Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (10): 2163-2173.doi: 10.16420/j.issn.0513-353x.2022-0645
• Reviews • Previous Articles Next Articles
ZHANG Shuting, ZHANG Xueying, ZHU Chen, LI Zhuoyun, FU Zhuoran, ZHANG Zihao, LAI Zhongxiong(), LIN Yuling()
Received:
2022-06-22
Revised:
2022-07-27
Online:
2022-10-25
Published:
2022-10-31
Contact:
LAI Zhongxiong,LIN Yuling
E-mail:buliang84@163.com
CLC Number:
ZHANG Shuting, ZHANG Xueying, ZHU Chen, LI Zhuoyun, FU Zhuoran, ZHANG Zihao, LAI Zhongxiong, LIN Yuling. Single Cell Transcriptome Sequencing Technology and Its Application in Plants[J]. Acta Horticulturae Sinica, 2022, 49(10): 2163-2173.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2022-0645
物种 Species | 组织类型 Organization type | 细胞类型 Cell type | 标记基因 Marker gene | 测序方法/平台 Sequencing method/platform | 参考文献 Reference |
---|---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 静止中心及中 柱细胞 Quiescent center & Stele cell | 静止中心及中柱细胞 Quiescent center,stele cell | WOX5,WOL | 荧光标记 Fluorescent mark | Efroni et al., |
根 Root | 中柱、静止中心、小柱、表皮/侧根冠及基本组织等 Stele,quiescent center,columella,epidermis/ lateral root cap,ground tissue,etc | WOX5,TOM7,WIP4 | SMART-seq2 | Efroni et al., | |
根毛、内皮层、木质部及韧皮部等 Roothair,endodermis,xylem,phloem,etc | COBL9,SCR,MYB46,APL,SUC2 | 10x Genomics | Denyer et al., | ||
木质部 Xylem | 小柱、皮层、内皮层、原木质部及韧皮部等 Columella,cortex,endodermis,protoxylem,phloem,etc | VND7 | Drop-seq | Turco et al., | |
气孔 Stoma | 表皮、早期分生组织细胞、保卫细胞及表皮扁平细胞等Epidermis,early-stage meristemoid cell,guard cell,pavement cell,etc | MUTE,EPF2,BASL,RBCS,IQD5 | 10x Genomics | Liu et al., | |
茎尖 Shoot apex | 叶肉、表皮、茎分生细胞、增殖细胞、韧皮部、木质部、保卫及伴侣细胞等 Mesophyll,epidermis,shoot meristematic cell,proliferating cell,phloem,xylem,guard cell,companion cell,etc | CRR23,CDKB2;1,ATML1,STM,PDF1, SMXL5,PXY,EPF1,PP2-A1 | 10x Genomics | Zhang et al., | |
胚乳 Endosperm | 珠孔胚乳、外周胚乳及合点胚乳等 Micropylar endosperm,peripheral endosperm chalazal endosperm,etc | AT2G44240, AT5G10440 | snRNA-seq | Picard et al., | |
愈伤组织 Callus | 表皮、侧根冠、静止中心及维管细胞等 Epidermis-like cell,lateral-root-cap-like cell,quiescent center-like cell,vascular-initial-like cell,etc | PLT1,SCR,WOX5,TMO5,WOX11 | BD Rhapsody system | Zhai & Xu, | |
拟南芥 Arabidopsis thaliana | 叶脉 Vein | 维管束鞘、叶肉、保卫细胞、韧皮薄壁组织、表皮、木质部薄壁组织及伴细胞等 Bundle sheath,mesophyll cell,guard cell,phloem parenchyma,epidermis,xylem parenchyma,companion cell,etc | CDF5,RGA | 10x Genomics | Liu et al., |
水稻 Oryza sativa | 叶片 Leaf | 叶肉、薄壁细胞、表皮、泡状细胞和原基细胞等 Mesophyll,parenchymal cell,epidermis,bulliform cell,primordium cell,etc | LOX2,GLP110,CYP73A2,GST23,ENOD93A | 10x Genomics | Wang et al., |
根 Root | 表皮、皮层、根冠、内皮层、中柱及后生木质部等 Epidermis,cortex,root cap,endodermis,stele,metaxylem,etc | LOC_Os06g38960,LOC_Os03g25280,LOC_Os04g46810,LOC_Os01g73700,LOC_Os08g03450,LOC_Os03g37490,LOC_Os01g73980 | 10x Genomics | Liu et al., | |
玉米 Zea mays | 茎尖 Shoot apex | 分生细胞、表皮、维管及原基细胞等 Meristematic cell,endodermis,vascular,primordial cell,etc | KN1 | 流式单细胞 Single flow cell | Satterlee et al., |
根 Root | 表皮、皮层、中柱、木质部及静止中心等 Endodermis,cortex,stele,xylem,quiescent center,etc | SHR | 10x Genomics | Ortiz-Ramírez et al., | |
穗 Ears | 皮层、细胞周期G2/M期、侧器官、木质部、韧皮部、分生组织表皮、髓、分生组织及维管等 Cortex,cell cycle G2/M phase,lateral organ,xylem,phloem,meristem epidermis,pith,meristem,vasculature,etc | KN1,BD,BA1,RA3,HDZIV8,YAB14,TMO5,CYCB1;2,APL,SHR1 | 10x Genomics | Xu et al., | |
杨树 Populus | 木质部 Xylem | 导管、纤维、射线薄壁细胞及木质部前体细胞等 Vessel cell,fiber cell,ray parenchyma cell,xylem precursor cell,etc | TUB8,LAC5,EXP6,ABR1 | Drop-seq | Li et al., |
花生 Arachis hypogaea | 叶片 Leaf | 栅栏叶肉、海绵状叶肉、表皮、原基、韧皮部、维管束及实质及气孔细胞等 Xpalisade mesophyll cell,spongy mesophyll cell,epidermal cell,primordial cell,phloem cell,vascular cell,parenchymal cell,stomata cell,etc | RBCS,LTP7,LHCB,GSTF,GSTL、SUC2,KCS11,BPC1 | 10x Genomics | Liu et al., |
草莓 Fragaria vesca | 叶片 Leaf | 表皮、叶肉、韧皮部、分生细胞、木质部及维管束鞘细胞等 Epidermal cell,mesophyll cell,phloem cell,meristem cell,xylem cell,bundle sheath cell,etc | LTP1,LTP3,CTL2,RBCS1A,PP2-A10,CDKB2;1,EXL2 | 10x Genomics | Bai et al., |
烟草 Nicotiana glauca | 花冠 Corolla | 表皮、韧皮部/木质部、绿色薄壁组织、薄壁组织及花粉等 Epidermis,phloem/xylem,chlorenchyma,parenchyma,pollen,etc | AtSWEET11/12, AtSULTR2;1 | 10x Genomics | Kang et al., |
龙眼 Dimocarpus longan | 胚性愈伤组织 Embryonic callus | 增殖细胞、分生细胞、维管细胞及表皮细胞等 Proliferating cell,meristematic cell,vascular cell,epidermal cell,etc | CDKB2;1,RGF3,LAC7,LTPG16 | 10x Genomics | 张舒婷, |
Table 1 Application of scRNA-seq technology in plants
物种 Species | 组织类型 Organization type | 细胞类型 Cell type | 标记基因 Marker gene | 测序方法/平台 Sequencing method/platform | 参考文献 Reference |
---|---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 静止中心及中 柱细胞 Quiescent center & Stele cell | 静止中心及中柱细胞 Quiescent center,stele cell | WOX5,WOL | 荧光标记 Fluorescent mark | Efroni et al., |
根 Root | 中柱、静止中心、小柱、表皮/侧根冠及基本组织等 Stele,quiescent center,columella,epidermis/ lateral root cap,ground tissue,etc | WOX5,TOM7,WIP4 | SMART-seq2 | Efroni et al., | |
根毛、内皮层、木质部及韧皮部等 Roothair,endodermis,xylem,phloem,etc | COBL9,SCR,MYB46,APL,SUC2 | 10x Genomics | Denyer et al., | ||
木质部 Xylem | 小柱、皮层、内皮层、原木质部及韧皮部等 Columella,cortex,endodermis,protoxylem,phloem,etc | VND7 | Drop-seq | Turco et al., | |
气孔 Stoma | 表皮、早期分生组织细胞、保卫细胞及表皮扁平细胞等Epidermis,early-stage meristemoid cell,guard cell,pavement cell,etc | MUTE,EPF2,BASL,RBCS,IQD5 | 10x Genomics | Liu et al., | |
茎尖 Shoot apex | 叶肉、表皮、茎分生细胞、增殖细胞、韧皮部、木质部、保卫及伴侣细胞等 Mesophyll,epidermis,shoot meristematic cell,proliferating cell,phloem,xylem,guard cell,companion cell,etc | CRR23,CDKB2;1,ATML1,STM,PDF1, SMXL5,PXY,EPF1,PP2-A1 | 10x Genomics | Zhang et al., | |
胚乳 Endosperm | 珠孔胚乳、外周胚乳及合点胚乳等 Micropylar endosperm,peripheral endosperm chalazal endosperm,etc | AT2G44240, AT5G10440 | snRNA-seq | Picard et al., | |
愈伤组织 Callus | 表皮、侧根冠、静止中心及维管细胞等 Epidermis-like cell,lateral-root-cap-like cell,quiescent center-like cell,vascular-initial-like cell,etc | PLT1,SCR,WOX5,TMO5,WOX11 | BD Rhapsody system | Zhai & Xu, | |
拟南芥 Arabidopsis thaliana | 叶脉 Vein | 维管束鞘、叶肉、保卫细胞、韧皮薄壁组织、表皮、木质部薄壁组织及伴细胞等 Bundle sheath,mesophyll cell,guard cell,phloem parenchyma,epidermis,xylem parenchyma,companion cell,etc | CDF5,RGA | 10x Genomics | Liu et al., |
水稻 Oryza sativa | 叶片 Leaf | 叶肉、薄壁细胞、表皮、泡状细胞和原基细胞等 Mesophyll,parenchymal cell,epidermis,bulliform cell,primordium cell,etc | LOX2,GLP110,CYP73A2,GST23,ENOD93A | 10x Genomics | Wang et al., |
根 Root | 表皮、皮层、根冠、内皮层、中柱及后生木质部等 Epidermis,cortex,root cap,endodermis,stele,metaxylem,etc | LOC_Os06g38960,LOC_Os03g25280,LOC_Os04g46810,LOC_Os01g73700,LOC_Os08g03450,LOC_Os03g37490,LOC_Os01g73980 | 10x Genomics | Liu et al., | |
玉米 Zea mays | 茎尖 Shoot apex | 分生细胞、表皮、维管及原基细胞等 Meristematic cell,endodermis,vascular,primordial cell,etc | KN1 | 流式单细胞 Single flow cell | Satterlee et al., |
根 Root | 表皮、皮层、中柱、木质部及静止中心等 Endodermis,cortex,stele,xylem,quiescent center,etc | SHR | 10x Genomics | Ortiz-Ramírez et al., | |
穗 Ears | 皮层、细胞周期G2/M期、侧器官、木质部、韧皮部、分生组织表皮、髓、分生组织及维管等 Cortex,cell cycle G2/M phase,lateral organ,xylem,phloem,meristem epidermis,pith,meristem,vasculature,etc | KN1,BD,BA1,RA3,HDZIV8,YAB14,TMO5,CYCB1;2,APL,SHR1 | 10x Genomics | Xu et al., | |
杨树 Populus | 木质部 Xylem | 导管、纤维、射线薄壁细胞及木质部前体细胞等 Vessel cell,fiber cell,ray parenchyma cell,xylem precursor cell,etc | TUB8,LAC5,EXP6,ABR1 | Drop-seq | Li et al., |
花生 Arachis hypogaea | 叶片 Leaf | 栅栏叶肉、海绵状叶肉、表皮、原基、韧皮部、维管束及实质及气孔细胞等 Xpalisade mesophyll cell,spongy mesophyll cell,epidermal cell,primordial cell,phloem cell,vascular cell,parenchymal cell,stomata cell,etc | RBCS,LTP7,LHCB,GSTF,GSTL、SUC2,KCS11,BPC1 | 10x Genomics | Liu et al., |
草莓 Fragaria vesca | 叶片 Leaf | 表皮、叶肉、韧皮部、分生细胞、木质部及维管束鞘细胞等 Epidermal cell,mesophyll cell,phloem cell,meristem cell,xylem cell,bundle sheath cell,etc | LTP1,LTP3,CTL2,RBCS1A,PP2-A10,CDKB2;1,EXL2 | 10x Genomics | Bai et al., |
烟草 Nicotiana glauca | 花冠 Corolla | 表皮、韧皮部/木质部、绿色薄壁组织、薄壁组织及花粉等 Epidermis,phloem/xylem,chlorenchyma,parenchyma,pollen,etc | AtSWEET11/12, AtSULTR2;1 | 10x Genomics | Kang et al., |
龙眼 Dimocarpus longan | 胚性愈伤组织 Embryonic callus | 增殖细胞、分生细胞、维管细胞及表皮细胞等 Proliferating cell,meristematic cell,vascular cell,epidermal cell,etc | CDKB2;1,RGF3,LAC7,LTPG16 | 10x Genomics | 张舒婷, |
[1] | Bai Y, Liu H, Lyu H, Su L, Xiong J, Cheng Z M. 2022. Development of a single-cell atlas for woodland strawberry(Fragaria vesca)leaves during early Botrytis cinerea infection using single-cell RNA-seq. Horticulture Research, 9:b55. |
[2] |
Chen R, Wu X, Jiang L, Zhang Y. 2017. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Reports, 18 (13):3227-3241.
doi: S2211-1247(17)30321-2 pmid: 28355573 |
[3] |
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans M C P. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Developmental Cell, 48 (6):840-852.
doi: S1534-5807(19)30145-5 pmid: 30913408 |
[4] |
Efroni I, Ip P, Nawy T, Mello A, Birnbaum K D. 2015. Quantification of cell identity from single-cell gene expression profiles. Genome Biology, 16:9.
doi: 10.1186/s13059-015-0580-x pmid: 25608970 |
[5] |
Efroni I, Mello A, Nawy T, Ip P, Rahni R, DelRose N, Powers A, Satija R, Birnbaum K D. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell, 165 (7):1721-1733.
doi: S0092-8674(16)30491-3 pmid: 27212234 |
[6] |
Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin S H, Yuan G, Chen M, Guo G. 2018. Mapping the mouse cell atlas by microwell-seq. Cell, 173 (5):1307.
doi: S0092-8674(18)30589-0 pmid: 29775597 |
[7] |
Hashimshony T, Wagner F, Sher N, Yanai I. 2012. CEL-Seq:Single-cell RNA-seq by multiplexed linear amplification. Cell Reports, 2 (3):666-673.
doi: 10.1016/j.celrep.2012.08.003 pmid: 22939981 |
[8] | Hernández P P, Strzelecka P M, Athanasiadis E I, Hall D, Robalo A F, Collins C M, Boudinot P, Levraud J, Cvejic A. 2018. Single-cell transcriptional analysis reveals ILC-like cells in zebrafish. Science Immunology, 3 (29):u5265. |
[9] |
Horstman A, Bemer M, Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration, 4 (4):201-216.
doi: 10.1002/reg2.91 pmid: 29299323 |
[10] |
Islam S, Kjallquist U, Moliner A, Zajac P, Fan J B, Lonnerberg P, Linnarsson S. 2011. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Research, 21 (7):1160.
doi: 10.1101/gr.110882.110 pmid: 21543516 |
[11] |
Jaitin D, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 343:776-779.
doi: 10.1126/science.1247651 pmid: 24531970 |
[12] |
Jean-Baptiste K, McFaline-Figueroa J L, Alexandre C M, Dorrity M W, Saunders L, Bubb K L, Trapnell C, Fields S, Queitsch C, Cuperus J T. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. The Plant Cell, 31 (5):993-1011.
doi: 10.1105/tpc.18.00785 pmid: 30923229 |
[13] |
Kang M, Choi Y, Kim H, Kim S. 2022. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. New Phytologist, 234 (2):527-544.
doi: 10.1111/nph.17992 URL |
[14] |
Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno K D, Yamada R G, Ueda H R, Saitou M. 2006. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Research, 34 (5):e42.
doi: 10.1093/nar/gkl050 pmid: 16547197 |
[15] |
Li H, Dai X, Huang X, Xu M, Wang Q, Yan X, Sederoff R, Li Q. 2021. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. Journal of Integrative Plant Biology, 63 (11):1906-1921.
doi: 10.1111/jipb.13159 URL |
[16] |
Liu H, Hu D, Du P, Wang L, Liang X, Li H, Lu Q, Li S, Liu H, Chen X, Varshney R K, Hong Y. 2021. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut(Arachis hypogaea L.). Plant Biotechnology Journal, 19 (11):2261-2276.
doi: 10.1111/pbi.13656 URL |
[17] |
Liu Q, Liang Z, Feng D, Jiang S, Wang Y, Du Z, Li R, Hu G, Zhang P, Ma Y, Lohmann J U, Gu X. 2021. Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant, 14 (3):384-394.
doi: 10.1016/j.molp.2020.12.014 pmid: 33352304 |
[18] |
Liu Z, Wang J, Zhou Y, Zhang Y, Qin A, Yu X, Zhao Z, Wu R, Guo C, Bawa G, Rochaix J, Sun X. 2022. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. The Plant Journal, 110 (1):7-22.
doi: 10.1111/tpj.15719 pmid: 35218590 |
[19] |
Liu Z, Zhou Y, Guo J, Li J, Tian Z, Zhu Z, Wang J, Wu R, Zhang B, Hu Y, Sun Y, Shangguan Y, Li W, Li T, Hu Y, Guo C, Rochaix J, Miao Y, Sun X. 2020. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing. Molecular Plant, 13 (8):1178-1193.
doi: S1674-2052(20)30188-X pmid: 32592820 |
[20] |
Macosko E Z, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas A R, Kamitaki N, Martersteck E M, Trombetta J J, Weitz D A, Sanes J R, Shalek A K, Regev A, McCarroll S A. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161 (5):1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[21] |
Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, Yan Z, Coqueiro D A P, Demesa-Arevalo E, Lee L, van Eck J, Gingeras T R, Jackson D, Gallagher K L, Birnbaum K D. 2021. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science, 374 (6572):1247-1252.
doi: 10.1126/science.abj2327 pmid: 34855479 |
[22] |
Picard C L, Povilus R A, Williams B P, Gehring M. 2021. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nature Plants, 7 (6):730-738.
doi: 10.1038/s41477-021-00922-0 URL |
[23] |
Picelli S, Björklund Å K, Faridani O R, Sagasser S, Winberg G, Sandberg R. 2013. Smart-seq 2 for sensitive full-length transcriptome profiling in single cells. Nature Methods, 10 (11):1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[24] |
Potter S S. 2018. Single-cell RNA sequencing for the study of development,physiology and disease. Nature Reviews Nephrology, 14 (8):479-492.
doi: 10.1038/s41581-018-0021-7 URL |
[25] |
Ramsköld D, Luo S, Wang Y, Li R, Deng Q, Faridani O R, Daniels G A, Khrebtukova I, Loring J F, Laurent L C, Schroth G P, Sandberg R. 2012. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 30 (8):777-782.
pmid: 22820318 |
[26] |
Rosenberg A B, Roco C M, Muscat R A, Kuchina A, Sample P, Yao Z, Graybuck L T, Peeler D J, Mukherjee S, Chen W, Pun S H, Sellers D L, Tasic B, Seelig G. 2018. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science, 360 (6385):176-182.
doi: 10.1126/science.aam8999 pmid: 29545511 |
[27] |
Ryu K H, Huang L, Kang H M, Schiefelbein J. 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiology, 179 (4):1444-1456.
doi: 10.1104/pp.18.01482 pmid: 30718350 |
[28] | Satterlee J W, Strable J, Scanlon M J. 2020. Plant stem-cell organization and differentiation at single-cell resolution. Proceedings of the National Academy of Sciences, 117 (52):33689-33699. |
[29] |
Shaw R, Tian X, Xu J. 2022. Single-cell transcriptome analysis in plants:advances and challenges. Molecular Plant, 14 (1):115-126.
doi: 10.1016/j.molp.2020.10.012 URL |
[30] |
Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov V I, Lao K, Surani M A. 2010. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols, 5 (3):516-535.
doi: 10.1038/nprot.2009.236 pmid: 20203668 |
[31] |
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch B B, Siddiqui A, Lao K, Surani M A. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6 (5):377-382.
doi: 10.1038/nmeth.1315 pmid: 19349980 |
[32] |
Turco G M, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gómez M Á, Vahldick H, Shulse C N, Cole B J, Juliano C E, Dickel D E, Savageau M A, Brady S M. 2019. Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Reports, 28 (2):342-351.
doi: S2211-1247(19)30807-1 pmid: 31291572 |
[33] |
Wagner D E, Weinreb C, Collins Z M, Briggs J A, Megason S G, Klein A M. 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science, 360 (6392):981-987.
doi: 10.1126/science.aar4362 pmid: 29700229 |
[34] |
Wang Y, Huan Q, Chu X, Li K, Qian W. 2020. Single-cell transcriptome analyses recapitulate the cellular and developmental responses to abiotic stresses in rice. bioRxiv,doi: http://dx.doi.org/10.1101/2020.01.30.926329.
doi: http://dx.doi.org/10.1101/2020.01.30.926329 URL |
[35] |
Xu X, Crow M, Rice B R, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char S N, Yang B, Sylvester A W, Gingeras T R, Schmitz R J, Ware D, Lipka A E, Gillis J, Jackson D. 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell, 56 (4):557-568.
doi: 10.1016/j.devcel.2020.12.015 pmid: 33400914 |
[36] |
Zeisel A, Muñoz-Manchado A B, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S. 2015. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347 (6226):1138-1142.
doi: 10.1126/science.aaa1934 pmid: 25700174 |
[37] |
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants, 7 (11):1453-1460.
doi: 10.1038/s41477-021-01015-8 pmid: 34782770 |
[38] | Zhang Shuting. 2022. Functional study of the ERF6-GPAT regulatory network based on single-cell transcriptome during the early somatic embryogenesis of longan[Ph. D. Dissertation]. Fuzhou: Fujian Agriculture and Forestry University. (in Chinese) |
张舒婷. 2022. 基于单细胞转录组的ERF6-GPAT调控网络在龙眼体胚发生早期的功能研究[博士论文]. 福州: 福建农林大学. | |
[39] |
Zhang T, Chen Y, Wang J. 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Developmental Cell, 56 (7):1056-1074.
doi: 10.1016/j.devcel.2021.02.021 URL |
[40] |
Zhang T, Xu Z, Shang G, Wang J. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Molecular Plant, 12 (5):648-660.
doi: 10.1016/j.molp.2019.04.004 URL |
[1] | WANG Hong;and HAO Yan;. Application Progress of Safe Marker Gene pmi for Fruit Tree Transformation [J]. ACTA HORTICULTURAE SINICA, 2011, 38(5): 997-1002. |
[2] | CUI Guang-rong;HOU Xi-lin;ZHANG Zi-xue;ZHANG Cong-yu;HU Neng-bing;and LIU Yue-cheng. Efficient Somatic Embryogenesis from Leaf Explants of Phalaenopsis in vitro Culture and Histological Observations [J]. ACTA HORTICULTURAE SINICA, 2007, 34(2): 431-436. |
[3] | Jiang Hongru;Yu Faxin;Liu Tengyun. Tissue Culture and High Frequency Propagation of Callistemon rigidus R. Br [J]. ACTA HORTICULTURAE SINICA, 2005, 32(3): 541-543. |
[4] | Chen Lijing;Pan Ying;Ma Hui;Liu Shaoxia;Jiang Minglan;and Zhong Wentian. Tissue Culture and High Frequency Propagation of Opuntia milpa altaHaw. [J]. ACTA HORTICULTURAE SINICA, 2001, 28(4): 327-330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd