Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (1): 131-144.doi: 10.16420/j.issn.0513-353x.2021-0888
• Research Papers • Previous Articles Next Articles
LIN Haijiao1, LIANG Yuchen1, LI Ling1, MA Jun2, ZHANG Lu1, LAN Zhenying1, YUAN Zening1,*()
Received:
2022-07-25
Revised:
2022-12-06
Online:
2023-01-25
Published:
2023-01-18
Contact:
*(E-mail:CLC Number:
LIN Haijiao, LIANG Yuchen, LI Ling, MA Jun, ZHANG Lu, LAN Zhenying, YUAN Zening. Exploration and Regulation Network Analysis of CBF Pathway Related Cold Tolerance Genes in Lavandula angustifolia[J]. Acta Horticulturae Sinica, 2023, 50(1): 131-144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0888
序号 ID | 引物序列(5′-3′) Primers sequence | |
---|---|---|
1 | CCA1-F:TGCCGGGAAAGAGGAGTACT | CCA1-R:CCCACTTCGTTAGGAGGCAA |
2 | LHY-F:TGGGTAATTGGGTCAAGGCC | LHY-R:TTCCGGGTCTTTCTCCATGC |
3 | ICE1-F:TTGAGCTGCGACCAGAGTTT | ICE1-R:CAGCTTAGACCTGTGCGGAT |
4 | CBF1-F:TGCAGCGGAGGCTTTCTATC | CBF1-R:AAGCCTTCAGCCATGTTGGA |
5 | CBF2-F:CGATACAGGCAAGTGGGTCT | CBF2-R:AATGTCCTGCACACTCGACG |
6 | CBF3-F:GTGCTGGAATTCTCCTCCGA | CBF3-R:TGACCTCGCAGACCCACTTA |
7 | ERD7-F:TGGTGAGGAAGAAGGATGCG | ERD7-R:CCACTTCAGCCTATCCACCG |
8 | COR413PM2-F:AGAGGCGGGGTAGTCATCTT | COR413PM2-R:GTCAGTGCTCGTGTGTGAGA |
9 | GAPDH-F:TAGGAGGTGGCAGGACATCA | GAPDH-R:CCCTTTACCCGTCACGTTGT |
Table 1 Primers used for qPCR
序号 ID | 引物序列(5′-3′) Primers sequence | |
---|---|---|
1 | CCA1-F:TGCCGGGAAAGAGGAGTACT | CCA1-R:CCCACTTCGTTAGGAGGCAA |
2 | LHY-F:TGGGTAATTGGGTCAAGGCC | LHY-R:TTCCGGGTCTTTCTCCATGC |
3 | ICE1-F:TTGAGCTGCGACCAGAGTTT | ICE1-R:CAGCTTAGACCTGTGCGGAT |
4 | CBF1-F:TGCAGCGGAGGCTTTCTATC | CBF1-R:AAGCCTTCAGCCATGTTGGA |
5 | CBF2-F:CGATACAGGCAAGTGGGTCT | CBF2-R:AATGTCCTGCACACTCGACG |
6 | CBF3-F:GTGCTGGAATTCTCCTCCGA | CBF3-R:TGACCTCGCAGACCCACTTA |
7 | ERD7-F:TGGTGAGGAAGAAGGATGCG | ERD7-R:CCACTTCAGCCTATCCACCG |
8 | COR413PM2-F:AGAGGCGGGGTAGTCATCTT | COR413PM2-R:GTCAGTGCTCGTGTGTGAGA |
9 | GAPDH-F:TAGGAGGTGGCAGGACATCA | GAPDH-R:CCCTTTACCCGTCACGTTGT |
Fig. 5 Mapping of protein network interactions between CBF pathway related cold tolerance genes in Lavandula angustifolia and Arabidopsis thaliana database
Fig. 7 Changes of COR gene expression in Lavandula angustifolia at different temperatures Different letters indicated significant difference(P < 0.05).
Fig. 9 CBF-COR regulatory network in response to low temperature stress in Lavandula angustifolia Modified and drawn according to the literature Shi et al.(2018).
[1] |
Ahmet K, Özlem D, Katarzyna S, Şebnem K, Aygül K, Gökçen Y, Ferit K. 2021. Melatonin effects in enhancing chilling stress tolerance of pepper. Scientia Horticulturae,289:doi:10.1016/j.scienta.2021.110434.
doi: 10.1016/j.scienta.2021.110434 URL |
[2] |
Banerjee A, Roychoudhury A. 2017. Abscisic-acid-dependent basic leucine zipper(bZIP)transcription factors in plant abiotic stress. Protoplasma, 254 (1):3-16.
doi: 10.1007/s00709-015-0920-4 pmid: 26669319 |
[3] |
Breton G, Danyluk J, Charron J B, Sarhan F. 2003. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant Physiol, 132 (1):64-74.
doi: 10.1104/pp.102.015255 URL |
[4] |
Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X H, Agarwal M, Zhu J K. 2003. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17 (8):1043-1054.
doi: 10.1101/gad.1077503 URL |
[5] | Deng C Y, Ye H Y, Fan M, Pu T L, Yan J B. 2017. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signal Behav, 12,e1316442. |
[6] |
Ding Y L, Shi Y T, Yang S H. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant, 13 (4):544-564.
doi: S1674-2052(20)30034-4 pmid: 32068158 |
[7] |
Doherty C J, Buskirk H A V, Myers S J, Thomashow M F. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell, 21 (3):972-984.
doi: 10.1105/tpc.108.063958 URL |
[8] | Dong M A, Farré E M, Thomashow M F. 2011. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR(CBF)pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108 (17):7241-7246. |
[9] | Giannoulis K D, Evangelopoulos V, Gougoulias N, Wogiatzi E. 2020. Lavender organic cultivation yield and essential oil can be improved by using bio-stimulants. Acta Agriculturae Scandinavica,Section B — Soil & Plant Science, 70 (8):648-656. |
[10] |
Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. 1998. Low temperature regulation of the Arabidopsis CBF family of AP 2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 16 (4):433-442.
doi: 10.1046/j.1365-313x.1998.00310.x URL |
[11] | Gu Jiamao, Wang Chenyang, Wang Feng, Qi Mingfang, Liu Yufeng, Li Tianlai. 2021. Roles of CAMTA/SR in plant growth and development and stress response. Acta Horticulturae Sinica, 48 (4):613-631. (in Chinese) |
谷家茂, 王晨扬, 王峰, 齐明芳, 刘玉凤, 李天来. 2021. CAMTA/SR在植物生长发育及逆境响应中的作用. 园艺学报, 48 (4):613-631. | |
[12] |
Guo X Y, Liu D F, Chong K. 2018. Cold signaling in plants:insights into mechanisms and regulation. Journal of Integrative Plant Biology, 60 (9):745-756.
doi: 10.1111/jipb.12706 URL |
[13] |
Guo X Y, Zhang L, Dong G Q, Xu Z H, Li G M, Liu N, Wang A Y, Zhu J B. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco(Nicotiana tabacum). Plant Science,289:doi:10.1016/j.plantsci.2019.110246.
doi: 10.1016/j.plantsci.2019.110246 URL |
[14] | Gyana R R, Anuradha B, Dhaneswar S, Kundansigh R J, Rahul G S, Sanjib K P. 2020. Overexpression of ICE 1 gene in mungbean(Vigna radiata L.)for cold tolerance. Plant Cell,Tissue and Organ Culture(PCTOC), 143 (3):593-608. |
[15] | Iqbal Z, Shariq I M, Singh S P, Buaboocha T. 2020. Ca2+/calmodulin complex triggers CAMTA transcriptional machinery under stress in plants:signaling cascade and molecular regulation. Frontier Plant Science, 11:598327. |
[16] | Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science(New York), 280 (5360):104-106. |
[17] |
Jian H J, Xie L, Wang Y H, Cao Y R, Wan M Y, Lv D Q, Li J N, Lu K, Xu X F, Liu L Z. 2020. Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ, 8:e8704.
doi: 10.7717/peerj.8704 URL |
[18] |
Jiang B C, Shi Y T, Peng Y, Jia Y X, Yan Y, Dong X J, Li H, Dong J, Li J G, Gong Z Z, Thomashow M F, Yang S H. 2020. Cold-induced CBF-PIF 3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant, 13 (6):894-906.
doi: 10.1016/j.molp.2020.04.006 URL |
[19] | Jin Xinkai, Li Xiaohan, Shen Hui, Li Jinhua, Pan Yu, Zhang Xingguo. 2018. Ectopic expression of AtCOR15a improves cold tolerance in Solanum lycopersicum. Acta Horticulturae Sinica, 45 (7):1283-1295. (in Chinese) |
金新开, 李小寒, 沈辉, 李金华, 潘宇, 张兴国. 2018. 拟南芥耐寒基因AtCOR15a在番茄中异源表达增强其耐寒性. 园艺学报, 45 (7):1283-1295. | |
[20] |
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. The Plant Cell, 29 (4):760-774.
doi: 10.1105/tpc.16.00669 pmid: 28351986 |
[21] |
Kim S M, Suh J P, Lee C K, Lee J H, Kim Y G, Jena K K. 2014. QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice(Oryza sativa L.). Molecular Genetics and Genomics, 289 (3):333-343.
doi: 10.1007/s00438-014-0813-9 URL |
[22] |
Lang Z B, Zhu J K. 2015. OST 1 phosphorylates ICE1 to enhance plant cold tolerance. Science China Life Sciences, 58 (3):317-318.
doi: 10.1007/s11427-015-4822-7 URL |
[23] | Li Qiong, Li Lili, Hou Juan, Luo Renren, Wang Ruidan, Hu Jianbin, Huang Song. 2022. Advances on mechanism of cucurbit crops in response to low-temperature stress. Acta Horticulturae Sinica, 49 (6):1382-1394. (in Chinese) |
李琼, 李丽丽, 侯娟, 罗忍忍, 王瑞丹, 胡建斌, 黄松. 2022. 瓜类作物响应低温胁迫机制的研究进展. 园艺学报, 49 (6):1382-1394. | |
[24] |
Lu X, Yang L, Yu M Y, Lai J B, Wang C, Mc N D, Zhou M X, Yang C W. 2017. A novel Zea mays ssp. mexicana L.MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana. Plant Physiol Biochem, 113:78-88.
doi: 10.1016/j.plaphy.2017.02.002 URL |
[25] |
Medina J, Catalá R, Salinas J. 2011. The CBFs:Three Arabidopsis transcription factors to cold acclimate. Plant Science, 180 (1):3-11.
doi: 10.1016/j.plantsci.2010.06.019 URL |
[26] |
Nosenko T, Böndel K B, Kumpfmüller G, Stephan W. 2016. Adaptation to low temperatures in the wild tomato species Solanum chilense. Mol Ecol, 25:2853-2869.
doi: 10.1111/mec.13637 URL |
[27] |
Park S, Lee C M, Doherty C J, Gilmour S J, Kim Y S, Thomashow M F. 2015. Regulation of the Arabidopsis CBF regulon by a complex low‐temperature regulatory network. The Plant Journal, 82 (2):193-207.
doi: 10.1111/tpj.12796 URL |
[28] | Peng T, Guo C, Yang J, Xu M, Zuo J, Bao M, Zhang J W. 2016. Overexpression of a Mei(Prunus mume)CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell,Tissue and Organ Culture(PCTOC), 126 (3):373-385. |
[29] |
Pino M T, Skinner J S, Park E J, Jeknić Z, Hayes P M, Thomashow M F, Chen T H H. 2007. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal, 5 (5):591-604.
doi: 10.1111/j.1467-7652.2007.00269.x URL |
[30] |
Rai A N, Tamirisa S, Rao K V, Kumar V, Suprasanna P. 2016. Brassica RNA binding protein ERD4 is involved in conferring salt,drought tolerance and enhancing plant growth in Arabidopsis. Plant Molecular Biology, 90:375-387.
doi: 10.1007/s11103-015-0423-x URL |
[31] |
Ritonga F N, Chen S. 2020. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9 (5):560. doi: 10.3390/plants9050560.
doi: 10.3390/plants9050560 URL |
[32] |
Ruibal C, Castro A, Fleitas A L, Quezada J, Quero G, Vidal S. 2020. A chloroplast COR413 protein from Physcomitrella patens is required for growth regulation under high light and ABA responses. Frontiers in Plant Science,11:doi:10.3389/fpls.2020.00845.
doi: 10.3389/fpls.2020.00845 URL |
[33] |
Shi Y T, Ding Y L, Yang S H. 2018. Molecular regulation of CBF signaling in cold acclimation. Trends in Plant Science, 23 (7):623-637.
doi: S1360-1385(18)30086-4 pmid: 29735429 |
[34] |
Shi Y T, Tian S W, Hou L Y, Huang X Z, Zhang X Y, Guo H W, Yang S H. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis. The Plant Cell, 24 (6):2578-2595.
doi: 10.1105/tpc.112.098640 URL |
[35] |
Su C, Chen K, Ding Q Q, Mou Y Y, Yang R, Zhao M J, Ma B, Xu Z S, Ma Y Z, Pan Y H, Chen M, Xi Y J. 2018. Proteomic analysis of the function of a novel cold-regulated multispanning transmembrane protein COR413-PM1 in Arabidopsis. International Journal of Molecular Sciences, 19 (9):2572.
doi: 10.3390/ijms19092572 URL |
[36] |
Tian J Y, Ma Y, Tian L, Huang C, Chen M, Wei A Z. 2021. Comparative physiology and transcriptome response patterns in cold-tolerant and cold-sensitive varieties of Zanthoxylum bungeanum Maxim. Industrial Crops & Products,167:doi:10.1016/j.indcrop.2021.113562.
doi: 10.1016/j.indcrop.2021.113562 URL |
[37] |
Walworth A E, Song G and Warner R M. 2014. Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Mol Breeding, 33 (3):731-741.
doi: 10.1007/s11032-013-9989-7 URL |
[38] |
Wisniewski M, Norelli J, Artlip T. 2015. Overexpression of a peach CBF gene in apple:a model for understanding the integration of growth, dormancy,and cold hardiness in woody plants. Frontiers in Plant Science, 6:85.
doi: 10.3389/fpls.2015.00085 pmid: 25774159 |
[39] |
Yin M Z, Wang Y P, Zhang L H, Li J Z, Quan W L, Yang L, Wang Q F, Chan Z L. 2017. The Arabidopsis Cys2/His 2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. Journal of Experimental Botany, 68 (11):2991-3005.
doi: 10.1093/jxb/erx157 URL |
[40] |
Yuji Y, Stephen K R. 2016. Functionality of soybean CBF/DREB1 transcription factors. Plant Science, 246:80-90.
doi: S0168-9452(16)30019-X pmid: 26993238 |
[41] |
Zhang L, Guo X Y, Zhang Z X, Wang A Y, Zhu J B. 2021. Cold-regulated gene LeCOR413PM2 confers cold stress tolerance in tomato plants. Gene,764:doi:10.1016/j.gene.2020.145097.
doi: 10.1016/j.gene.2020.145097 URL |
[42] | Zhang Xiao-jiao, Shi Chun-feng, Li Chun-shui, Gao Jun-ping, Hong Bo. 2011. Cold stress tolerance of the filial generations produced by AtDREB1A transgenic ground cover chrysanthemum and a conventional variety. Acta Horticulturae Sinica, 38 (9):1717-1726. (in Chinese) |
张晓娇, 史春凤, 李春水, 高俊平, 洪波. 2011. 转AtDREB1A基因地被菊杂交后代优株耐寒性分析. 园艺学报, 38 (9):1717-1726. | |
[43] |
Zhou L, He Y J, Li J, Li L Z, Liu Y, Chen H Y. 2020. An eggplant SmICE1a gene encoding MYC‐type ICE1‐like transcription factor enhances freezing tolerance in transgenic Arabidopsis thaliana. Plant Biology, 22 (3):450-458.
doi: 10.1111/plb.13095 pmid: 32009285 |
[1] | WANG Guangpeng, LIU Tongkun, XU Xinfeng, LI Zhubo, GAO Zhanyuan, HOU Xilin. Identification of LEA Family and Expression Analysis of Some Members Under Low-temperature Stress in Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(2): 304-318. |
[2] | LIU Yanying,NI Shanshan,XIANG Leilei,CHEN Yukun,and LAI Zhongxiong*. Genome-wide Identification of the Laccase Gene Family and Its Expression Analysis Under Low Temperature Stress in Musa accuminata [J]. ACTA HORTICULTURAE SINICA, 2020, 47(5): 837-852. |
[3] | FU Yajuan1,2,CHEN Xiating1,QIAO Jie1,2,WANG Jing1,2,LI Wenjing1,and HOU Xiaoqiang1,2,*. Molecular Cloning and Expression Characterization of Cyclophilin Gene(DoCyP)in Dendrobium officinale [J]. ACTA HORTICULTURAE SINICA, 2020, 47(3): 581-589. |
[4] | LIU Fengjiao,ZHANG Xiaowei,LI Fude,ZHAI Jiang,BI Huangai,and AI Xizhen. Effect of Exogenous Hydrogen on Photosynthetic Carbon Assimilation and Nitrogen Metabolism of Cucumber Seedlings Under Low Temperature [J]. ACTA HORTICULTURAE SINICA, 2020, 47(2): 287-300. |
[5] | CUI Bo1,*,HAO Ping’an2,LIANG Fang1,ZHANG Yan1,WANG Ximeng1,4,LI Junlin1,3,JIANG Suhua1,and XU Shenping1. Cloning and Expression Analysis of AP2/ERF Family Gene from Phalaenopsis Under Low Temperature [J]. ACTA HORTICULTURAE SINICA, 2020, 47(1): 85-97. |
[6] | HAN Min1,2,CAO Bili2,LIU Shusen3,and XU Kun2,*. Effects of Rootstock and Scion Interactions on Ascorbate-Glutathione Cycle in Tomato Seedlings Under Low Temperature Stress [J]. ACTA HORTICULTURAE SINICA, 2019, 46(1): 65-73. |
[7] | HAN Min1,CAO Bili1,LIU Shusen2,and XU Kun1,*. Effects of Rootstock and Scion Interaction on Photosynthesis and Nitrogen Metabolism of Grafted Tomato Seedlings Leaves Under Low Temperature Stress [J]. ACTA HORTICULTURAE SINICA, 2018, 45(5): 897-907. |
[8] | HAN Min1,CAO Bili1,LIU Shusen2,and XU Kun1,*. Effects of Rootstock and Scion Interaction on Chilling Tolerance of Grafted Tomato Seedlings [J]. ACTA HORTICULTURAE SINICA, 2018, 45(2): 279-288. |
[9] | WANG Ping, LI Yan-Hui, ZHANG Xue-Mei, LI Bao-Guo, YAO Fei-Fei. Effects of Low Temperature Stress on Ascorbate-glutathione Cycle in Kernel Apricot Pistil [J]. ACTA HORTICULTURAE SINICA, 2013, 40(3): 417-425. |
[10] | LI Liang, DONG Chun-Juan, SHANG Qing-Mao. Role of Endogenous Salicylic Acid in Responding of Cucumber Leaf Photosynthetic Systems to Low Temperature Stress [J]. ACTA HORTICULTURAE SINICA, 2013, 40(3): 487-497. |
[11] | XUE Xi-Jia, LI Pei-Yan, SONG Xia-Qin, SHEN Mei, ZHENG Xiao-Lin. Mechanisms of Oxalic Acid Alleviating Chilling Injury in Harvested Mango Fruit Under Low Temperature Stress [J]. ACTA HORTICULTURAE SINICA, 2012, 39(11): 2251-2257. |
[12] | LI Xi-dong;HOU Li-xia;LIU Xin;and LU Jiang . Involvement of H2O2 in Regulating the Expression of VvIPK2 in Response to Low Temperature Stress in Leaves of Vitis [J]. ACTA HORTICULTURAE SINICA, 2011, 38(6): 1052-1062. |
[13] | LIU Ling-yi;ZHAO Dan-ying;ZHENG Yang;SHEN Lin;SHENG Ji-ping. Hydrogen Peroxide Metabolism and Signal Transduction under Cold Stressin Plants [J]. ACTA HORTICULTURAE SINICA, 2009, 36(11): 1701-1708. |
[14] | LUO Ya;TANG Hao-ru;and ZHANG Yong. Effect of Low Temperature Stress on Activities of SOD and Enzymes of Ascorbate-Glutathione Cycle [J]. ACTA HORTICULTURAE SINICA, 2007, 34(6): 1405-1410. |
[15] | LI Tao;YU Xian-chang. Effect of Cu2+ , Zn2++ and Mn2+ on SOD Activity of Cucumber Leaves Extraction after Low Temperature Stress [J]. ACTA HORTICULTURAE SINICA, 2007, 34(4): 895-900. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd