Acta Horticulturae Sinica ›› 2023, Vol. 50 ›› Issue (1): 53-64.doi: 10.16420/j.issn.0513-353x.2021-1086
• Research Papers • Previous Articles Next Articles
YUAN Xin1, XU Yunhe1, ZHANG Yupei1, SHAN Nan1, CHEN Chuying1, WAN Chunpeng1, KAI Wenbin1, ZHAI Xiawan1, CHEN Jinyin1,2,*(), GAN Zengyu1,*()
Received:
2022-09-16
Revised:
2022-11-30
Online:
2023-01-25
Published:
2023-01-18
Contact:
*(E-mail:CLC Number:
YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit[J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1086
基因 Gene | 上游序列(5′-3′)Forward sequence | 下游序列(5′-3′)Reverse sequence |
---|---|---|
AcGH3.1 | AGGGTCTGTACTTCCTGTTCG | TGTAGACGTTGTAGGGATCG |
AcAREB1 | GCAACAACAACCACCTTCAA | GTTCCCAAACCAATCATTCC |
AcAREB2 | GGGGCGGCAGTAGTGAACCA | AGTGTCAGACCAGGCGTAAT |
AcAREB3 | GGTCAGCGCACAGGATTGAG | AGCCAGATTTGATTGCTTGG |
AcAREB4 | ACGGATAGGAATAGTGCTGG | TAAATCACCGAAGAAGCCAC |
AcAREB5 | ATGGCTTCTTCGGTGATTTA | CTGCTGCTGTGATGATCTAAC |
GUS | CACAAACCGTTCTACTTTACTGG | GCGTAAGGGTAATGCGAGGT |
AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC |
Table 1 Primers for qRT-PCR
基因 Gene | 上游序列(5′-3′)Forward sequence | 下游序列(5′-3′)Reverse sequence |
---|---|---|
AcGH3.1 | AGGGTCTGTACTTCCTGTTCG | TGTAGACGTTGTAGGGATCG |
AcAREB1 | GCAACAACAACCACCTTCAA | GTTCCCAAACCAATCATTCC |
AcAREB2 | GGGGCGGCAGTAGTGAACCA | AGTGTCAGACCAGGCGTAAT |
AcAREB3 | GGTCAGCGCACAGGATTGAG | AGCCAGATTTGATTGCTTGG |
AcAREB4 | ACGGATAGGAATAGTGCTGG | TAAATCACCGAAGAAGCCAC |
AcAREB5 | ATGGCTTCTTCGGTGATTTA | CTGCTGCTGTGATGATCTAAC |
GUS | CACAAACCGTTCTACTTTACTGG | GCGTAAGGGTAATGCGAGGT |
AcActin | TGGAATGGAAGCTGCAGGA | CACCACTGAGCACAATGTTGC |
引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|
ProAcGH3.1-pHIS2 | F:GGGCGAATTCCCGGGGAGCTCCTTTTATATATATATATATAT |
R:CGGATCGATTCGCGAACGCGTATATGAAGTGGTCCCCAATT | |
AcAREB1-BD | F:TCAGAGGAGGACCTGCATATGATGAACTTCAAGAACTATGG |
R:CCGCTGCAGGTCGACGGATCCTTAGCTCCTTGCTGCGTGTT | |
AcAREB1-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTTAGCTCCTTGCTGCGTGTT |
AcAREB2-AD | F:CGTACCAGATTACGCTCATATGATGGGATCATATTTGAACTT R:GCAGCTCGAGCTCGATGGATCCTTATTCATTGCATAAAATAG |
AcAREB3-AD | F:CGTACCAGATTACGCTCATATGATGTACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCTAGTCTGTG |
AcAREB4-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGG R:GCAGCTCGAGCTCGATGGATCCTCATGTTTCAACTATTGAAT |
AcAREB5-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGA R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCCAGTTTGTG |
AcAREB1-GFP | F:CCAAATCGACTCTAGTCTAGAATGAACTTCAAGAACTATGG R:GCCCTTGCTCACCATGGTACCGCTCCTTGCTGCGTGTT |
ProAcGH3.1-GUS | F:AACTGCAGCTTTTATATATATATATATAT R:CGGGATCCATATGAAGTGGTCCCCAATT |
Table 2 Primers for vector construction
引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|
ProAcGH3.1-pHIS2 | F:GGGCGAATTCCCGGGGAGCTCCTTTTATATATATATATATAT |
R:CGGATCGATTCGCGAACGCGTATATGAAGTGGTCCCCAATT | |
AcAREB1-BD | F:TCAGAGGAGGACCTGCATATGATGAACTTCAAGAACTATGG |
R:CCGCTGCAGGTCGACGGATCCTTAGCTCCTTGCTGCGTGTT | |
AcAREB1-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTTAGCTCCTTGCTGCGTGTT |
AcAREB2-AD | F:CGTACCAGATTACGCTCATATGATGGGATCATATTTGAACTT R:GCAGCTCGAGCTCGATGGATCCTTATTCATTGCATAAAATAG |
AcAREB3-AD | F:CGTACCAGATTACGCTCATATGATGTACTTCAAGAACTATGG R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCTAGTCTGTG |
AcAREB4-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGG R:GCAGCTCGAGCTCGATGGATCCTCATGTTTCAACTATTGAAT |
AcAREB5-AD | F:CGTACCAGATTACGCTCATATGATGAACTTCAGAAACTTTGA R:GCAGCTCGAGCTCGATGGATCCTCACCATGGGCCAGTTTGTG |
AcAREB1-GFP | F:CCAAATCGACTCTAGTCTAGAATGAACTTCAAGAACTATGG R:GCCCTTGCTCACCATGGTACCGCTCCTTGCTGCGTGTT |
ProAcGH3.1-GUS | F:AACTGCAGCTTTTATATATATATATATAT R:CGGGATCCATATGAAGTGGTCCCCAATT |
名称 Name | 基因编号 Gene ID | 染色体定位 Chromosome No. | 蛋白长度/aa Protein length | 分子量/kD Molecular weight | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
AcAREB1 | Ach00g131571 | 未知 Unknow | 431 | 47.30 | 9.79 | 细胞核 Nuclear |
AcAREB2 | Ach06g233651 | 06 | 448 | 49.08 | 9.16 | 细胞核 Nuclear |
AcAREB3 | Ach00g227711 | 未知 Unknow | 411 | 45.04 | 10.10 | 细胞核 Nuclear |
AcAREB4 | Ach11g026271 | 11 | 459 | 49.43 | 5.40 | 细胞核 Nuclear |
AcAREB5 | Ach05g315671 | 05 | 396 | 42.63 | 7.51 | 细胞核 Nuclear |
Table 3 Physicochemical properties of AcAREB gene family in kiwifruit
名称 Name | 基因编号 Gene ID | 染色体定位 Chromosome No. | 蛋白长度/aa Protein length | 分子量/kD Molecular weight | 等电点 Isoelectric point | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
AcAREB1 | Ach00g131571 | 未知 Unknow | 431 | 47.30 | 9.79 | 细胞核 Nuclear |
AcAREB2 | Ach06g233651 | 06 | 448 | 49.08 | 9.16 | 细胞核 Nuclear |
AcAREB3 | Ach00g227711 | 未知 Unknow | 411 | 45.04 | 10.10 | 细胞核 Nuclear |
AcAREB4 | Ach11g026271 | 11 | 459 | 49.43 | 5.40 | 细胞核 Nuclear |
AcAREB5 | Ach05g315671 | 05 | 396 | 42.63 | 7.51 | 细胞核 Nuclear |
Fig. 3 Multiple sequence alignment of AREB protein from kiwifruit(Ac)and Solanum lycopersicum(Sl) Conserved regions of AREB-like are underlined,and the bZIP signature(basic region and Leu zipper)is indicated over a double line.
[1] |
Bastias A, Yanez M, Osorio S, Arbona V, Gomez-Cadenas A, Fernie A R, Casaretto J A. 2014. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits. Journal of Experimental Botany, 65:2351-2363.
doi: 10.1093/jxb/eru114 pmid: 24659489 |
[2] |
Boettcher C, Boss P K, Davies C. 2011. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape(Vitis vinifera L.)berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. Journal of Experimental Botany, 62:4267-4280.
doi: 10.1093/jxb/err134 URL |
[3] |
Boettcher C, Keyzers R A, Boss P K, Davies C. 2010. Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry(Vitis vinifera L.)and the proposed role of auxin conjugation during ripening. Journal of Experimental Botany, 61:3615-3625.
doi: 10.1093/jxb/erq174 URL |
[4] | Chen Jin-yin, Chen Ming, Gan Lin. 2005. Effects of ethephon and ABA treatments on physiology of‘Jinkui’kiwifruit during its ripening and softening. Acta Agriculturae Universitis Jiangxiensis, 27:6-11. (in Chinese) |
陈金印, 陈明, 甘霖. 2005. 乙烯利和ABA处理对‘金魁’猕猴桃果实后熟软化的生理效应. 江西农业大学学报, 27:6-11. | |
[5] | Chen Kun-song, Li Fang, Zhang Shang-long, Gavin S Ross. 1999. Role of abscisic acid and indole-3-acetic acid in kiwifruit ripening. Acta Horticulaturae Sinica, 26:81-86. (in Chinese) |
陈昆松, 李方, 张上隆, Gavin S Ross. 1999. ABA和IAA对猕猴桃果实成熟进程的调控. 园艺学报, 26:81-86. | |
[6] | Domingo C, Andres F, Tharreau D, Iglesias D J, Talon M. 2009. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Molecular Plant, 22:201-210. |
[7] |
Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 147:15-27.
doi: 10.1111/j.1399-3054.2012.01635.x URL |
[8] | Gan Z Y, Fei L Y, Shan N, Fu Y Q, Chen J Y. 2019. Identification and expression analysis of Gretchen Hagen 3(GH3)in kiwifruit(Actinidia chinensis)during postharvest process. Plants-Basel, 8 (11):473. |
[9] |
Gan Z Y, Shan N, Fei L Y, Wan C P, Chen J Y. 2020. Isolation of the 9-cis-epoxycarotenoid dioxygenase(NCED) gene from kiwifruit and its effects on postharvest softening and ripening. Scientia Horticulturae, 261:109020.
doi: 10.1016/j.scienta.2019.109020 URL |
[10] |
Gan Z Y, Yuan X, Shan N, Wan C P, Chen C Y, Xu Y H, Xu Q, Chen J Y. 2021. AcWRKY 40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. Plant Science, 309:110948.
doi: 10.1016/j.plantsci.2021.110948 URL |
[11] | Hou Qiandong, Shen Tianjiao, Yu Huanhuan, Qiu Zhilang, Wen Zhuang, Zhang Huimin, Wu Yawei, Wen Xiaopeng. 2021. Genome-wide identification and expression analysis of Prunus avium Gretchen Hagen 3(GH3)gene family. Acta Horticulturae Sinica, 48 (12):2360-2374. (in Chinese) |
侯黔东, 沈天娇, 余欢欢, 仇志浪, 文壮, 张惠敏, 吴亚维, 文晓鹏. 2021. 甜樱桃GH3基因家族全基因组鉴定与表达分析. 园艺学报, 48 (12):2360-2374. | |
[12] |
Jagadeeswaran G, Raina S, Acharya B R, Maqbool S B, Mosher S L, Appel H M, Schultz J C, Klessig D F, Raina R. 2007. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid,activation of defense responses and resistance to pseudomonas syringae. Plant Journal, 51:234-246.
pmid: 17521413 |
[13] | Jain M, Kaur N, Tyagi A K, Khurana J P. 2006. The auxin-responsive GH3 gene family in rice (Oryza sativa). Functional & Integrative Genomics, 6:36-46. |
[14] |
Jia H F, Chai Y M, Li C L, Lu D, Luo J J, Qin L, Shen Y Y. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 157:188-199.
doi: 10.1104/pp.111.177311 URL |
[15] | Khan S, Stone J M. 2007. Arabidopsis thaliana GH3.9 in auxin and jasmonate cross talk. Plant Signaling & Behavior, 2:483-485. |
[16] |
Kuang J F, Zhang Y, Chen J Y, Chen Q J, Jiang Y M, Lin H T, Xu S J, Lu W J. 2011. Two GH3 genes from longan are differentially regulated during fruit growth and development. Gene, 485:1-6.
doi: 10.1016/j.gene.2011.05.033 pmid: 21672614 |
[17] |
Kumar R, Agarwal P, Tyagi A K, Sharma A K. 2012. Genome-wide investigation and expression analysis suggest diverse roles of auxin-responsive GH3 genes during development and response to different stimuli in tomato(Solanum lycopersicum). Molecular Genetics and Genomics, 287:221-235.
doi: 10.1007/s00438-011-0672-6 URL |
[18] |
Liu K D, Kang B C, Jiang H, Moore S L, Li H X, Watkin C B, Setter T L, Jahn M M. 2005. A GH3-like gene,CcGH3,isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Molecular Biology, 58:447-464.
doi: 10.1007/s11103-005-6505-4 URL |
[19] | Liu K D, Wang J X, Li H L, Zhong J D, Feng S X, Pan Y L, Yuan C C. 2016. Identification,expression and IAA-Amide synthetase activity analysis of Gretchen Hagen 3 in papaya fruit(Carica papaya L.)during postharvest process. Frontiers in Plant Science, 7:1555. |
[20] |
Lu W J, Mao L C, Chen J X, Han X Y, Ren X C, Ying T J, Luo Z S. 2018. Interaction of abscisic acid and auxin on gene expression involved in banana ripening. Acta Physiologiae Plantarum, 40:1-9.
doi: 10.1007/s11738-017-2577-4 URL |
[21] |
Ludwig-Mueller J. 2011. Auxin conjugates:their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62:1757-1773.
doi: 10.1093/jxb/erq412 pmid: 21307383 |
[22] |
Mou W S, Li D D, Luo Z S, Li L, Mao L C, Ying T J. 2018. SlAREB 1 transcriptional activation of NOR is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Science, 276:239-249.
doi: 10.1016/j.plantsci.2018.07.015 URL |
[23] |
Nakashima K, Yamaguchi-Shinozaki K. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports, 32:959-970.
doi: 10.1007/s00299-013-1418-1 pmid: 23535869 |
[24] |
Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F. 2014. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiology, 164:365-383.
doi: 10.1104/pp.113.231977 pmid: 24276949 |
[25] |
Sravankumar T, Akash Naik N, Kumar R. 2018. A ripening-induced SlGH3-2gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato(Solanum lycopersicum L.). Plant Molecular Biology, 98:455-469.
doi: 10.1007/s11103-018-0790-1 pmid: 30367324 |
[26] |
Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17:616-627.
doi: 10.1105/tpc.104.026690 pmid: 15659623 |
[27] |
Sun L, Sun Y F, Zhang M, Wang L, Ren J, Cui M M, Wang Y P, Ji K, Li P, Li Q, Chen P, Dai S J, Duan C R, Wu Y, Leng P. 2012. Suppression of 9-cis-epoxycarotenoid dioxygenase,which encodes a key enzyme in abscisic acid biosynthesis,alters fruit texture in transgenic tomato. Plant Physiology, 158:283-298.
doi: 10.1104/pp.111.186866 URL |
[28] |
Wang S S, Saito T, Ohkawa K, Ohara H, Suktawee S, Ikeura H, Kondo S. 2018. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. Journal of Plant Physiology, 221:85-93.
doi: S0176-1617(17)30295-X pmid: 29268086 |
[29] | Wang S K, Bai Y H, Shen C J, Wu Y R, Zhang S N, Jiang D A, Guilfoyle T J, Chen M, Qi Y H. 2010. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional & Integrative Genomics, 10:533-546. |
[30] |
Yuan H Z, Zhao K, Lei H J, Shen X J, Liu Y, Liao X, Li T H. 2013. Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics, 14:297.
doi: 10.1186/1471-2164-14-297 URL |
[31] |
Yue P T, Wang Y N, Bu H D, Li XY, Yuan H, Wang A D. 2019. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biology and Technology, 157:110955.
doi: 10.1016/j.postharvbio.2019.110955 URL |
[32] |
Zaharah S S, Singh Z, Symons G M, Reid J B. 2013. Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biology and Technology, 75:37-44.
doi: 10.1016/j.postharvbio.2012.07.009 URL |
[33] | Zeng Wen-fang, Pan Lei, Niu Liang, Lu Zhen-hua, Cui Guo-chao, Wang Zhi-qiang. 2015. Bioinformatics analysis and expression of the nectarine indole-3-aceticacid-amido synthase(GH3)gene family during fruit development. Acta Horticulturae Sinica, 42:833-842. (in Chinese) |
曾文芳, 潘磊, 牛良, 鲁振华, 崔国朝, 王志强. 2015. 桃GH3基因家族的生物信息学分析及其在果实发育中的表达. 园艺学报, 42:833-842. | |
[34] |
Zhang M, Yuan B, Leng P. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. Journal of Experimental Botany, 60:1579-1588.
doi: 10.1093/jxb/erp026 pmid: 19246595 |
[35] |
Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. 2009. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiology, 151:1889-1901.
doi: 10.1104/pp.109.146803 URL |
[1] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[2] | SONG Fang, CHEN Qi, YUAN Yanliang, CHEN Sha, YIN Haijun, and JIANG Yingchun, . A New Yellow-fleshed Kiwifruit Cultivar‘Xianwo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 47-48. |
[3] | QI Yongjie, GAO Zhenghui, MA Na, WANG Qingming, KE Fanjun, CHEN Qian, and XU Yiliu, . A New Yellow Flesh and Resistant to Canker Disease Kiwifruit Cultivar ‘Wannong Jinguo’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 49-50. |
[4] | ZHANG Huiqin, LOU Guorong, LU Linghong, GU Xianbin, SONG Genhua, and XIE Ming. A New Yellow-fleshed Kiwifruit Cultivar‘Jinyi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 51-52. |
[5] | SUN Simiao, WANG Kun, GAO Yuan, WANG Dajiang, and LI Lianwen. A New Ornamental Crabapple Cultivar‘Zichen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 267-268. |
[6] | LÜ Zhengxin, HE Yanqun, JIA Dongfeng, HUANG Chunhui, ZHONG Min, LIAO Guanglian, ZHU Yi, YUAN Kaichang, LIU Chuanhao, XU Xiaobiao. Genetic Diversity Analysis of Phenotypic Traits for Kiwifruit Germplasm Resources [J]. Acta Horticulturae Sinica, 2022, 49(7): 1571-1581. |
[7] | LIANG Chen, SUN Ruyi, XIANG Rui, SUN Yimeng, SHI Xiaoxin, DU Guoqiang, WANG Li. Genome-wide Identification of Grape GRF Family and Expression Analysis [J]. Acta Horticulturae Sinica, 2022, 49(5): 995-1007. |
[8] | LI Li, FENG Dandan, PAN Hui, LI Wenyi, DENG Lei, WANG Zupeng, ZHONG Caihong. Comparison of Sterilization Methods for Kiwifruit Pollen and Its Effect on Fruit Quality [J]. Acta Horticulturae Sinica, 2022, 49(4): 769-777. |
[9] | WANG Dan, WANG Mi, LIU Jun, ZHOU Xiaohui, LIU Songyu, YANG Yan, ZHUANG Yong. Cloning of U6 Promoters and Establishment of CRISPR/Cas9 Mediated Gene Editing System in Eggplant [J]. Acta Horticulturae Sinica, 2022, 49(4): 791-800. |
[10] | SONG Fang, LI Zixuan, WANG Ce, WANG Zhijing, HE Ligang, JIANG Yingchun, WU Liming, BAI Fuxi. Cloning and Function Analysis of Mycorrhizal Signaling Receptor Protein Lysin Motif Receptor-like Kinases 2 Gene(LYK2)in Citrus [J]. Acta Horticulturae Sinica, 2022, 49(2): 281-292. |
[11] | HUANG Renwei, REN Yinghong, QI Weiliang, ZENG Rui, LIU Xinyu, DENG Binyan. Cloning of Mulberry MaERF105-Like Gene and Its Expression Under Drought Stress [J]. Acta Horticulturae Sinica, 2022, 49(11): 2439-2448. |
[12] | XIE Siyi, ZHOU Chengzhe, ZHU Chen, ZHAN Dongmei, CHEN Lan, WU Zuchun, LAI Zhongxiong, GUO Yuqiong. Genome-wide Identification and Expression Analysis of CsTIFY Transcription Factor Family Under Abiotic Stress and Hormone Treatments in Camellia sinensis [J]. Acta Horticulturae Sinica, 2022, 49(1): 100-116. |
[13] | A New Chaenomeles Crabapple Cultivar‘Caiyu’. A New Chaenomeles Crabapple Cultivar‘Caiyu’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2975-2976. |
[14] | ZHOU Jinchuan, GUAN Qide, GUAN Xueying, ZHAO Yuhan, ZHANG Haijuan, and WANG Xiangbo. A New Chaenomeles Crabapple Cultivar‘Zui Xishi’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2977-2978. |
[15] | ZHANG Zhifang, YUAN lei, CHENG Nini, LIU Zongzhao, and CHEN Zhiqun, . A New Ornamental Crabapple Cultivar‘Fengguanhong’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2979-2980. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd