Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (12): 2529-2542.doi: 10.16420/j.issn.0513-353x.2021-0488
• Reviews • Next Articles
ZHU Lingcheng1, SU Jing1, PENG Yunjing1, CAO Wenjing2, MA Fengwang1, MA Baiquan1, LI Mingjun1,*()
Received:
2021-12-24
Revised:
2022-05-09
Online:
2022-12-25
Published:
2023-01-02
Contact:
LI Mingjun
E-mail:limingjun@nwsuaf.edu.cn
CLC Number:
ZHU Lingcheng, SU Jing, PENG Yunjing, CAO Wenjing, MA Fengwang, MA Baiquan, LI Mingjun. Research Progress on the Relationship Between Sugar Transporters and Fruits Sugar Accumulation[J]. Acta Horticulturae Sinica, 2022, 49(12): 2529-2542.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0488
Fig. 1 Distribution map of sugar transporters in plants SUT:Sucrose transporter;STP:Sugar transporter;TST:Tonoplast sugar transporter;VGT:Vacuole glucose transporter;ERDL6:Early response to dehydration 6-like transporter;pGlcT:Plastid glucose transporter;SWEET:Sugars will eventually be exported transporters;INT:Inositol transporter;PMT:Polyol/monosaccharide transporter;SOT:Sorbitol transporter. (Zhang et al.,2004;Fan et al.,2009;Li et al.,2012;Wang et al.,2021).
[1] |
Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M. 2010. The Vitis vinifera sugar transporter gene family:phylogenetic overview and macroarray expression profiling. BMC Plant Biology, 10:245.
doi: 10.1186/1471-2229-10-245 pmid: 21073695 |
[2] | Aluri S, Büttner M. 2007. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences of USA, 104:2537-2542. |
[3] |
Antony E, Taybi T, Courbot M, Mugford S T, Smith J A C, Borland A M. 2008. Cloning,localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus(pineapple). Journal of Experimental Botany, 59:1895-1908.
doi: 10.1093/jxb/ern077 pmid: 18408220 |
[4] |
Aoki N, Hirose T, Scofield G N, Whitfeld P R, Furbank R T. 2003. The Sucrose transporter gene family in rice. Plant and Cell Physiology, 44:223-232.
doi: 10.1093/pcp/pcg030 pmid: 12668768 |
[5] |
Breia R, Conde A, Conde C, Fortese A M, Granellf A, Gerós H. 2020. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. Plant Physiology and Biochemistry, 154:508-516.
doi: 10.1016/j.plaphy.2020.06.007 URL |
[6] |
Büttner M. 2007. The monosaccharide transporter(-like)gene family in Arabidopsis. FEBS Letters, 581:2318-2324.
doi: 10.1016/j.febslet.2007.03.016 URL |
[7] | Büttner M. 2010. The Arabidopsis sugar transporter(AtSTP)family:an update. Plant Biology, 12:35-41. |
[8] | Çakir B, Giachino R R. 2012. VvTMT2 encodes a putative tonoplast monosaccharide transporter expressed during grape berry(Vitis vinifera cv. Sultanine)ripening. Plant Omics Journal, 5:576-583. |
[9] |
Chardon F, Bedu M, Calenge F, Klemens P A W, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology, 23:697-702.
doi: 10.1016/j.cub.2013.03.021 pmid: 23583552 |
[10] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X, Guo W, Kim J, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468:527-532.
doi: 10.1038/nature09606 URL |
[11] |
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335:207-211.
doi: 10.1126/science.1213351 URL |
[12] |
Chen Q, Xu X, Xu D, Zhang H, Zhang C, Li G. 2019. WRKY18 and WRKY53 coordinate with HISTONE ACETYLTRANSFERASE1 to regulate rapid responses to sugar. Plant Physiology, 180:2212-2226.
doi: 10.1104/pp.19.00511 pmid: 31182557 |
[13] |
Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany, 69:511-523.
doi: 10.1093/jxb/erx440 pmid: 29309616 |
[14] |
Cheng R, Zhang H P, Cheng Y S, Wang Y Z, Wang G M, Zhang S L. 2017. In silico and expression analysis of the tonoplast monosaccharide transporter(TMT)gene family in Pyrus bretschneideri. The Journal of Horticultural Science and Biotechnology, 93:366-376.
doi: 10.1080/14620316.2017.1373603 URL |
[15] |
Chincinska I A, Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C. 2008. Sucrose transporter StSUT4 from potato affects flowering,tuberization,and shade avoidance response. Plant Physiology, 146:515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796 |
[16] |
Chong J, Piron M, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine:VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany, 65:6589-6601.
doi: 10.1093/jxb/eru375 URL |
[17] | Dai Mei-song, Xu Fei, Shi Ze-bin, Xu Chang-jie. 2015. Preliminary study on expression characteristics of sorbitol transporter(SOT)gene family and the role in sugar accumulation in Pyrus pyrifolia fruits. Acta Horticulturae Sinica, 42 (8):1457-1466. (in Chinese) |
戴美松, 徐飞, 施泽彬, 徐昌杰. 2015. 砂梨山梨醇转运蛋白(SOT)基因家族成员表达特性及在果实糖积累中的作用初探. 园艺学报, 42 (8):1457-1466. | |
[18] |
Deng J, Yang X, Sun W, Miao Y, He L, Zhang X. 2020. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiology, 183:236-249.
doi: 10.1104/pp.19.01368 pmid: 32139477 |
[19] |
Fan R, Peng C, Xu Y, Wang X, Li Y, Shang Y, Du S, Zhao R, Zhang X, Zhang L, Zhang D. 2009. Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochromeb 5 to regulate their affinity for substrate sugars. Plant Physiology, 150:1880-1901.
doi: 10.1104/pp.109.141374 URL |
[20] |
Feng C, Han J, Han X, Jiang J. 2015. Genome-wide identification,phylogeny,and expression analysis of the SWEET gene family in tomato. Gene, 573:261-272.
doi: 10.1016/j.gene.2015.07.055 URL |
[21] |
Frost C J, Nyamdari B, Tsai C J, Harding S A. 2012. The tonoplast-localized sucrose transporter in Populus(PtaSUT4)regulates whole-plant water relations,responses to water stress,and photosynthesis. PLoS ONE, 7:e44467.
doi: 10.1371/journal.pone.0044467 URL |
[22] |
Gao Z, Jayanty S, Beaudry R, Loescher W. 2005. Sorbitol transporter expression in apple sink tissues:Implications for fruit sugar accumulation and watercore development. Journal of the American Society for Horticultural Science, 130:261-268.
doi: 10.21273/JASHS.130.2.261 URL |
[23] |
Gao Z, Maurousset L, Lemoine R, Yoo S, van Nocker S, Loescher W. 2003. Cloning,expression,and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiology, 131:1566-1575.
doi: 10.1104/pp.102.016725 URL |
[24] | Geng Yanqiu, Dong Xiaochang, Zhang Chunmei. 2021. Recent progress of sugar transporter in horticultural crops. Acta Horticulturae Sinica,2021, 48 (4):676-688. (in Chinese) |
耿艳秋, 董肖昌, 张春梅. 2021. 园艺作物糖转运蛋白研究进展. 园艺学报, 48 (4):676-688. | |
[25] |
Guo W, Nagy R, Chen H, Pfrunder S, Yu Y, Santelia D, Frommer W B, Martinoia E. 2014. SWEET17,a facilitative transporter,mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164:777-789.
doi: 10.1104/pp.113.232751 URL |
[26] |
Hackel A, Schauer N, Carrari F, Fernie A R, Grimm B, Kühn C. 2006. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal, 45:180-192.
doi: 10.1111/j.1365-313X.2005.02572.x URL |
[27] |
Hu L, Zhou K, Yang S, Liu Y, Li Y, Zhang Z, Zhang J, Gong X, Ma F. 2020. MdINT1 enhances apple salinity tolerance by regulating the antioxidant system,homeostasis of ions,and osmosis. Plant Physiology and Biochemistry, doi:10.1016/j.plaphy.2020.06.041.
doi: 10.1016/j.plaphy.2020.06.041 URL |
[28] |
Islam M Z, Jin L F, Shi C Y, Liu Y Z, Peng S A. 2015. Citrus sucrose transporter genes:genome-wide identification and transcript analysis in ripening and ABA-injected fruits. Tree Genetics and Genomes, 11:1-9.
doi: 10.1007/s11295-014-0804-3 URL |
[29] |
Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, Flügge U, Pommerrenig B, Wirsching P, Sauer N, Koch W. 2015. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants, 1:14001.
doi: 10.1038/nplants.2014.1 pmid: 27246048 |
[30] |
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. 1998. ERD6,a cDNA clone for an early dehydration-induced gene of Arabidopsis,encodes a putative sugar transporter. Biochimica et Biophysica Acta, 1370:187-191.
doi: 10.1016/s0005-2736(98)00007-8 pmid: 9545564 |
[31] |
Klemens P A W, Patzke K, Trentmann O, Poschet G, Büttner M, Schulz A, Marten I, Hedrich R, Neuhaus H E. 2014. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytologist, 202:188-197.
doi: 10.1111/nph.12642 pmid: 24329902 |
[32] |
Kühn C, Hajirezaei M R, Fernie A R, Roessner-Tunali U, Czechowski T, Hirner B, Frommer W B. 2003. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiology, 131:102-113.
doi: 10.1104/pp.011676 pmid: 12529519 |
[33] |
Le Hir R, Spinner L, Klemens P A W, Chakraborti D, de Marco F, Vilaine F, Wolff N, Lemoine R, Porcheron B, Géry C, Téoulé E, Chabout S, Mouille G, Neuhaus H E, Dinant S, Bellini C. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Molecular Plant, 8:1687-1690.
doi: 10.1016/j.molp.2015.08.007 URL |
[34] |
Lecourieux F, Kappel C, Lecourieux D, Serrano A, Torres E, Arce-Johnson P, Delrot S. 2014. An update on sugar transport and signalling in grapevine. Journal of Experimental Botany, 65:821-832.
doi: 10.1093/jxb/ert394 pmid: 24323501 |
[35] |
Li C,Meng,D, Pineros M A, Mao Y, Dandekar A M, Cheng L. 2020a. A sugar transporter takes up both hexose and sucrose for sorbitol-modulated in vitro pollen tube growth in apple. The Plant Cell, 32:449-469.
doi: 10.1105/tpc.19.00638 URL |
[36] |
Li J, Qin M, Qiao X, Cheng Y, Li X, Zhang H, Wu J. 2017. A new insight into the evolution and functional divergence of SWEET transporters in Chinese White Pear(Pyrus bretschneideri). Plant and Cell Physiology, 58:839-850.
doi: 10.1093/pcp/pcx025 URL |
[37] |
Li J, Zheng D, Li L, Qiao X, Wei S, Bai B, Zhang S, Wu J. 2015. Genome-Wide function,evolutionary characterization and expression analysis of sugar transporter family genes in pear(Pyrus bretschneideri Rehd). Plant and Cell Physiology, 56 (9):1721-1737.
doi: 10.1093/pcp/pcv090 URL |
[38] |
Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE, 7:e33055.
doi: 10.1371/journal.pone.0033055 URL |
[39] |
Li X, Guo W, Li J, Yue P, Bu H, Jiang J, Liu W, Xu Y, Yuan H, Li T, Wang A. 2020b. Histone acetylation at the promoter for the transcription factor PuWRKY 31 affects sucrose accumulation in pear fruit. Plant Physiology,doi:10.1104/pp.20.00002.
doi: 10.1104/pp.20.00002 URL |
[40] |
Li Y, Liu H, Yao X, Wang J, Feng S, Sun L, Ma S, Xu K, Chen L Q, Sui X. 2021. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. Plant Physiology, 186:640-654.
doi: 10.1093/plphys/kiab046 pmid: 33604597 |
[41] |
Liao L, Zhang W, Zhang B, Fang T, Wang X F, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng C H, Ma B, Zheng B, You C X, Hu D G, Espley R, Lin-Wang K, Yao J L, Allan A C, Khan A, Korban S S, Fei Z, Ming R, Hao Y J, Li L, Han Y. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant,doi:https://doi.org/10.1016/j.molp.2021.05.018.
doi: https://doi.org/10.1016/j.molp.2021.05.018 URL |
[42] |
Lin I W, Sosso D, Chen L, Gase K, Kim S, Kessler D, Klinkenberg P M, Gorder M K, Hou B, Qu X, Carter C J, Baldwin I T, Frommer W B. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 508:546-549.
doi: 10.1038/nature13082 URL |
[43] | Lu Jing, Ma Qijun, Kang Hui, Li Wenhao, Liu Yajing, Hao Yujin, You Chunxiang. 2019. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance. Acta Horticulturae Sinica, 46 (3):433-443. (in Chinese) |
路静, 马齐军, 康慧, 李文浩, 刘亚静, 郝玉金, 由春香. 2019. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性. 园艺学报, 46 (3):433-443. | |
[44] |
Lu R, Guyer D E, Beaudry R M. 2000. Determination of firmness and sugar content of apples using near-infrared diffuse reflectance. Journal of Texture Studies, 31:615-630.
doi: 10.1111/j.1745-4603.2000.tb01024.x URL |
[45] |
Ma Q, Sun M, Lu J, Liu Y, Hu D, Hao Y. 2017. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes. Plant Physiology, 174:2348-2362.
doi: 10.1104/pp.17.00502 URL |
[46] |
Ma Q, Sun M, Kang H, Lu J, You C, Hao Y. 2019a. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance. Plant Cell and Environment, 42:918-930.
doi: 10.1111/pce.13349 URL |
[47] |
Ma Q, Sun M, Lu J, Kang H, You C, Hao Y. 2019b. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnology Journal, 17:625-637.
doi: 10.1111/pbi.13003 URL |
[48] | Ma Xin-li, Qin Yuan, Wei Xiao-yu, Ma Feng-wang, Li Ming-jun. 2014. Sequence and expression analysis of apple tonoplast monosaccharide transporter TMT genes and their relationship with sugar accumulation in fruit. Acta Horticulturae Sinica, 41 (7):1317-1325. (in Chinese) |
马新立, 秦源, 魏晓钰, 马锋旺, 李明军. 2014. 苹果糖转运蛋白TMT基因的表达及其与糖积累的关系. 园艺学报, 41 (7):1317-1325. | |
[49] |
McCurdy D W, Dibley S, Cahyanegara R, Martin A, Patrick J W. 2010. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. Molecular Plant, 3:1049-1063.
doi: 10.1093/mp/ssq050 pmid: 20833733 |
[50] |
Neuhaus H E. 2007. Transport of primary metabolites across the plant vacuolar membrane. FEBS Letters, 581:2223-2226.
doi: 10.1016/j.febslet.2007.02.003 pmid: 17307167 |
[51] |
Peng Q, Wang L, Ogutu C, Liu J, Liu L, Mollah M D A, Han Y. 2020a. Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. International Journal of Molecular Science, 21:1112.
doi: 10.3390/ijms21031112 URL |
[52] |
Peng Q, Cai Y, Lai E, Ogutu C, Cherono S, Han Y. 2020b. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology, 20:191.
doi: 10.1186/s12870-020-02406-3 URL |
[53] |
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens P A W, Krueger S, Wic S, Neuhaus H E, Büttner M. 2011. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiology, 157:1664-1676.
doi: 10.1104/pp.111.186825 pmid: 21984725 |
[54] |
Prudent M, Lecomte A, Bouchet J P, Bertin N, Causse M, Genard M. 2011. Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. Journal of Experimental Botany, 62:907-919.
doi: 10.1093/jxb/erq318 pmid: 21036926 |
[55] |
Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier M H. 2012. The major facilitator superfamily(MFS)revisited. FEBS Journal, 279:2022-2035.
doi: 10.1111/j.1742-4658.2012.08588.x URL |
[56] |
Ren Y, Guo S, Zhang J, He H, Sun H, Tian S, Gong G, Zhang H, Levi A, Tadmor Y, Xu Y. 2018. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology, 176:836-850.
doi: 10.1104/pp.17.01290 pmid: 29118248 |
[57] |
Ren Y, Sun H, Zong M, Guo S, Ren Z, Zhao J, Li M, Zhang J, Tian S, Wang J, Xu Y. 2020. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. New Phytologist,doi:10.1111/nph.16659.
doi: 10.1111/nph.16659 URL |
[58] |
Riesmeier J W, Willmitzer L, Frommer W B. 1992. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO Journal, 11:4705-4713.
doi: 10.1002/j.1460-2075.1992.tb05575.x pmid: 1464305 |
[59] |
Rodrigues C M, Müdsam C, Keller I, Zierer W, Czarnecki O, Corral J M, Reinhardt F, Nieberl P, Fiedler-Wiechers K, Sommer F, Schroda M, Mühlhaus T, Harms K, Flügge U-I, Sonnewald U, Koch W, Ludewig F, Neuhaus H E, Pommerreniga B. 2020. Vernalization alters sink and source identities and reverses phloem translocation from taproots to shoots in sugar beet. The Plant Cell, 32:3206-3223.
doi: 10.1105/tpc.20.00072 pmid: 32769131 |
[60] |
Ruan Y L. 2014. Sucrose metabolism:Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 65,33-67.
doi: 10.1146/annurev-arplant-050213-040251 URL |
[61] |
Sauer N. 2007. Molecular physiology of higher plant sucrose transporters. FEBS Letters, 581:2309-2317.
doi: 10.1016/j.febslet.2007.03.048 pmid: 17434165 |
[62] |
Srivastava A C, Ganesan S, Ismail I O, Ayre B G. 2008. Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiology, 148:200-211.
doi: 10.1104/pp.108.124776 pmid: 18650401 |
[63] |
Sun L, Sui X, Lucas W J, Li Y, Feng S, Ma S, Fan J, Gao L, Zhang Z. 2019. Down-regulation of the sucrose transporter CsSUT 1 causes male sterility by altering carbohydrate supply. Plant Physiology, 180 (2):986-997.
doi: 10.1104/pp.19.00317 URL |
[64] |
Umer M J, Safdar L B, Gebremeskel H, Zhao S, Yuan P, Zhu H, Kaseb M O, Anees M, Lu X, He N, Gong C, Liu W. 2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Horticulture Research, 7 (1):193.
doi: 10.1038/s41438-020-00416-8 pmid: 33328462 |
[65] |
Vignault C, Vachaud M, Cakir B, Glissant D, Dédaldéchamp F, Büttner M, Atanassova R, Fleurat-Lessard P, Lemoine R, Delrot S. 2005. VvHT 1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. Journal of Experimental Botany, 56:1409-1418.
pmid: 15809282 |
[66] |
Wan H, Wu L, Yang Y, Zhou G, Ruan Y L. 2018. Evolution of sucrose metabolism:the dichotomy of invertases and beyond. Trends in Plant Science, 23:163-177.
doi: 10.1016/j.tplants.2017.11.001 URL |
[67] |
Wang D, Zhao J T, Qin Y Q, Qin Y H, Hu G B. 2021. Molecular cloning,characterization and expression profile of the sucrose synthase gene family in Litchi chinensis. Horticultural Plant Journal, 7 (6):520-528.
doi: 10.1016/j.hpj.2021.04.004 URL |
[68] |
Wang L, Ruan Y L. 2012. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiology, 160:777-787.
doi: 10.1104/pp.112.203893 pmid: 22864582 |
[69] |
Wang L, Qi X, Yang Y, Zhang S. 2016. Molecular characterization and expression pattern of sorbitol transporter gene PbSOT2 in pear(Pyrus bretschneideri Rehd.)fruit. Canadian Journal of Plant Science, 96:128-137.
doi: 10.1139/cjps-2015-0118 URL |
[70] |
Wang Z, Wei X, Yang J, Li H, Ma B, Zhang K, Zhang Y, Cheng L, Ma F, Li M. 2020. Heterologous expression of the apple hexose transporter MdHT 2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit. Plant Biotechnology Journal, 18:540-552.
doi: 10.1111/pbi.13222 URL |
[71] |
Watari J, Kobae Y, Yamaki S, Yamada K, Toyofuku K, Tabuchi T, Shiratake K. 2004. Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant and Cell Physiology, 45:1032-1041.
doi: 10.1093/pcp/pch121 pmid: 15356329 |
[72] | Wei X, Liu F, Chen C, Ma F, Li M. 2014. The Malus domestica sugar transporter gene family:identifications based on genome and expression profiling related to the accumulation of fruit sugars. Frontiers in Plant Science, 5:569. |
[73] |
Wingenter K, Schulz A, Wormit A, Wic S, Trantmann O, Hoermiller I, Heyer A, Marten I, Hedrich R, Neuhaus H E. 2010. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning,sugar signalling and seed yield in Arabidopsis. Plant Physiology, 154:665-677.
doi: 10.1104/pp.110.162040 pmid: 20709831 |
[74] | Wingenter K, Trentmann O, Winschuh I, Hoermiller I, Heyer A, Reinders J, Schulz A, Geiger D, Hedrich R, Neuhaus H E. 2011. A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. The Plant Journal,68:890-900. |
[75] |
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus H E. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. The Plant Cell, 18:3476-3490.
doi: 10.1105/tpc.106.047290 URL |
[76] |
Wu Y, Lee S K, Yoo Y, Wei J, Kwon S Y, Lee S W, Jeon J S, An G. 2018. Rice transcription factor OsDOF 11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes. Molecular Plant, 11 (6):833-845.
doi: 10.1016/j.molp.2018.04.002 URL |
[77] | Xu Hai-feng, Liu Jing-xuan, Wang Yi-cheng, Zuo Wei-fang, Qu Chang-zhi, Wang De-yun, Zhang Jing, Jiang Sheng-hui, Wang Nan, Chen Xue-sen. 2016. Isolation and expression analysis of a vacuolar glucose transporter gene MdVGT1 in apple. Scientia Agricultura Sinica, 49 (23):4584-4592. (in Chinese) |
许海峰, 刘静轩, 王意程, 左卫芳, 曲常志, 王得云, 张静, 姜生辉, 王楠, 陈学森. 2016. 苹果液泡膜葡萄糖转运蛋白基因MdVGT1的克隆与表达分析. 中国农业科学, 49 (23):4584-4592. | |
[78] | Xu Haifeng, Qu Changzhi, Liu Jingxuan, Wang Yicheng, Wang Deyun, Zuo Weifang, Jiang Shenghui, Wang Nan, Zhang Zongying, Chen Xuesen. 2017. Expression analysis and functional identification of a vacuolar sucrose transporter gene MdSUT4 in apple. Acta Horticulturae Sinica, 44 (7):1235-1243. (in Chinese) |
许海峰, 曲常志, 刘静轩, 王意程, 王得云, 左卫芳, 姜生辉, 王楠, 张宗营, 陈学森. 2017. 苹果液泡膜蔗糖转运蛋白基因MdSUT4的表达分析与功能鉴定. 园艺学报, 44 (7):1235-1243. | |
[79] |
Xu H, Zou Q, Yang G, Jiang S, Fang H, Wang Y, Zhang J, Zhang Z, Wang N, Chen X. 2020. MdMYB 6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Horticulture Research, 7 (1):72.
doi: 10.1038/s41438-020-0294-4 URL |
[80] |
Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. Journal of Biological Chemistry, 285:1138-1146.
doi: 10.1074/jbc.M109.054288 pmid: 19901034 |
[81] |
Yan N. 2013. Structural advances for the major facilitator superfamily(MFS)transporters. Trends in Biochemical Sciences, 38:151-159.
doi: 10.1016/j.tibs.2013.01.003 URL |
[82] |
Yu Cai-yun, Gu Chao, Zhang Shao-ling. 2018. Analysis of tissue specific expression of SOT gene family in white pear. Botanical Research, 7 (5):496-506. (in Chinese)
doi: 10.12677/BR.2018.75060 URL |
余彩云, 谷超, 张绍铃. 2018. 白梨SOT基因家族成员组织表达特性的分析. 植物学研究, 7 (5):496-506. | |
[83] | Yu Jianqiang, Gu Kaidi, Wang Chuanzeng, Hu Dagang. 2022. Functional characterization of an apple pyrophosphate-dependent phosphofructokinase gene MdPFPβ in regulating soluble sugar accumulation. Acta Horticulturae Sinica, 49 (10):2223-2235. (in Chinese) |
于建强, 顾凯迪, 王传增, 胡大刚. 2022. 苹果磷酸果糖激酶基因MdPFPβ调控果实可溶性糖积累的功能. 园艺学报, 49 (10):2223-2235. | |
[84] |
Zeng L, Wang Z, Vainstein A, Chen S, Ma H. 2011. Cloning,localization,and expression analysis of a new tonoplast monosaccharide transporter from Vitis vinifera L. Journal of Plant Growth Regulation, 30:199-212.
doi: 10.1007/s00344-010-9185-5 URL |
[85] |
Zhang H, Wu J, Tao S, Wu T, Qi K, Zhang S, Wang J, Huang W, Wu J, Zhang S. 2014. Evidence for apoplasmic phloem unloading in pear fruit. Plant Molecular Biology Reporter, 32:931-939.
doi: 10.1007/s11105-013-0696-7 URL |
[86] |
Zhang L, Peng Y, Pelleschi-Travier S, Fan Y, Lu Y, Lu Y, Gao X, Shen Y, Delrot S, Zhang D. 2004. Evidence for apoplasmic phloem unloading in developing apple fruit. Plant Physiology, 135:574-586.
doi: 10.1104/pp.103.036632 URL |
[87] |
Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A, Han Y. 2018. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Horticulture Research, 5 (1):14.
doi: 10.1038/s41438-018-0024-3 URL |
[88] |
Zheng Q M, Tang Z, Xu Q, Deng X X. 2014. Isolation,phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange(Citrus sinensis). Plant Cell Tissue and Organ Culture, 119:609-624.
doi: 10.1007/s11240-014-0560-y URL |
[89] | Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan Y L, Li M. 2021. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proceedings of the National Academy of Sciences of USA, 118 (1):e2022788118. |
[1] | YANG Zhi, ZHANG Chuanjiang, YANG Xinfang, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. Analysis of Fruit Genetic Tendency and Mixed Inheritance in Hybrid Progeny of Jujube and Wild Jujube [J]. Acta Horticulturae Sinica, 2023, 50(1): 36-52. |
[2] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[3] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
[4] | WANG Yingying, LIU Lichang, LIU Zhiwu, YANG Xingwang, LIU Wanchun, and WANG Xiaodi, . A New Little Nectarine Cultivar‘Zhongnong Zhenzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 25-26. |
[5] | SONG Fang, CHEN Qi, YUAN Yanliang, CHEN Sha, YIN Haijun, and JIANG Yingchun, . A New Yellow-fleshed Kiwifruit Cultivar‘Xianwo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 47-48. |
[6] | QI Yongjie, GAO Zhenghui, MA Na, WANG Qingming, KE Fanjun, CHEN Qian, and XU Yiliu, . A New Yellow Flesh and Resistant to Canker Disease Kiwifruit Cultivar ‘Wannong Jinguo’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 49-50. |
[7] | ZHANG Huiqin, LOU Guorong, LU Linghong, GU Xianbin, SONG Genhua, and XIE Ming. A New Yellow-fleshed Kiwifruit Cultivar‘Jinyi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 51-52. |
[8] | Patiguli Maimaitituerxun, Gulinisha Kasimu, LUO Qinghong, LIU Liyan, LIU Qiaoling, and Reyihan Awutitashi. A New Cultivar of Elaeagnus moorcroftii‘Yafeng’in Xinjiang [J]. Acta Horticulturae Sinica, 2022, 49(S2): 69-70. |
[9] | ZHAO Xia, LI Gang, LIU Lifeng, SONG Yanhong, and ZHOU Houcheng. A New Strawberry Cultivar‘Huashuo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 81-82. |
[10] | LI Zhengli, ZHANG Li, and MA Licang. A New Capsicum frutescens Cultivar‘Huangla Chaotian’with Yellow Fruit [J]. Acta Horticulturae Sinica, 2022, 49(S2): 123-124. |
[11] | GAO Zhihong, NI Zhaojun, SHI Ting, HAN Jian, and ZHANG Zhen. A Novel Cultivar of Prunus mume‘Nannong Fengyu’for Ornamental Value and Fruit Production [J]. Acta Horticulturae Sinica, 2022, 49(S2): 259-260. |
[12] | LU Lu, LI Wenqing, WU Dan, WANG Zhen, LIU Li, WANG Lei, XIE Xiaoman, and ZHAO Yongjun, . A New Xanthoceras sorbifolium Cultivar‘Xiaozhenzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 275-276. |
[13] | QIN Gaihua, LIU Chunyan, LI Jiyu, and XU Yiliu, . A New Pomegranate Cultivar‘Suzi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 39-40. |
[14] | WANG Yan, LIU Zhenshan, ZHANG Jing, YANG Pengfei, MA Lan, WANG Zhiyi, TU Hongxia, YANG Shaofeng, WANG Hao, CHEN Tao, WANG Xiaorong. Inheritance Trend of Flower and Fruit Traits in F1 Progenies of Chinese Cherry [J]. Acta Horticulturae Sinica, 2022, 49(9): 1853-1865. |
[15] | MENG Xiaoyu, MU Yue, HU Yang, WU Xiao, ZHU Chen, WANG Huimin, TAO Shutian, ZHANG Shaoling, YIN Hao. Determination of Fruit Surface Area of Several Fruit by 3D Laser Scanning Technology [J]. Acta Horticulturae Sinica, 2022, 49(9): 1998-2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd