Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (8): 1795-1804.doi: 10.16420/j.issn.0513-353x.2021-0379
• Research Notes • Previous Articles Next Articles
NIE Xinmiao1, LUAN Heng1, FENG Gaili1, WANG Chao1,2, LI Yan1,2,3, WEI Min1,2,3,*()
Received:
2022-02-21
Revised:
2022-04-06
Online:
2022-08-25
Published:
2022-09-05
Contact:
WEI Min
E-mail:minwei@sdau.edu.cn
CLC Number:
NIE Xinmiao, LUAN Heng, FENG Gaili, WANG Chao, LI Yan, WEI Min. Effects of Silicon Nutrition and Grafting Rootstocks on Chilling Tolerance of Cucumber Seedlings[J]. Acta Horticulturae Sinica, 2022, 49(8): 1795-1804.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0379
硅浓度/(mmol · L-1) Silicon concentration | 冷害指数 Chilling injury index | |||
---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | |
0 | 0.37 ± 0.01 a | 0.63 ± 0.05 b | 0.77 ± 0.03 b | 0.93 ± 0.03 b |
0.5 | 0.33 ± 0.03 c | 0.52 ± 0.05 d | 0.64 ± 0.04 d | 0.80 ± 0.02 d |
1.0 | 0.33 ± 0.02 bc | 0.59 ± 0.06 c | 0.69 ± 0.03 c | 0.86 ± 0.02 c |
1.5 | 0.34 ± 0.02 abc | 0.60 ± 0.05 bc | 0.71 ± 0.03 c | 0.87 ± 0.01 c |
2.0 | 0.37 ± 0.02 ab | 0.68 ± 0.05 a | 0.81 ± 0.03 a | 0.96 ± 0.02 a |
Table 1 Effects of silicon concentrations in nutrient solution on chilling injury index of non-grafted cucumber seedlings under low temperature stress
硅浓度/(mmol · L-1) Silicon concentration | 冷害指数 Chilling injury index | |||
---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | |
0 | 0.37 ± 0.01 a | 0.63 ± 0.05 b | 0.77 ± 0.03 b | 0.93 ± 0.03 b |
0.5 | 0.33 ± 0.03 c | 0.52 ± 0.05 d | 0.64 ± 0.04 d | 0.80 ± 0.02 d |
1.0 | 0.33 ± 0.02 bc | 0.59 ± 0.06 c | 0.69 ± 0.03 c | 0.86 ± 0.02 c |
1.5 | 0.34 ± 0.02 abc | 0.60 ± 0.05 bc | 0.71 ± 0.03 c | 0.87 ± 0.01 c |
2.0 | 0.37 ± 0.02 ab | 0.68 ± 0.05 a | 0.81 ± 0.03 a | 0.96 ± 0.02 a |
硅浓度/(mmol · L-1) Silicon concentration | 株高抑制率/% Inhibition rate of plant height | 茎粗抑制率/% Inhibition rate of stem diameter | ||||||
---|---|---|---|---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | 1 d | 3 d | 5 d | 7 d | |
0 | 3.18 ± 0.09 a | 9.71 ± 0.50 a | 15.05 ± 0.24 a | 19.33 ± 0.19 a | 2.36 ± 0.34 b | 11.13 ± 0.31 a | 19.18 ± 1.41 a | 25.02 ± 0.77 b |
0.5 | 2.48 ± 0.33 c | 7.12 ± 0.18 c | 11.64 ± 0.29 d | 16.23 ± 0.41 e | 1.71 ± 0.05 c | 6.69 ± 0.32 d | 10.27 ± 0.61 d | 18.84 ± 0.59 d |
1.0 | 2.79 ± 0.07 b | 7.70 ± 0.11 b | 11.99 ± 0.35 cd | 17.20 ± 0.30 d | 1.79 ± 0.02 c | 8.30 ± 0.22 c | 14.98 ± 0.78 c | 21.39 ± 0.37 c |
1.5 | 2.80 ± 0.04 b | 7.99 ± 0.07 b | 12.26 ± 0.46 c | 17.59 ± 0.02 c | 1.82 ± 0.03 c | 9.40 ± 0.13 b | 16.90 ± 0.93 b | 21.65 ± 0.40 c |
2.0 | 3.06 ± 0.07 ab | 9.92 ± 0.15 a | 14.00 ± 0.21 b | 18.55 ± 0.41 b | 2.73 ± 0.20 a | 11.25 ± 0.31 a | 19.00 ± 0.70 a | 27.08 ± 0.22 a |
Table 2 Effects of silicon concentrations in nutrient solution on plant height and stem diameter of non-grafted cucumber seedlings under low temperature stress
硅浓度/(mmol · L-1) Silicon concentration | 株高抑制率/% Inhibition rate of plant height | 茎粗抑制率/% Inhibition rate of stem diameter | ||||||
---|---|---|---|---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | 1 d | 3 d | 5 d | 7 d | |
0 | 3.18 ± 0.09 a | 9.71 ± 0.50 a | 15.05 ± 0.24 a | 19.33 ± 0.19 a | 2.36 ± 0.34 b | 11.13 ± 0.31 a | 19.18 ± 1.41 a | 25.02 ± 0.77 b |
0.5 | 2.48 ± 0.33 c | 7.12 ± 0.18 c | 11.64 ± 0.29 d | 16.23 ± 0.41 e | 1.71 ± 0.05 c | 6.69 ± 0.32 d | 10.27 ± 0.61 d | 18.84 ± 0.59 d |
1.0 | 2.79 ± 0.07 b | 7.70 ± 0.11 b | 11.99 ± 0.35 cd | 17.20 ± 0.30 d | 1.79 ± 0.02 c | 8.30 ± 0.22 c | 14.98 ± 0.78 c | 21.39 ± 0.37 c |
1.5 | 2.80 ± 0.04 b | 7.99 ± 0.07 b | 12.26 ± 0.46 c | 17.59 ± 0.02 c | 1.82 ± 0.03 c | 9.40 ± 0.13 b | 16.90 ± 0.93 b | 21.65 ± 0.40 c |
2.0 | 3.06 ± 0.07 ab | 9.92 ± 0.15 a | 14.00 ± 0.21 b | 18.55 ± 0.41 b | 2.73 ± 0.20 a | 11.25 ± 0.31 a | 19.00 ± 0.70 a | 27.08 ± 0.22 a |
硅浓度/(mmol · L-1) Silicon concentration | 干物质抑制率/% Inhibition rate of dry matter | 电解质渗漏率/% Electrolyte leakage rate | ||||||
---|---|---|---|---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | 1 d | 3 d | 5 d | 7 d | |
0 | 10.99 ± 0.84 a | 24.66 ± 1.12 ab | 33.66 ± 1.03 a | 44.05 ± 0.39 ab | 37.34 ± 1.28 a | 47.25 ± 0.87 a | 50.50 ± 0.54 a | 57.36 ± 1.52 ab |
0.5 | 8.94 ± 0.03 c | 21.53 ± 0.57 c | 31.64 ± 0.32 b | 42.64 ± 0.47 b | 34.28 ± 1.79 b | 40.51 ± 0.27 d | 45.32 ± 0.61 c | 51.09 ± 0.60 d |
1.0 | 9.43 ± 0.24 b | 22.62 ± 0.09 bc | 32.84 ± 0.35 ab | 43.58 ± 0.35 ab | 36.01 ± 0.59 ab | 43.03 ± 0.28 c | 47.54 ± 0.45 b | 54.53 ± 1.36 c |
1.5 | 9.56 ± 0.23 b | 22.69 ± 0.50 bc | 33.07 ± 1.23 ab | 43.81 ± 0.63 ab | 36.72 ± 1.38 a | 44.98 ± 1.40 b | 48.36 ± 1.38 b | 55.60 ± 2.05 bc |
2.0 | 10.90 ± 0.49 a | 24.43 ± 1.29 a | 33.64 ± 1.33 a | 44.82 ± 1.02 a | 38.09 ± 0.19 a | 48.64 ± 1.82 a | 50.66 ± 0.60 a | 58.99 ± 1.44 a |
Table 3 Effects of silicon concentrations in nutrient solution on dry matter and leaf electrolyte leakage rate of non-grafted cucumber seedlings under low temperature stress
硅浓度/(mmol · L-1) Silicon concentration | 干物质抑制率/% Inhibition rate of dry matter | 电解质渗漏率/% Electrolyte leakage rate | ||||||
---|---|---|---|---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | 1 d | 3 d | 5 d | 7 d | |
0 | 10.99 ± 0.84 a | 24.66 ± 1.12 ab | 33.66 ± 1.03 a | 44.05 ± 0.39 ab | 37.34 ± 1.28 a | 47.25 ± 0.87 a | 50.50 ± 0.54 a | 57.36 ± 1.52 ab |
0.5 | 8.94 ± 0.03 c | 21.53 ± 0.57 c | 31.64 ± 0.32 b | 42.64 ± 0.47 b | 34.28 ± 1.79 b | 40.51 ± 0.27 d | 45.32 ± 0.61 c | 51.09 ± 0.60 d |
1.0 | 9.43 ± 0.24 b | 22.62 ± 0.09 bc | 32.84 ± 0.35 ab | 43.58 ± 0.35 ab | 36.01 ± 0.59 ab | 43.03 ± 0.28 c | 47.54 ± 0.45 b | 54.53 ± 1.36 c |
1.5 | 9.56 ± 0.23 b | 22.69 ± 0.50 bc | 33.07 ± 1.23 ab | 43.81 ± 0.63 ab | 36.72 ± 1.38 a | 44.98 ± 1.40 b | 48.36 ± 1.38 b | 55.60 ± 2.05 bc |
2.0 | 10.90 ± 0.49 a | 24.43 ± 1.29 a | 33.64 ± 1.33 a | 44.82 ± 1.02 a | 38.09 ± 0.19 a | 48.64 ± 1.82 a | 50.66 ± 0.60 a | 58.99 ± 1.44 a |
处理 Treatment | 冷害指数 Chilling injury index | |||
---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | |
自根苗 Non-grafted seedlings | 0.37 ± 0.01 a | 0.63 ± 0.05 a | 0.77 ± 0.03 a | 0.93 ± 0.03 a |
‘黄诚根2号’嫁接苗‘Huangchenggen 2’grafted seedlings | 0.28 ± 0.03 c | 0.45 ± 0.01 c | 0.59 ± 0.04 c | 0.66 ± 0.02 c |
‘云南黑籽南瓜’嫁接苗‘Yunnan Figleaf Gourd’grafted seedlings | 0.23 ± 0.01 d | 0.38 ± 0.02 d | 0.51 ± 0.05 d | 0.59 ± 0.01 d |
自根苗 + Si Non-grafted seedlings + Si | 0.33 ± 0.03 b | 0.52 ± 0.05 b | 0.64 ± 0.04 b | 0.80 ± 0.02 b |
‘黄诚根2号’嫁接苗 + Si ‘Huangchenggen 2’grafted seedlings + Si | 0.25 ± 0.02 cd | 0.32 ± 0.10 de | 0.51 ± 0.03 d | 0.63 ± 0.02 cd |
‘云南黑籽南瓜’嫁接苗 + Si ‘Yunnan Figleaf Gourd’grafted seedlings + Si | 0.22 ± 0.02 d | 0.31 ± 0.03 e | 0.42 ± 0.05 e | 0.53 ± 0.01 e |
Table 4 Effects of rootstock and silicon nutrition on chilling injury index of cucumber seedlings under low temperature stress
处理 Treatment | 冷害指数 Chilling injury index | |||
---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | |
自根苗 Non-grafted seedlings | 0.37 ± 0.01 a | 0.63 ± 0.05 a | 0.77 ± 0.03 a | 0.93 ± 0.03 a |
‘黄诚根2号’嫁接苗‘Huangchenggen 2’grafted seedlings | 0.28 ± 0.03 c | 0.45 ± 0.01 c | 0.59 ± 0.04 c | 0.66 ± 0.02 c |
‘云南黑籽南瓜’嫁接苗‘Yunnan Figleaf Gourd’grafted seedlings | 0.23 ± 0.01 d | 0.38 ± 0.02 d | 0.51 ± 0.05 d | 0.59 ± 0.01 d |
自根苗 + Si Non-grafted seedlings + Si | 0.33 ± 0.03 b | 0.52 ± 0.05 b | 0.64 ± 0.04 b | 0.80 ± 0.02 b |
‘黄诚根2号’嫁接苗 + Si ‘Huangchenggen 2’grafted seedlings + Si | 0.25 ± 0.02 cd | 0.32 ± 0.10 de | 0.51 ± 0.03 d | 0.63 ± 0.02 cd |
‘云南黑籽南瓜’嫁接苗 + Si ‘Yunnan Figleaf Gourd’grafted seedlings + Si | 0.22 ± 0.02 d | 0.31 ± 0.03 e | 0.42 ± 0.05 e | 0.53 ± 0.01 e |
处理 Treatment | 干物质抑制率Inhibition rate of dry matter | |||
---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | |
自根苗 Non-grafted seedlings | 10.99 ± 0.84 a | 24.66 ± 1.12 a | 33.66 ± 1.03 a | 44.05 ± 0.39 a |
‘黄诚根2号’嫁接苗‘Huangchenggen 2’grafted seedlings | 8.50 ± 0.88 bc | 21.62 ± 0.43 b | 31.48 ± 0.77 b | 41.59 ± 0.78 bc |
‘云南黑籽南瓜’嫁接苗‘Yunnan Figleaf Gourd’grafted seedlings | 8.00 ± 0.37 b | 20.35 ± 0.56 bc | 30.84 ± 1.77 bc | 41.02 ± 1.33 b |
自根苗 + Si Non-grafted seedlings +Si | 8.94 ± 0.03 b | 21.53 ± 0.57 bc | 31.64 ± 0.32 b | 42.64 ± 0.47 ab |
‘黄诚根2号’嫁接苗 + Si‘Huangchenggen 2’grafted seedlings +Si | 7.91 ± 0.21 bc | 20.48 ± 1.11 bc | 30.39 ± 0.83 bc | 40.71 ± 0.89 bc |
‘云南黑籽南瓜’嫁接苗 + Si‘Yunnan Figleaf Gourd’grafted seedlings + Si | 7.24 ± 0.33 c | 19.60 ± 0.65 c | 29.51 ± 0.63 c | 38.72 ± 0.91 c |
处理 Treatment | 电解质渗漏率Electrolyte leakage rate | |||
1 d | 3 d | 5 d | 7 d | |
自根苗 Non-grafted seedlings | 37.34 ± 1.28 a | 47.25 ± 0.87 a | 50.50 ± 0.54 a | 57.36 ± 1.52 ab |
‘黄诚根2号’嫁接苗‘Huangchenggen 2’grafted seedlings | 31.93 ± 0.71 c | 35.34 ± 2.68 c | 41.38 ± 0.81 c | 43.21 ± 0.27 c |
‘云南黑籽南瓜’嫁接苗 ‘Yunnan Figleaf Gourd’grafted seedlings | 28.95 ± 0.80 d | 33.25 ± 2.60 cd | 39.01 ± 1.03 d | 40.56 ± 0.72 d |
自根苗 + Si Non-grafted seedlings + Si | 34.28 ± 1.79 b | 40.51 ± 0.27 b | 45.32 ± 0.61 b | 51.09 ± 0.60 b |
‘黄诚根2号’嫁接苗 + Si‘Huangchenggen 2’grafted seedlings + Si | 27.74 ± 0.89 d | 33.95 ± 0.70 c | 37.66 ± 0.90 d | 39.67 ± 2.50 d |
‘云南黑籽南瓜’嫁接苗 + Si‘Yunnan Figleaf Gourd’grafted seedlings + Si | 25.81 ± 0.19 e | 30.05 ± 0.95 d | 32.95 ± 1.22 e | 34.93 ± 0.30 e |
Table 5 Effects of rootstock and silicon nutrition on dry matter and electrolyte leakage rate of cucumber seedlings under low temperature stress %
处理 Treatment | 干物质抑制率Inhibition rate of dry matter | |||
---|---|---|---|---|
1 d | 3 d | 5 d | 7 d | |
自根苗 Non-grafted seedlings | 10.99 ± 0.84 a | 24.66 ± 1.12 a | 33.66 ± 1.03 a | 44.05 ± 0.39 a |
‘黄诚根2号’嫁接苗‘Huangchenggen 2’grafted seedlings | 8.50 ± 0.88 bc | 21.62 ± 0.43 b | 31.48 ± 0.77 b | 41.59 ± 0.78 bc |
‘云南黑籽南瓜’嫁接苗‘Yunnan Figleaf Gourd’grafted seedlings | 8.00 ± 0.37 b | 20.35 ± 0.56 bc | 30.84 ± 1.77 bc | 41.02 ± 1.33 b |
自根苗 + Si Non-grafted seedlings +Si | 8.94 ± 0.03 b | 21.53 ± 0.57 bc | 31.64 ± 0.32 b | 42.64 ± 0.47 ab |
‘黄诚根2号’嫁接苗 + Si‘Huangchenggen 2’grafted seedlings +Si | 7.91 ± 0.21 bc | 20.48 ± 1.11 bc | 30.39 ± 0.83 bc | 40.71 ± 0.89 bc |
‘云南黑籽南瓜’嫁接苗 + Si‘Yunnan Figleaf Gourd’grafted seedlings + Si | 7.24 ± 0.33 c | 19.60 ± 0.65 c | 29.51 ± 0.63 c | 38.72 ± 0.91 c |
处理 Treatment | 电解质渗漏率Electrolyte leakage rate | |||
1 d | 3 d | 5 d | 7 d | |
自根苗 Non-grafted seedlings | 37.34 ± 1.28 a | 47.25 ± 0.87 a | 50.50 ± 0.54 a | 57.36 ± 1.52 ab |
‘黄诚根2号’嫁接苗‘Huangchenggen 2’grafted seedlings | 31.93 ± 0.71 c | 35.34 ± 2.68 c | 41.38 ± 0.81 c | 43.21 ± 0.27 c |
‘云南黑籽南瓜’嫁接苗 ‘Yunnan Figleaf Gourd’grafted seedlings | 28.95 ± 0.80 d | 33.25 ± 2.60 cd | 39.01 ± 1.03 d | 40.56 ± 0.72 d |
自根苗 + Si Non-grafted seedlings + Si | 34.28 ± 1.79 b | 40.51 ± 0.27 b | 45.32 ± 0.61 b | 51.09 ± 0.60 b |
‘黄诚根2号’嫁接苗 + Si‘Huangchenggen 2’grafted seedlings + Si | 27.74 ± 0.89 d | 33.95 ± 0.70 c | 37.66 ± 0.90 d | 39.67 ± 2.50 d |
‘云南黑籽南瓜’嫁接苗 + Si‘Yunnan Figleaf Gourd’grafted seedlings + Si | 25.81 ± 0.19 e | 30.05 ± 0.95 d | 32.95 ± 1.22 e | 34.93 ± 0.30 e |
Fig. 3 Effects of grafting rootstocks and silicon nutrition on proline content in cucumber seedlings under low temperature stress Different lowercase letters indicate significant difference(P < 0.05). The same below.
[1] |
Cakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves. Plant Physiology, 98 (4):1222-1227.
doi: 10.1104/pp.98.4.1222 pmid: 16668779 |
[2] | Gao Dan, Chen Jining, Cai Kunzheng, Luo Shiming. 2010. Distribution and absorption of silicon in plant and its role in plant disease resistance under environmental stress. Acta Ecologica Sinica, 30 (10):2745-2755. (in Chinese) |
高丹, 陈基宁, 蔡昆争, 骆世明. 2010. 硅在植物体内的分布和吸收及其在病害逆境胁迫中的抗性作用. 生态学报, 30 (10):2745-2755. | |
[3] | Han Min, Cao Bili, Liu Shusen, Xu Kun. 2018. Effects of rootstock and scion interaction on chilling tolerance of grafted tomato seedlings. Acta Horticulturae Sinica, 45 (2):279-288. (in Chinese) |
韩敏, 曹逼力, 刘树森, 徐坤. 2018. 番茄嫁接苗根穗互作对其耐冷性的影响. 园艺学报, 45 (2):279-288. | |
[4] | Han Min, Cao Bili, Liu Shusen, Xu Kun. 2019. Effects of rootstock and scion interactions on ascorbate-glutathione cycle in tomato seedlings under low temperature stress. Acta Horticulturae Sinica, 46 (1):65-73. (in Chinese) |
韩敏, 曹逼力, 刘树森, 徐坤. 2019. 低温胁迫下番茄幼苗根穗互作对其抗坏血酸—谷胱甘肽循环的影响. 园艺学报, 46 (1):65-73.
doi: 10.16420/j.issn.0513-353x.2018-0110 |
|
[5] | Jin Ning, Lü Jian, Yu Jihua, Xie Jianming, Jin Li, Zhang Guobin, Feng Zhi. 2020. Effect of exogenous silicon on seed germination and expression of related genes in cucumber under osmotic stress. Acta Horticulturae Sinica, 47 (1):41-52. (in Chinese) |
金宁, 吕剑, 郁继华, 颉建明, 金莉, 张国斌, 冯致. 2020. 外源硅对PEG 渗透胁迫下黄瓜种子萌发及相关基因表达的影响. 园艺学报, 47 (1):41-52. | |
[6] | Kleiber T. 2018. The role of silicon in plant tolerance to abiotic stress //Hasanuzzaman M,Fujita M,Oku H,Nahar K,Hawrylak-Nowak B eds.eds. Plant Nutrients and Abiotic Stress Tolerance. Singapore:Springer:253-267. |
[7] |
Lee J M. 1994. Cultivation of grafted vegetables I:current status,grafting methods,and benefits. HortScience, 29 (4):235-239.
doi: 10.21273/HORTSCI.29.4.235 URL |
[8] | Lee J M, Bang H J, Ham H S. 1999. Quality of cucumber fruit as affected by rootstock. Acta Horticulturae, 483:117-120. |
[9] |
Lee S H, Ahn S J, Im Y J, Cho K, Chung G C, Cho B H, Han O. 2005. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots. Biochemical and Biophysical Research Communications, 330 (4):1194-1198.
doi: 10.1016/j.bbrc.2005.03.098 URL |
[10] | Li Fu-de, Fu Xin, Bi Huan-gai, Ai Xi-zhen. 2019. Response to low temperature and weak light of different cucumber rootstocks and its relationship with ABA content. China Vegetables,(5):30-37. (in Chinese) |
李福德, 付鑫, 毕焕改, 艾希珍. 2019. 不同黄瓜砧木对低温弱光胁迫的响应及与ABA含量的关系. 中国蔬菜,(5):30-37. | |
[11] | Li He-sheng. 2004. Plant physiology experimental guidance. Beijing: Higher Education Press. (in Chinese) |
李合生. 2004. 植物生理学实验指导. 北京: 高等教育出版社. | |
[12] | Li Hong-li, Wang Ming-lin, Yu Xian-chang, Wang Huaseng, Gao Jun-jie, Yu Chao. 2006. Effect of different scions/rootstocks on quality of cucumber fruits in greenhouse. Scientia Agricultura Sinica, 39 (8):1611-1616. (in Chinese) |
李红丽, 王明林, 于贤昌, 王华森, 高俊杰, 于超. 2006. 不同接穗/砧木组合对日光温室黄瓜果实品质的影响. 中国农业科学, 39 (8):1611-1616. | |
[13] | Li Qing-fang, Ma Cheng-cang. 2002. Effect of available silicon in soil on cucumber seed germination and seedling growth metabolism. Acta Horticulturae Sinica, 29 (5):433-437. (in Chinese) |
李清芳, 马成仓. 2002. 土壤有效硅对黄瓜种子萌发和幼苗生长代谢的影响. 园艺学报, 29 (5):433-437. | |
[14] |
Liang Y, Si J, Römheld V. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist, 167 (3):797-804.
doi: 10.1111/j.1469-8137.2005.01463.x URL |
[15] | Liu Qing. 2011. Effects of different rootstocks on fruit quality and silicon distribution characteristics of grafted cucumber[M. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
刘青. 2011. 不同砧木对嫁接黄瓜果实品质和硅分配特性的影响[硕士论文]. 泰安: 山东农业大学. | |
[16] | Liu Qing, Wei Min, Shen Qiong, Wang Xiu-feng, Yang Feng-juan, Shi Qing-hua. 2012. Effects of different rootstocks on bloom formation and absorption and distribution of silicon in grafted cucumber. Acta Horticulturae Sinica, 39 (5):897-904. (in Chinese) |
刘青, 魏珉, 沈琼, 王秀峰, 杨凤娟, 史庆华. 2012. 不同砧木对嫁接黄瓜蜡粉形成及硅吸收分配的影响. 园艺学报, 39 (5):897-904. | |
[17] | Marschner H. 1995. Mineral nutrition of higher plants. 2nd Edition. London: Academic Press Limited:313-363. |
[18] | Tian Xue-mei. 2011. Effects of different rootstocks on tolerance of grafted cucumber to low temperature,weak light and salt stress[M. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
田雪梅. 2011. 不同砧木对嫁接黄瓜耐低温弱光和耐盐性的影响研究[硕士论文]. 泰安: 山东农业大学. | |
[19] | Wang Hai-hong, Zhu Peng-fei, Shu Liang-zuo, Zhou Xiu-jie. 2011. Effects of silicon on growth of cucumber seedlings under low temperature stress. Ecological Science, 30 (1):38-42. (in Chinese) |
王海红, 祝鹏飞, 束良佐, 周秀杰. 2011. 硅对低温胁迫下黄瓜幼苗生长的影响. 生态科学, 30 (1):38-42. | |
[20] | Wu Yan, Gao Qing-hai. 2010. Physiological responses of savoy to exogenous silicon under chilling stress. Plant Physiology Communications, 46 (9):928-932. (in Chinese) |
吴燕, 高青海. 2010. 低温胁迫下乌塌菜对外源硅的生理响应. 植物生理学通讯, 46 (9):928-932. | |
[21] | Xu Y, Guo S, Li H, Sun H, Sun Z, Lu N, Shu S, Sun J. 2017. Resistance of cucumber grafting rootstock pumpkin cultivars to chilling and salinity stresses. Korean Journal of Horticultural Science & Technology, 35 (2):220-231. |
[22] | Yu Xian-chang, Xing Yu-xian, Ma Hong, Wei Min. 1998. Effect of different rootstocks and scions on chilling tolerance in grafted cucumber seedlings. Scientia Agricultura Sinica, 31 (2):36-40. (in Chinese) |
于贤昌, 邢禹贤, 马红, 魏珉. 1998. 不同砧木与接穗对黄瓜嫁接苗抗冷性的影响. 中国农业科学, 31 (2):36-40. | |
[23] | Zeng Yi-an, Zhu Yue-lin, Huang Bao-jian, Yang Li-fei. 2004. Effects of Cucurbita ficifolia as rootstock on growth,fruit setting,disease resistance and leaf nutrient element contents in Cucumis sativus. Journal of Plant Resources and Environment, 13 (4):15-19. (in Chinese) |
曾义安, 朱月林, 黄保健, 杨立飞. 2004. 黑籽南瓜砧木对黄瓜生长结实、抗病性及营养元素含量的影响. 植物资源与环境学报, 13 (4):15-19. | |
[24] | Zhao Peipei, Yu Lihe, Zhao Changjiang. 2015. Effects of silicon on growth and physiological parameters of spring wheat seedlings under low temperature conditions. Jourmal of Heilongjiang Bayi Agricultural University, 27 (1):15-21,36. (in Chinese) |
赵培培, 于立河, 赵长江. 2015. 低温下硅对春小麦幼苗生长及生理特性的影响. 黑龙江八一农垦大学学报, 27 (1):15-21,36. | |
[25] | Zhao Sheng, Li Zhihong, Shen Qiong, Wang Hui, Zhou Xin, Wei Min. 2018. Effects of silicon nutrition and rootstocks on silicon uptake and distribution and expression of silicon transporter genes in grafted cucumbers. Acta Horticulturae Sinica, 45 (6):1115-1124. (in Chinese) |
赵升, 李治红, 沈琼, 王慧, 周鑫, 魏珉. 2018. 外源硅对不同砧木嫁接黄瓜果面蜡粉和硅吸收及相关基因表达的影响. 园艺学报, 45 (6):1115-1124. | |
[26] | Zhai Jiang, Gao Yuan, Zhang Xiaowei, Han Lujie, Bi Huangai, Li Qingming, Ai Xizhen. 2019. Effects of silicon and calcium on photosynthesis,yield and quality of cucumber in solar-greenhouse. Acta Horticulturae Sinica, 46 (4):701-713. (in Chinese) |
翟江, 高原, 张晓伟, 韩鲁杰, 毕焕改, 李清明, 艾希珍. 硅钙对日光温室黄瓜光合作用及产量和品质的影响. 园艺学报, 46 (4):701-713. | |
[27] |
Zhou Y H, Huang L F, Zhang Y L, Shi K, Yu J Q, Nogués S. 2007. Chilling-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Annals of Botany, 100 (4):839-847.
doi: 10.1093/aob/mcm181 URL |
[28] |
Zhu Z J, Wei G Q, Li J, Qian Q Q, Yu J Q. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber(Cucumis sativus L.). Plant Science, 167 (3):527-530.
doi: 10.1016/j.plantsci.2004.04.020 URL |
[1] | LIN Haijiao, LIANG Yuchen, LI Ling, MA Jun, ZHANG Lu, LAN Zhenying, YUAN Zening. Exploration and Regulation Network Analysis of CBF Pathway Related Cold Tolerance Genes in Lavandula angustifolia [J]. Acta Horticulturae Sinica, 2023, 50(1): 131-144. |
[2] | ZHANG Xiaoming, YAN Guohua, ZHOU Yu, WANG Jing, DUAN Xuwei, WU Chuanbao, and ZHANG Kaichun. A New Sweet Cherry Rootstock Cultivar‘Jingchun 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 31-32. |
[3] | HUANG Shuping, TAN Jie, Chen Xia, ZHANG Hongyuan, LI Ye, WANG Benqi, CHEN Hao, WU Xuexia, and ZHANG Min, . A New Eggplant Cultivar‘Eqie 6’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 101-102. |
[4] | LUO Tiankuan, WU Haitao, ZHANG Shengmei, HUANG Zong’an, SUN Ji, SHUI Deju, and CHEN Xianzhi . A New Cucumber Cultivar‘Oucui 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 125-126. |
[5] | TIAN Hongmei, LIU Juan, ZHANG Changkun, TAO Zhen, ZHANG Jian, and WANG Pengcheng, . A New Pumpkin Cultivar‘Wanzhen 6’for Melon Rootstock [J]. Acta Horticulturae Sinica, 2022, 49(S2): 127-128. |
[6] | WANG Hebing, XIANG Huafeng, CHEN Xinzhong, ZHANG Sheng, and ZHANG Hongcheng. A New Cucumber Hybrid‘Xinyan 095’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 79-80. |
[7] | XU Chunmei, ZHANG Zuobiao, LIU Jinglan, WANG Xin, YANG Long, ZHAO Dan, LIU Siyu, JIA Yunhe, MENG Xuejiao, and CUI Songcen. A New Cucumber Cultivar‘Lüchun 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 81-82. |
[8] | ZHANG Lidong, HUANG Hongyu, KONG Weiliang, LI Jiawang, and LI Yuhe, . A New Cucumber Cultivar of North China Type‘Jinyou 355’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 83-84. |
[9] | WANG Huizhe, YA NG Ruihuan, DENG Qiang, CAO Mingming, and LI Shuju, . A New Cucumber Cultivar‘Jindong 369’Resistant to Scab [J]. Acta Horticulturae Sinica, 2022, 49(S1): 85-86. |
[10] | ZHENG Xiaodong, XI Xiangli, LI Yuqi, SUN Zhijuan, MA Changqing, HAN Mingsan, LI Shaoxuan, TIAN Yike, WANG Caihong. Effects and Regulating Mechanism of Exogenous Brassinosteroids on the Growth of Malus hupehensis Under Saline-alkali Stress [J]. Acta Horticulturae Sinica, 2022, 49(7): 1401-1414. |
[11] | FENG Chen, HUANG Xuewang, LI Xingliang, ZHOU Jia, LI Tianhong. Comparative Study on Drought Resistance of Different Apple Dwarfing Rootstock and Scion Combinations [J]. Acta Horticulturae Sinica, 2022, 49(5): 945-957. |
[12] | LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress [J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. |
[13] | HAN Lujie, FENG Yiqing, YANG Xiuhua, ZHANG Ning, BI Huangai, AI Xizhen. Effects of Combined Application of Organic and Chemical Fertilizers on Root Zone Soil and Root Characteristics of Cucumber in Plastic Greenhouse [J]. Acta Horticulturae Sinica, 2022, 49(5): 1047-1059. |
[14] | QUAN Jianhua, DUAN Yu, LUO Tian, YUAN Qiang, QI Xin, WANG Qinli. A New Cucumber Cultivar‘Yuyan 9’ [J]. Acta Horticulturae Sinica, 2022, 49(3): 703-704. |
[15] | WANG Guangpeng, LIU Tongkun, XU Xinfeng, LI Zhubo, GAO Zhanyuan, HOU Xilin. Identification of LEA Family and Expression Analysis of Some Members Under Low-temperature Stress in Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(2): 304-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd