: 15035986 |
[28] |
Lin T, Walworth A, Zong X, Danial G, Tomaszewski E, Callow P, Han X, Zaharia L, Edger P, Zhong G Y, Song G Q. 2019. VcRR2 regulates chilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant. Horticulture Research, 6:96.
doi: 10.1038/s41438-019-0180-0 pmid: 31645954 |
[29] |
Liu Y, Li X, Li K, Liu H, Lin C. 2013. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLoS Genetics, 9:e1003861.
doi: 10.1371/journal.pgen.1003861 URL |
[30] | Liu Y, Zhao Q, Meng N, Song H, Li C, Hu G, Wu J, Lin S, Zhang Z. 2017. Over-expression of EjLFY-1 Leads to an early flowering habit in strawberry(Fragaria × ananassa)and its asexual progeny. Frontiers in Plant Science, 8:496. |
[31] |
Lu J, Sun J, Jiang A, Bai M, Fan C, Liu J, Ning G, Changquan W. 2020. Alternative expressions of RcCOL4 in short day and RcCO in long day facilitate day-neutral response in Rosa chinensis. Journal of Experimental Botany, 71:4057-4068.
doi: 10.1093/jxb/eraa161 URL |
[32] | Ludwig S, Habera L, Dellaporta S, Wessler S. 1989. Lc,a member of the maize R gene family responsible for tissue-specific anthocyanin production,encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America, 86:7092-7096. |
[33] |
Mao K, Dong Q, Li C, Liu C, Ma F. 2017. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science, 8:480.
doi: 10.3389/fpls.2017.00480 pmid: 28443104 |
[34] |
Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer D, Dolan L. 2007. An ancient mechanism controls the development of cells with a rooting function in land plants. Science, 316:1477-1480.
doi: 10.1126/science.1142618 pmid: 17556585 |
[35] |
Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E. 2007. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiology, 145:736-746.
doi: 10.1104/pp.107.104521 pmid: 17885086 |
[36] |
Murre C, Bain G, van Dijk M, Engel I, Furnari B, Massari M, Matthews J, Quong M, Rivera R, Stuiver M. 1994. Structure and function of helix-loop-helix proteins. Biochimica et Biophysica Acta, 1218:129-135.
doi: 10.1016/0167-4781(94)90001-9 pmid: 8018712 |
[37] |
Narise T, Kobayashi K, Baba S, Shimojima M, Masuda S, Fukaki H, Ohta H. 2010. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. Plant Molecular Biology, 72:533-544.
doi: 10.1007/s11103-009-9589-4 pmid: 20043234 |
[38] |
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell, 12:1863-1878.
doi: 10.1105/tpc.12.10.1863 URL |
[39] |
Ni L, Wang Z, Fu Z, Liu D, Yin Y, Li H, Gu C. 2021. Genome-wide analysis of basic Helix-Loop-Helix family genes and expression analysis in response to drought and salt stresses in Hibiscus hamabo Sieb. et Zucc. International Journal of Molecular Sciences, 22:8748.
doi: 10.3390/ijms22168748 URL |
[40] |
Payne C, Zhang F, Lloyd A. 2000. GL 3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 156:1349-1362.
doi: 10.1093/genetics/156.3.1349 pmid: 11063707 |
[41] |
Pires N, Dolan L. 2009. Origin and diversification of basic-Helix-Loop-Helix proteins in plants. Molecular Biology and Evolution, 27:862-874.
doi: 10.1093/molbev/msp288 URL |
[42] |
Rajani S, Sundaresan V. 2002. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 11:1914-1922.
doi: 10.1016/S0960-9822(01)00593-0 URL |
[43] | Sanagi M, Aoyama S, Kubo A, Lu Y, Sato Y, Ito S, Abe M, Mitsuda N, Ohme-Takagi M, Kiba T, Nakagami H, Rolland F, Yamaguchi J, Imaizumi T, Sato T. 2021. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 118:e2022942118. |
[44] |
Smolen G, Pawlowski L, Wilensky S, Bender J. 2002. Dominant alleles of the basic Helix-Loop-Helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis. Genetics, 161:1235-1246.
doi: 10.1093/genetics/161.3.1235 URL |
[45] | Song Jian-hui. 2020. The molecular regulation mechanism of flowering and anthocyanin by bHLH 113 in Arabidopsis[Ph. D. Dissertation]. Hangzhou: Zhejiang A & F University. (in Chinese) |
宋建辉. 2020. bHLH113 调控拟南芥开花和花青素合成的分子机制研究[博士论文]. 杭州: 浙江农林大学. | |
[46] |
Sorensen A M, Kroeber S, Unte U, Huijser P, Dekker K, Saedler H. 2003. The Arabidopsis aborted microspores(ams)gene encodes a MYC class transcription factor. The Plant Journal:for Cell and Molecular Biology, 33:413-423.
doi: 10.1046/j.1365-313X.2003.01644.x URL |
[47] |
Sun H, Fan H J, Ling H Q. 2015. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics, 16:9.
doi: 10.1186/s12864-014-1209-2 pmid: 25612924 |
[48] |
Szécsi J, Joly C, Bordji K, Varaud E, Cock J, Dumas C, Bendahmane M. 2006. BIGPETALp,a bHLH transcription factor is involved in the control of Arabidopsis petal size. The EMBO Journal, 25:3912-3920.
doi: 10.1038/sj.emboj.7601270 URL |
[49] | Takahashi Y, Ebisu Y, Shimazaki K I. 2017. Reconstitution of abscisic acid signaling from the receptor to DNA via bHLH transcription factors. Plant Physiology, 174:pp.01825.02016. |
[50] |
Teotia S, Tang G. 2015. To bloom or not to bloom:role of microRNAs in plant flowering. Molecular Plant, 8:359-377.
doi: 10.1016/j.molp.2014.12.018 URL |
[51] |
Toledo-Ortiz G, Huq E, Quail P. 2003. The Arabidopsis basic/Helix-Loop-Helix transcription factor family. The Plant Cell, 15:1749-1770.
doi: 10.1105/tpc.013839 URL |
[52] |
Wang J, Hu Z, Zhao T, Yuwen Y, Chen T, Yang M, Yu W, Zhang B. 2015. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato(Solanum lycopersicum). BMC Genomics, 16:39.
doi: 10.1186/s12864-015-1249-2 URL |
[53] | Wang Shao-xi. 2019. Bioinformation analysis of auxin response factor(ARF)gene family and functional research of MIR167 and its target ARF6 in strawberry[Ph. D. Dissertation]. Shenyang: Shenyang Agricultural University. (in Chinese) |
王少希. 2019. 草莓ARF基因家族的生物信息学分析及MIR167与靶基因ARF6的功能鉴定[博士论文]. 沈阳: 沈阳农业大学. | |
[54] |
Wang Xiaodi, Ji Xiaohao, Zheng Xiaocui, Wang Yingying, Song Yang, Liu Fengzhi. 2019. Cloning and functional analysis of a cold treatment response factor gene PdCIbHLH in peach. Acta Horticulturae Sinica, 46 (3):444-452. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2018-0651 |
王孝娣, 冀晓昊, 郑晓翠, 王莹莹, 宋杨, 刘凤之. 2019. 桃冷处理响应基因PdCIbHLH的克隆和功能鉴定. 园艺学报, 46 (3):444-452.
doi: 10.16420/j.issn.0513-353x.2018-0651 |
|
[55] |
Wang W Y, Yu J Q, Du M C, Wang J H, Hu D G. 2022. Basic helix-loop-helix(bHLH)transcription factor MdbHLH 3 negatively affects the storage performance of postharvest apple fruit. Horticultural Plant Journal, 8 (6):700-712.
doi: 10.1016/j.hpj.2022.08.005 URL |
[56] |
Wu Y Y, Wu S H, Wang X Q, Mao T Y, Bao M Z, Zhang J M, Zhang J. 2022. Genome-wide identification and characterization of the bHLH gene family in an ornamental woody plant Prunus mume. Horticultural Plant Journal, 8 (4):531-544.
doi: 10.1016/j.hpj.2022.01.004 URL |
[57] |
Yan Q, Liu H S, Yao D, Li X, Chen H, Dou Y, Wang Y, Pei Y, Xiao Y H. 2015. The basic/Helix-Loop-Helix protein family in gossypium:reference genes and their evolution during tetraploidization. PLoS ONE, 10:e0126558.
doi: 10.1371/journal.pone.0126558 URL |
[58] |
Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H. 2006. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1(DYT1)encoding a putative bHLH transcription factor. Development, 133:3085-3095.
doi: 10.1242/dev.02463 pmid: 16831835 |
[59] |
Zhao F L, Li G, Hu P P, Zhao X, Li L J, Wei W, Feng J Y, Zhou H C. 2018. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Scientific Reports, 8:2721.
doi: 10.1038/s41598-018-21136-z pmid: 29426907 |
[60] | Zhou Wen. 2017. Effects of TT8 and WD40 transcription factors on anthocyanin biosynthesis and flowering time in Brassica oleracea L[Ph. D. Dissertation]. Chongqing: Southwest University. (in Chinese) |
周雯. 2017. 甘蓝TT8及WD40转录因子影响花青素合成及开花时间的研究[博士论文]. 重庆: 西南大学. |
[1] | XUE Yuqian, LIU Zhiyong, SUN Kairong, ZHANG Xiuxin, LÜ Yingmin, XUE Jingqi. The Mechanism of Sugar Signal Involved in Regulating Re-flowering of Tree Peony Under Forcing Culture [J]. Acta Horticulturae Sinica, 2023, 50(3): 596-606. |
[2] | SUN Zeshuo, JIANG Dongyue, LIU Xinhong, SHEN Xin, LI Yingang, QU Yufei, LI Yonghua. Cluster Analysis and Construction of DNA Fingerprinting of 42 Oriental Cultivars of Flowering Cherry Based on SSR Markers [J]. Acta Horticulturae Sinica, 2023, 50(3): 657-668. |
[3] | REN Hailong, XU Donglin, ZHANG Jing, ZOU Jiwen, LI Guangguang, ZHOU Xianyu, XIAO Wanyu, SUN Yijia. Establishment of SNP Fingerprinting and Identification of Chinese Flowering Cabbage Varieties Based on KASP Genotyping [J]. Acta Horticulturae Sinica, 2023, 50(2): 307-318. |
[4] | JI Linlin, CHEN Suchuan, WU Zhihui, CHANG Jun, HAN Wenyan, and TAO Rupeng. A New Carya cathayensis Cultivar‘Ningguo Shanhetao 2’with Premature Flowering [J]. Acta Horticulturae Sinica, 2022, 49(S2): 53-54. |
[5] | ZHANG Xiaoqin, SUN Hongbing, ZHAO Lekang, ZHU Dajun, XIA Wensheng, and NIE Chaoren. A New Cerasus conradinae Cultivar‘Chujin’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 249-250. |
[6] | CAI Jianfa, MO Xuelian, GUAN Sicong, CHEN Xu, XUE Cheng. Expression Characteristics and Functional Analysis of FvYABBY5.1 in Strawberry [J]. Acta Horticulturae Sinica, 2022, 49(7): 1458-1472. |
[7] | FANG Nengyan, FAN Ronghui, LUO Yuanhua, KONG Lan, LIN Rongyan, YE Xiuxian, LIN Bing, ZHONG Huaiqin, HUANG Minling. The Heterologous Expression of Oncidium OnGI Promotes Flowering in Arabidopsis thaliana [J]. Acta Horticulturae Sinica, 2022, 49(4): 841-850. |
[8] | JI Fengjiao, MA Yan, QI Shuai, GUO Xianfeng, CHEN Junqiang. Cloning and Functional Analysis of Peony PlSVP Gene in Regulating Flowering [J]. Acta Horticulturae Sinica, 2022, 49(11): 2367-2376. |
[9] | YE Xiangyang, WU Xiaofang, LI Hua, LIN Jinhe, MA Ke, YE Hanjiang, LI Jianguo, YE Zhaoxiong, and WANG Zehuai. A New Late-maturing Litchi Cultivar‘Guishuang’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2817-2818. |
[10] | YANG Zhiwu, DENG Qunxian, WANG Yongqing, DU Kui, PAN Cuiping, ZHANG Hui, ZHANG Huifen, and WANG Yang. A New Spring Flowering Loquat Cultivar‘Chunhua 1’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2819-2820. |
[11] | LI Guihua, FU Mei, LUO Wenlong, LUO Shanwei, and GUO Juxian. A New Chinese Flowering Cabbage Cultivar‘Yuetai 1’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2833-2834. |
[12] | YANG Dong, LIU Yanling, XU Liming, and YANG Mei, . A New Ornamental Cultivar Lotus‘Qiuri Honghua’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2953-2954. |
[13] | GAN Caixia, CUI Lei, PANG Wenxing, WANG Aihua, YU Xiaoqing, DENG Xiaohui, SONG Liping, PIAO Zhongyun. QTL Mapping of Bolting and Flowering Traits Based on High Density Genetic Map of Radish [J]. Acta Horticulturae Sinica, 2021, 48(7): 1273-1281. |
[14] | NIU Xiqaing, LUO Xiaoyun, KANG Kaicheng, HUANG Xianzhong, HU Nengbing, SUI Yihu, AI Hao. Genome-wide Identification,Comparative Evolution and Expression Analysis of PEBP Gene Family from Capsicum annuum [J]. Acta Horticulturae Sinica, 2021, 48(5): 947-959. |
[15] | ZENG Zexiang, XIAO Xianmei, TAN Xiaoli, FAN Zhongqi, CHEN Jianye. Characteristics of the Transcription Factor BrWRKY57 and Its Regulation on BrPPH1 and BrNCED3 [J]. Acta Horticulturae Sinica, 2021, 48(3): 518-530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd