Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (11): 2367-2376.doi: 10.16420/j.issn.0513-353x.2021-1253
• Research Papars • Previous Articles Next Articles
JI Fengjiao1, MA Yan1, QI Shuai1, GUO Xianfeng1,*(), CHEN Junqiang2,*()
Received:
2022-03-08
Revised:
2022-09-13
Online:
2022-11-25
Published:
2022-11-25
Contact:
GUO Xianfeng,CHEN Junqiang
E-mail:guoxf@sdau.edu.cn;chenjq2000@126.com
CLC Number:
JI Fengjiao, MA Yan, QI Shuai, GUO Xianfeng, CHEN Junqiang. Cloning and Functional Analysis of Peony PlSVP Gene in Regulating Flowering[J]. Acta Horticulturae Sinica, 2022, 49(11): 2367-2376.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-1253
用途 Purpose | 引物 Primer | 核酸序列(5′-3′) Nucleotide sequence |
---|---|---|
基因克隆 | PlSVP-F | ATGGCGAGAGAGAAGATTCAGAT |
Gene cloning | PlSVP-R | TCAACCCGAATATGGCAGTC |
载体构建Vector | pBI121-PlSVP-F | CGCGGATCCGCGATGGCGAGAGAGAAGATTCAGAT |
construction | pBI121-PlSVP-R | CCGGAATTCCGGTCAACCCGAATATGGCAGTC |
35S | GACGCACAATCCCACTATCC | |
内参Internal | PlActin-F | ACTGCTGAACGGGAAATT |
reference | PlActin-R | ATGGCTGGAACAGGACTT |
qRT-PCR | qPlSVP-F | AGAACTGGCGGCTGAGACAA |
qPlSVP-R | TCCTTCCTCGCAAACCATG | |
内参Internal | Atactin-F | TCTCTATGCCAGTGGTCGTA |
reference | Atactin-R | CCTCAGGACAACGGAATC |
qRT-PCR | AtFT-F | TGGAACAACCTTTGGCAATG |
AtFT-R | GTCTTCTTCCTCCGCAGC | |
AtAP1-F | CAGATCAAGGAGAGGGAA | |
AtAP1-R | TTGATACAGACCACCCAT | |
AtSOC1-F | CTCCAATATGCAAGATACCA | |
AtSOC1-R | TATGCCTTCTCCCAAGAGTT | |
AtLFY-F | CCCAAGAAGGGTTATCTGA | |
AtLFY-R | AAACGGATGCTCCCTCTG |
Table 1 List of primers
用途 Purpose | 引物 Primer | 核酸序列(5′-3′) Nucleotide sequence |
---|---|---|
基因克隆 | PlSVP-F | ATGGCGAGAGAGAAGATTCAGAT |
Gene cloning | PlSVP-R | TCAACCCGAATATGGCAGTC |
载体构建Vector | pBI121-PlSVP-F | CGCGGATCCGCGATGGCGAGAGAGAAGATTCAGAT |
construction | pBI121-PlSVP-R | CCGGAATTCCGGTCAACCCGAATATGGCAGTC |
35S | GACGCACAATCCCACTATCC | |
内参Internal | PlActin-F | ACTGCTGAACGGGAAATT |
reference | PlActin-R | ATGGCTGGAACAGGACTT |
qRT-PCR | qPlSVP-F | AGAACTGGCGGCTGAGACAA |
qPlSVP-R | TCCTTCCTCGCAAACCATG | |
内参Internal | Atactin-F | TCTCTATGCCAGTGGTCGTA |
reference | Atactin-R | CCTCAGGACAACGGAATC |
qRT-PCR | AtFT-F | TGGAACAACCTTTGGCAATG |
AtFT-R | GTCTTCTTCCTCCGCAGC | |
AtAP1-F | CAGATCAAGGAGAGGGAA | |
AtAP1-R | TTGATACAGACCACCCAT | |
AtSOC1-F | CTCCAATATGCAAGATACCA | |
AtSOC1-R | TATGCCTTCTCCCAAGAGTT | |
AtLFY-F | CCCAAGAAGGGTTATCTGA | |
AtLFY-R | AAACGGATGCTCCCTCTG |
Fig. 1 Phylogenetic tree based on the amino acid alignment of PlSVP and SVP proteins from other plant species The scale indicates the reference length of the difference values between sequences. The number at each branch of the phylogenetic tree indicates the confidence level of the branch.
Fig. 2 Relative expression of PlSVP gene in different tissues of Paeonia lactiflora‘Da Fugui’ Different letters on bars indicate significant difference(P < 0.05).
Fig. 3 Bolting and flowering time of Arabidopsis thaliana svp-41:Arabidopsis svp-41 mutants;a:Transgenic wild type Arabidopsis plants;b:Transgenic Arabidopsis svp-41 mutants;Different letters on bars indicate significant difference(P < 0.05).
Fig. 4 Expression of PlSVP gene in transgenic Arabidopsis a1-a4:Expression of PlSVP gene in different transgenic lines of wild type Arabidopsis plants;b1-b4:Expression of PlSVP gene in different transgenic lines of Arabidopsis svp-41 mutants;** represents significant difference between transgenic lines and the control(P < 0.01).
Fig. 5 Expression of SVP downstream genes in transgenic Arabidopsis A:Expression of AtSVP downstream gene in PlSVP-transformed wild type Arabidopsis plants;B:Expression of AtSVP downstream gene in PlSVP- transformed Arabidopsis svp-41 mutants;** represents significant difference between transgenic lines and the control(P < 0.01).
Fig. 6 Schematic diagram of spatial expression of PlSVP gene in Paeonia lactiflora and the function of negatively regulating flowering time in Arabidopsis
[1] |
Baumann E, Lewald J, Saedler H. 1998. Successful PCR-based reverse genetic screens using an En-1-mutagenised Arabidopsis thaliana population generated via single-seed descent. Theoretical and Applied Genetics, 97 (5-6):729-734.
doi: 10.1007/s001220050949 URL |
[2] |
Blümel M, Dally N,Jung,C. 2015. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32 (1):121-129.
doi: 10.1016/j.copbio.2014.11.023 URL |
[3] |
Clough S J, Bent A F. 1998. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16 (6):735-743.
doi: 10.1046/j.1365-313x.1998.00343.x URL |
[4] | Gao Y, Fan M, Yuan L, Wu Z, Zhang Q. 2017. Overexpression of Chrysanthemum morifolium SVP gene delays blossoming and regulates inflorescence architecture in transgenic Arabidopsis. Canadian Journal of Plant Science, 97 (6):1130-1139. |
[5] | Guo X F, Hu X R, Ma Y, Guo J, Zang D K. 2017. Identification of differentially expressed genes during bud dormancy release in Paeonia lactiflora ‘Da Fugui’. Acta Horticulturae, 1171:163-174. |
[6] |
Hartmann U, Hhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. 2000. Molecular cloning of SVP:a negative regulator of the floral transition in Arabidopsis. The Plant Journal, 21 (4):351-360.
doi: 10.1046/j.1365-313x.2000.00682.x URL |
[7] |
Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science, 309 (5741):1694-1696.
pmid: 16099949 |
[8] |
Jang S, Torti S, Coupland G. 2009. Genetic and spatial interactions between FT,TSF and SVP during the early stages of floral induction in Arabidopsis. The Plant Journal, 60 (4):614-625.
doi: 10.1111/j.1365-313X.2009.03986.x URL |
[9] |
Jaudal M, Monash J, Zhang L L, Wen J Q, Mysore K S, Macknight R, Putterill J. 2014. Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. Journal of Experimental Botany, 65 (2):429-442.
doi: 10.1093/jxb/ert384 URL |
[10] |
Lee J H, Park S H, Lee J S, Ahn J H. 2007. A conserved role of SHORT VEGETATIVE PHASE(SVP)in controlling flowering time of Brassica plants. Biochimica et Biophysica Acta Gene Structure and Expression, 1769 (7-8):455-461.
doi: 10.1016/j.bbaexp.2007.05.001 URL |
[11] | Li Chao-chuang, Ma Guan-Peng, Yang Xiu-qin, Wang Zhi- min, Song Ming, Tang Qing-lin. 2016. Expression analysis of flowering suppressor SVP and its interaction with FLC in Brassica juncea. Acta Horticulturae Sinica, 43 (8):1513-1524. (in Chinese) |
李朝闯, 马关鹏, 杨修勤, 王志敏, 宋明, 汤青林. 2016. 芥菜开花抑制因子SVP表达分析及其与FLC互作的调节位点鉴定. 园艺学报, 43 (8):1513-1524. | |
[12] |
Li X F, Wu W T, Zhang X P, Qiu Y, Zhang W, Li R, Xu L. 2015. Narcissus tazetta SVP-like gene NSVP1 affects flower development in Arabidopsis. Journal of Plant Physiology, 173:89-96.
doi: 10.1016/j.jplph.2014.08.017 URL |
[13] |
Li Y S, Zhou Y Z, Yang W, Cheng T R, Wang J, Zhang Q X. 2017. Isolation and functional characterization of SVP-like genes in Prunus mume. Scientia Horticulturae, 215:91-101.
doi: 10.1016/j.scienta.2016.12.013 URL |
[14] | Liu Shi-nan, Lin Xin-chun. 2014. Research progress of plant SVP gene. Biotechnology Bulletin,(6):9-13. (in Chinese) |
刘世男, 林新春. 2014. 植物SVP基因的研究进展. 生物技术通报,(6):9-13. | |
[15] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[16] | Ma G P, Liu Z Y, Yang P L, Xu J Q, Song M, Tang Q L. 2015. The K domain mediates homologous and heterologous interactions between FLC and SVP proteins of Brassica juncea. Horticultural Plant Journal, 1 (1):17-28. |
[17] |
Marín-González E, Matías-Hernández L, Aguilar-Jaramillo A E. 2015. SHORT VEGETATIVE PHASE up-regulates TEMPRANILLO 2 floral repressor at low ambient temperatures. Plant Physiology, 169 (2):1214.
doi: 10.1104/pp.15.00570 pmid: 26243615 |
[18] |
Mo X, Luo C, Yu H, Chen J, Liu Y, Xie X, He X. 2021. Isolation and functional characterization of two SHORT VEGETATIVE PHASE homologous genes from mango. International Journal of Molecular Sciences, 22 (18):9802.
doi: 10.3390/ijms22189802 URL |
[19] | Qin Kui-jie, Li Jia-jue. 2000. Herbaceous peony. Shanghai: Shanghai Science and Technology Press. (in Chinese) |
秦魁杰, 李嘉珏. 2000. 芍药. 上海: 上海科学技术出版社. | |
[20] |
Tang X, Liang M, Han J, Cheng J S, Zhang H S, Liu X H. 2020. Ectopic expression of LoSVP,a MADS-domain transcription factor from lily,leads to delayed flowering in transgenic Arabidopsis. Plant Cell Reports, 39 (2):289-298.
doi: 10.1007/s00299-019-02491-1 URL |
[21] |
Wang S, Xue J, Ahmadi N, Holloway P, Zhu F, Ren X, Zhang X. 2014. Molecular characterization and expression patterns of PsSVP genes reveal distinct roles in flower bud abortion and flowering in tree peony(Paeonia suffruticosa). Canadian Journal of Plant Science, 94 (7):1181-1193.
doi: 10.4141/cjps2013-360 URL |
[22] | Wang Shi-xiang, Zuo Xi-ya, Xing Li-bo, Fan Sheng, Zhang Dong, Han Ming-yu, Zhang Lin-seng. 2019. Cloning, expression and promoter activity analysis of apple flower forming inhibitory protein SVP gene. Acta Horticulturae Sinica, 46 (8):1445-1457. (in Chinese) |
王世祥, 左希亚, 邢利博, 樊胜, 张东, 韩明玉, 张林森. 2019. 苹果成花抑制蛋白SVP基因的克隆、表达及启动子活性分析. 园艺学报, 46 (8):1445-1457. | |
[23] |
Wells R S, Adal A M, Bauer L, Najafianashrafi E, Mahmoud S S. 2020. Cloning and functional characterization of a floral repressor gene from Lavandula angustifolia. Planta, 251 (2):1-11.
doi: 10.1007/s00425-019-03297-x URL |
[24] |
Wu R M, Wang T, McGie T, Voogd C, Allan A C, Hellens R P, Varkonyi-Gasic E. 2014. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals,but has no effect on vegetative growth,dormancy,or flowering time. Journal of Experimental Botany, 65 (17):4985-4995.
doi: 10.1093/jxb/eru264 URL |
[25] | Wu R M, Tomes S, Karunairetnam S. 2017. SVP-like MADS-box genes control dormancy and budbreak in apple. Frontiers in Plant Science, 8:477. |
[26] |
Wu R M, Walton E F, Richardson A C, Wood M, Hellens R P, Varkonyi-Gasic E. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany, 63 (2):797-807.
doi: 10.1093/jxb/err304 URL |
[27] |
Xie L, Zhang Y, Wang K, Luo X, Xu D G, Tian X L, Li L L, Ye X G, Xia X C, Li W X, Cao S G. 2021. TaVrt2,an SVP-like gene,cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytologist, 231 (2):834-848.
doi: 10.1111/nph.16339 URL |
[28] |
Xue Y Q, Liu R, Xue J Q, Wang S L, Zhang X X. 2021. Genetic diversity and relatedness analysis of nine wild species of tree peony based on simple sequence repeats markers. Horticultural Plant Journal, 7 (6):579-588.
doi: 10.1016/j.hpj.2021.05.004 URL |
[29] |
Yang L, Wang W, Su X, Yang Y, Zhou Y, He M. 2020. Expression of Lilium pumilum SHORT VEGETATIVE PHASE gene in transgenic Nicotiana tabacum delays flower bud differentiation. European Journal Horticultural Science, 85 (4):242-247.
doi: 10.17660/eJHS.2020/85.4.5 URL |
[30] |
Zhang H, Yan H, Zhang D, Yu D. 2016. Ectopic expression of a soybean SVP-like gene in tobacco causes abnormal floral organs and shortens the vegetative phase. Plant Growth Regulation, 80 (3):345-353.
doi: 10.1007/s10725-016-0173-z URL |
[31] | Zhang Yan, Xu Shen-ping, Liang Fang, Jiang Su-hua, Yuan Xiu-yun, Niu Su-yan, Cui- bo. 2020. Cloning and expression analysis of PhSVP in Phalaenopsis amabilis during flower development. Acta Horticulturae Sinica, 47 (6):1111-1125. (in Chinese) |
张燕, 许申平, 梁芳, 蒋素华, 袁秀云, 牛苏燕, 崔波. 2020. 蝴蝶兰PhSVP的克隆及其在花发育过程中的表达分析. 园艺学报, 47 (6):1111-1125. | |
[32] | Zhu Yin-min, Wang Qian-qian, Dong Bin, Zhang Chao, Zhao Hong-bo. 2019. Effect of OfSVP on flower bud differentiation in response to ambient temperature in Osmanthus fragrans. Acta Horticulturae Sinica, 46 (6):1134-1144. (in Chinese) |
朱益民, 王千千, 董彬, 张超, 赵宏波. 2019. 桂花OfSVP 响应环境低温对花芽分化的影响. 园艺学报, 46 (6):1134-1144. |
[1] | SONG Yanhong, CHEN Yaduo, ZHANG Xiaoyu, SONG Pan, LIU Lifeng, LI Gang, ZHAO Xia, and ZHOU Houcheng, . The Transcription Factor FvbHLH130 Activates Flowering in Fragaria vesca [J]. Acta Horticulturae Sinica, 2023, 50(2): 295-306. |
[2] | REN Hailong, XU Donglin, ZHANG Jing, ZOU Jiwen, LI Guangguang, ZHOU Xianyu, XIAO Wanyu, and SUN Yijia. Establishment of SNP Fingerprinting and Identification of Chinese Flowering Cabbage Varieties Based on KASP Genotyping [J]. Acta Horticulturae Sinica, 2023, 50(2): 307-318. |
[3] | ZHU Wei, CAO Jinjin, CHEN Xi, ZHANG Wei, SUN Rongze, ZHU Shaocai, ZHAO Jiageng, CUI Yaqi, WANG Yuxuan, and YU Xiaonan. New Herbaceous Peony Cultivars‘Fluttering Pink’‘Fairy’s Cheek’ ‘Blushing Smile’and‘Tiny Lotus’ [J]. Acta Horticulturae Sinica, 2023, 50(2): 457-458. |
[4] | JI Linlin, CHEN Suchuan, WU Zhihui, CHANG Jun, HAN Wenyan, and TAO Rupeng. A New Carya cathayensis Cultivar‘Ningguo Shanhetao 2’with Premature Flowering [J]. Acta Horticulturae Sinica, 2022, 49(S2): 53-54. |
[5] | ZHANG Xiaoqin, SUN Hongbing, ZHAO Lekang, ZHU Dajun, XIA Wensheng, and NIE Chaoren. A New Cerasus conradinae Cultivar‘Chujin’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 249-250. |
[6] | FANG Nengyan, FAN Ronghui, LUO Yuanhua, KONG Lan, LIN Rongyan, YE Xiuxian, LIN Bing, ZHONG Huaiqin, HUANG Minling. The Heterologous Expression of Oncidium OnGI Promotes Flowering in Arabidopsis thaliana [J]. Acta Horticulturae Sinica, 2022, 49(4): 841-850. |
[7] | YE Xiangyang, WU Xiaofang, LI Hua, LIN Jinhe, MA Ke, YE Hanjiang, LI Jianguo, YE Zhaoxiong, and WANG Zehuai. A New Late-maturing Litchi Cultivar‘Guishuang’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2817-2818. |
[8] | YANG Zhiwu, DENG Qunxian, WANG Yongqing, DU Kui, PAN Cuiping, ZHANG Hui, ZHANG Huifen, and WANG Yang. A New Spring Flowering Loquat Cultivar‘Chunhua 1’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2819-2820. |
[9] | LI Guihua, FU Mei, LUO Wenlong, LUO Shanwei, and GUO Juxian. A New Chinese Flowering Cabbage Cultivar‘Yuetai 1’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2833-2834. |
[10] | YANG Dong, LIU Yanling, XU Liming, and YANG Mei, . A New Ornamental Cultivar Lotus‘Qiuri Honghua’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2953-2954. |
[11] | GAN Caixia, CUI Lei, PANG Wenxing, WANG Aihua, YU Xiaoqing, DENG Xiaohui, SONG Liping, PIAO Zhongyun. QTL Mapping of Bolting and Flowering Traits Based on High Density Genetic Map of Radish [J]. Acta Horticulturae Sinica, 2021, 48(7): 1273-1281. |
[12] | NIU Xiqaing, LUO Xiaoyun, KANG Kaicheng, HUANG Xianzhong, HU Nengbing, SUI Yihu, AI Hao. Genome-wide Identification,Comparative Evolution and Expression Analysis of PEBP Gene Family from Capsicum annuum [J]. Acta Horticulturae Sinica, 2021, 48(5): 947-959. |
[13] | ZENG Zexiang, XIAO Xianmei, TAN Xiaoli, FAN Zhongqi, CHEN Jianye. Characteristics of the Transcription Factor BrWRKY57 and Its Regulation on BrPPH1 and BrNCED3 [J]. Acta Horticulturae Sinica, 2021, 48(3): 518-530. |
[14] | LI Chonghui, YANG Guangsui, ZHANG Zhiqun, YIN Junmei. A Novel R2R3-MYB Transcription Factor Gene AaMYB6 Involved in Anthocyanin Biosynthesis in Anthurium andraeanum [J]. Acta Horticulturae Sinica, 2021, 48(10): 1859-1872. |
[15] | LI Yuzhuo, LIU Ke, YUAN Lu, CAO Liwen, WANG Tingjin, GAN Susheng, CHEN Liping. Cloning and Functional Analyses of BrNAP in Postharvest Leaf Senescence in Chinese Flowering Cabbage [J]. Acta Horticulturae Sinica, 2021, 48(1): 60-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd