Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (8): 1772-1784.doi: 10.16420/j.issn.0513-353x.2021-0389
• Research Notes • Previous Articles Next Articles
JIANG Sisi1, YUAN Jun1, ZHOU Wenjun1, NIU Genhua2, ZHOU Junqin1,*()
Received:
2021-12-21
Revised:
2022-03-08
Online:
2022-08-25
Published:
2022-09-05
Contact:
ZHOU Junqin
E-mail:zhoujunqin@csuft.edu.cn
CLC Number:
JIANG Sisi, YUAN Jun, ZHOU Wenjun, NIU Genhua, ZHOU Junqin. Complete Chloroplast Genome Sequence and Characteristics Analysis of Carya illinoinensis[J]. Acta Horticulturae Sinica, 2022, 49(8): 1772-1784.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0389
品种 Cultivar | LSC | SSC | IR | Genome | ||||||
---|---|---|---|---|---|---|---|---|---|---|
长度/bp Length | G + C/% | 长度/% Length | 长度/bp Length | G + C/% | 长度/% Length | 长度/bp Length | G + C/% | 长度/% Length | 长度/bp Length | |
金华 Jinhua | 90 022 | 33.74 | 55.98 | 18 791 | 29.89 | 11.68 | 26 003 | 42.58 | 16.17 | 160 819 |
波尼 Pawnee | 90 022 | 33.74 | 55.36 | 16 999 | 29.93 | 10.45 | 27 795 | 41.74 | 17.09 | 162 611 |
实生单株 Seedling individual | 89 964 | 33.75 | 55.96 | 18 792 | 29.88 | 11.69 | 26 003 | 42.58 | 16.17 | 160 762 |
Table 1 Summary of the chloroplast genomes features of Carya illinoinensis‘Pawnee’‘Jinhua’and seedling individual
品种 Cultivar | LSC | SSC | IR | Genome | ||||||
---|---|---|---|---|---|---|---|---|---|---|
长度/bp Length | G + C/% | 长度/% Length | 长度/bp Length | G + C/% | 长度/% Length | 长度/bp Length | G + C/% | 长度/% Length | 长度/bp Length | |
金华 Jinhua | 90 022 | 33.74 | 55.98 | 18 791 | 29.89 | 11.68 | 26 003 | 42.58 | 16.17 | 160 819 |
波尼 Pawnee | 90 022 | 33.74 | 55.36 | 16 999 | 29.93 | 10.45 | 27 795 | 41.74 | 17.09 | 162 611 |
实生单株 Seedling individual | 89 964 | 33.75 | 55.96 | 18 792 | 29.88 | 11.69 | 26 003 | 42.58 | 16.17 | 160 762 |
Fig. 2 Gene map of the complete chloroplast genome of Carya illinoinensis seedling individual Genes drawn inside the circle are transcribed clockwise,and those outsides are counter clockwise(Lohse et al.,2013).
基因分类 Category for gene | 基因分组 Group of gene | 基因名称 Name of gene |
---|---|---|
自我复制 Self replication | rRNA | rrn16S,rrn23,rrn23S,rrn4.5,rrn4.5S,rrn5,rrn5S |
tRNA | trnA-UGC*,trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnfM-CAU,trnG-GCC*,trnG-UCC,trnH-GUG,trnI-CAU,trnI-GAU*,trnK-UUU*,trnL-CAA,trnL-UAA*,trnL-UAG,trnM-CAU,trnN-GUU,trnP-GGG,trnP-UGG,trnQ-UUG,trnR-ACG,trnR-UCU,trnS-CGA,trnS-GCU,trnS-GGA,trnStop-UUA,trnS-UGA,trnT-AAG,trnT-AGU,trnT-CAG,trnT-GGU,trnT-UAG,trnT-UGU,trnV-AAC,trnV-GAC,trnV-UAC*,trnW-CCA,trnY-GUA | |
RNA聚合酶亚基 RNA polymerase | rpoA,rpoB,rpoC1*,rpoC2 | |
核糖体小亚基 Ribosomal protein(SSU) | rps2,rps3,rps4,rps7,rps8,rps11,rps12T,*,rps14,rps15,rps16*,rps18,rps19 | |
核糖体大亚基 Ribosomal protein(LSU) | rpl2*,rpl14,rpl16*,rpl20,rpl22,rpl23,rpl32,rpl33,rpl36 | |
光合作用相关 Genes for photo- synthesis | ATP 合酶 ATP synthase | atpA,atpB,atpE,atpF*,atpH,atpI |
光和系统Ⅰ Photosystem Ⅰ | psaA,psaB,psaC,psaI,psaJ | |
光和系统Ⅱ Photosystem Ⅱ | psbA,psbB,psbC,psbD,psbE,psbF,psbI,psbJ,psbK,psbH,psbL,psbM,psbN,psbT,psbZ,ycf3** | |
二磷酸核酮糖羧化酶亚基 Subunit of rubisco | rbcL | |
细胞色素复合物 Cytochrome b/f complex | petA,petB*,petD*,petG,petL,petN | |
NADH脱氢酶 NADH-dehydrogenase | ndhA*,ndhB*,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
其他与未知功能 Other and unknown function | accD,ccsA,cemA,clpP**,matK,ycf1,ycf2,ycf4,ycf15a |
Table 2 List of genes annotated in the chloroplast genome of Carya illinoinensis sequenced
基因分类 Category for gene | 基因分组 Group of gene | 基因名称 Name of gene |
---|---|---|
自我复制 Self replication | rRNA | rrn16S,rrn23,rrn23S,rrn4.5,rrn4.5S,rrn5,rrn5S |
tRNA | trnA-UGC*,trnC-GCA,trnD-GUC,trnE-UUC,trnF-GAA,trnfM-CAU,trnG-GCC*,trnG-UCC,trnH-GUG,trnI-CAU,trnI-GAU*,trnK-UUU*,trnL-CAA,trnL-UAA*,trnL-UAG,trnM-CAU,trnN-GUU,trnP-GGG,trnP-UGG,trnQ-UUG,trnR-ACG,trnR-UCU,trnS-CGA,trnS-GCU,trnS-GGA,trnStop-UUA,trnS-UGA,trnT-AAG,trnT-AGU,trnT-CAG,trnT-GGU,trnT-UAG,trnT-UGU,trnV-AAC,trnV-GAC,trnV-UAC*,trnW-CCA,trnY-GUA | |
RNA聚合酶亚基 RNA polymerase | rpoA,rpoB,rpoC1*,rpoC2 | |
核糖体小亚基 Ribosomal protein(SSU) | rps2,rps3,rps4,rps7,rps8,rps11,rps12T,*,rps14,rps15,rps16*,rps18,rps19 | |
核糖体大亚基 Ribosomal protein(LSU) | rpl2*,rpl14,rpl16*,rpl20,rpl22,rpl23,rpl32,rpl33,rpl36 | |
光合作用相关 Genes for photo- synthesis | ATP 合酶 ATP synthase | atpA,atpB,atpE,atpF*,atpH,atpI |
光和系统Ⅰ Photosystem Ⅰ | psaA,psaB,psaC,psaI,psaJ | |
光和系统Ⅱ Photosystem Ⅱ | psbA,psbB,psbC,psbD,psbE,psbF,psbI,psbJ,psbK,psbH,psbL,psbM,psbN,psbT,psbZ,ycf3** | |
二磷酸核酮糖羧化酶亚基 Subunit of rubisco | rbcL | |
细胞色素复合物 Cytochrome b/f complex | petA,petB*,petD*,petG,petL,petN | |
NADH脱氢酶 NADH-dehydrogenase | ndhA*,ndhB*,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
其他与未知功能 Other and unknown function | accD,ccsA,cemA,clpP**,matK,ycf1,ycf2,ycf4,ycf15a |
基因 Gene | 正负链 Strand | 起始 Start | 终止 End | 外显子 Ⅰ/bp ExonⅠ | 内含子 Ⅰ/bp IntronⅠ | 外显子 Ⅱ/bp ExonⅡ | 内含子 Ⅱ/bp Intron Ⅱ | 外显子 Ⅲ/bp Exon Ⅲ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | |||||||
trnK-UUU | - | 1 607 | 1 607 | 1 607 | 4 237 | 4 237 | 4 237 | 37 | 2 559 | 35 | ||
rps16 | - | 5 086 | 5 086 | 5 086 | 6 257 | 6 257 | 6 257 | 39 | 905 | 228 | ||
trnG-GCC | + | 10 135 | 10 135 | 10 134 | 10 919 | 10 919 | 10 918 | 23 | 715 | 47 | ||
atpF | - | 13 185 | 13 185 | 13 184 | 14 490 | 14 490 | 14 489 | 145 | 751 | 410 | ||
rpoC1 | - | 22 810 | 22 810 | 22 811 | 25 681 | 25 681 | 25 683 | 432 | 814 | 1 626 | ||
ycf3 | - | 47 097 | 47 097 | 47 034 | 49 116 | 49 116 | 49 053 | 124 | 720 | 230 | 793 | 153 |
trnL-UAA | + | 52 205 | 52 205 | 52 142 | 52 815 | 52 815 | 52 752 | 37 | 524 | 50 | ||
trnV-UAC | - | 56 413 | 56 413 | 56 350 | 57 102 | 57 102 | 57 039 | 38 | 615 | 37 | ||
clpP | - | 75 722 | 75 722 | 75 665 | 77 773 | 77 773 | 77 715 | 71 | 847 | 294 | 614 | 226 |
petB | + | 80 745 | 80 745 | 80 687 | 82 207 | 82 207 | 82 149 | 6 | 815 | 642 | ||
petD | + | 82 418 | 82 418 | 82 360 | 83 526 | 83 526 | 83 468 | 9 | 626 | 474 | ||
rpl16 | - | 87 056 | 87 056 | 86 998 | 88 382 | 88 382 | 88 324 | 9 | 919 | 399 | ||
rpl2 | - | 90 103 | 90 103 | 90 045 | 91 625 | 91 625 | 91 567 | 391 | 698 | 434 | ||
ndhB | - | 100 446 | 100 446 | 100 388 | 102 670 | 102 670 | 102 612 | 775 | 686 | 764 | ||
trnI-GAU | + | 108 073 | 108 073 | 108 015 | 109 099 | 109 099 | 109 041 | 37 | 955 | 35 | ||
trnA-UGC | + | 109 164 | 109 164 | 109 106 | 110 043 | 110 043 | 109 985 | 38 | 807 | 35 | ||
ndhA | - | 125 970 | 127 762 | 125 912 | 128 253 | 130 045 | 128 195 | 553 | 1 192 | 539 | ||
trnA-UGC | - | 140 799 | 142 591 | 140 742 | 141 678 | 143 470 | 141 621 | 38 | 807 | 35 | ||
trnI-GAU | - | 141 743 | 143 535 | 141 686 | 142 769 | 144 561 | 142 712 | 37 | 955 | 35 | ||
ndhB | + | 148 172 | 149 964 | 148 115 | 150 396 | 152 188 | 150 339 | 775 | 686 | 764 | ||
rpl2 | + | 159 217 | 161 009 | 159 160 | 160 739 | 162 531 | 160 682 | 391 | 698 | 434 |
Table 3 Intron and exon length in the chloroplast genome of Carya illinoinensis‘Jinhua’‘Pawnee’and seedling individual
基因 Gene | 正负链 Strand | 起始 Start | 终止 End | 外显子 Ⅰ/bp ExonⅠ | 内含子 Ⅰ/bp IntronⅠ | 外显子 Ⅱ/bp ExonⅡ | 内含子 Ⅱ/bp Intron Ⅱ | 外显子 Ⅲ/bp Exon Ⅲ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | |||||||
trnK-UUU | - | 1 607 | 1 607 | 1 607 | 4 237 | 4 237 | 4 237 | 37 | 2 559 | 35 | ||
rps16 | - | 5 086 | 5 086 | 5 086 | 6 257 | 6 257 | 6 257 | 39 | 905 | 228 | ||
trnG-GCC | + | 10 135 | 10 135 | 10 134 | 10 919 | 10 919 | 10 918 | 23 | 715 | 47 | ||
atpF | - | 13 185 | 13 185 | 13 184 | 14 490 | 14 490 | 14 489 | 145 | 751 | 410 | ||
rpoC1 | - | 22 810 | 22 810 | 22 811 | 25 681 | 25 681 | 25 683 | 432 | 814 | 1 626 | ||
ycf3 | - | 47 097 | 47 097 | 47 034 | 49 116 | 49 116 | 49 053 | 124 | 720 | 230 | 793 | 153 |
trnL-UAA | + | 52 205 | 52 205 | 52 142 | 52 815 | 52 815 | 52 752 | 37 | 524 | 50 | ||
trnV-UAC | - | 56 413 | 56 413 | 56 350 | 57 102 | 57 102 | 57 039 | 38 | 615 | 37 | ||
clpP | - | 75 722 | 75 722 | 75 665 | 77 773 | 77 773 | 77 715 | 71 | 847 | 294 | 614 | 226 |
petB | + | 80 745 | 80 745 | 80 687 | 82 207 | 82 207 | 82 149 | 6 | 815 | 642 | ||
petD | + | 82 418 | 82 418 | 82 360 | 83 526 | 83 526 | 83 468 | 9 | 626 | 474 | ||
rpl16 | - | 87 056 | 87 056 | 86 998 | 88 382 | 88 382 | 88 324 | 9 | 919 | 399 | ||
rpl2 | - | 90 103 | 90 103 | 90 045 | 91 625 | 91 625 | 91 567 | 391 | 698 | 434 | ||
ndhB | - | 100 446 | 100 446 | 100 388 | 102 670 | 102 670 | 102 612 | 775 | 686 | 764 | ||
trnI-GAU | + | 108 073 | 108 073 | 108 015 | 109 099 | 109 099 | 109 041 | 37 | 955 | 35 | ||
trnA-UGC | + | 109 164 | 109 164 | 109 106 | 110 043 | 110 043 | 109 985 | 38 | 807 | 35 | ||
ndhA | - | 125 970 | 127 762 | 125 912 | 128 253 | 130 045 | 128 195 | 553 | 1 192 | 539 | ||
trnA-UGC | - | 140 799 | 142 591 | 140 742 | 141 678 | 143 470 | 141 621 | 38 | 807 | 35 | ||
trnI-GAU | - | 141 743 | 143 535 | 141 686 | 142 769 | 144 561 | 142 712 | 37 | 955 | 35 | ||
ndhB | + | 148 172 | 149 964 | 148 115 | 150 396 | 152 188 | 150 339 | 775 | 686 | 764 | ||
rpl2 | + | 159 217 | 161 009 | 159 160 | 160 739 | 162 531 | 160 682 | 391 | 698 | 434 |
密码子Codon | 氨基酸 Amino acid | 频率/% Frequency | 数量 Number | RSCU | ||||||
---|---|---|---|---|---|---|---|---|---|---|
金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | ||
GCA | A | 1.454 | 1.426 | 1.454 | 715 | 729 | 715 | 1.130 | 1.140 | 1.130 |
GCC | A | 0.679 | 0.665 | 0.679 | 334 | 340 | 334 | 0.530 | 0.530 | 0.530 |
GCG | A | 0.596 | 0.585 | 0.592 | 293 | 299 | 291 | 0.460 | 0.470 | 0.460 |
GCT | A | 2.408 | 2.348 | 2.408 | 1 184 | 1 200 | 1 184 | 1.870 | 1.870 | 1.880 |
TGC | C | 0.334 | 0.333 | 0.334 | 164 | 170 | 164 | 0.560 | 0.560 | 0.560 |
TGT | C | 0.860 | 0.855 | 0.860 | 423 | 437 | 423 | 1.440 | 1.440 | 1.440 |
GAC | D | 0.810 | 0.802 | 0.810 | 398 | 410 | 398 | 0.400 | 0.390 | 0.400 |
GAT | D | 3.259 | 3.272 | 3.259 | 1 602 | 1 672 | 1 602 | 1.600 | 1.610 | 1.600 |
GAA | E | 3.897 | 3.996 | 3.897 | 1 916 | 2 042 | 1 916 | 1.490 | 1.500 | 1.490 |
GAG | E | 1.328 | 1.336 | 1.332 | 653 | 683 | 655 | 0.510 | 0.500 | 0.510 |
TTC | F | 2.018 | 2.015 | 2.018 | 992 | 1 030 | 992 | 0.690 | 0.680 | 0.690 |
TTT | F | 3.794 | 3.872 | 3.794 | 1 865 | 1 979 | 1 865 | 1.310 | 1.320 | 1.310 |
GGA | G | 2.532 | 2.499 | 2.532 | 1 245 | 1 277 | 1 245 | 1.590 | 1.600 | 1.590 |
GGC | G | 0.712 | 0.701 | 0.712 | 350 | 358 | 350 | 0.450 | 0.450 | 0.450 |
GGG | G | 0.970 | 0.961 | 0.970 | 477 | 491 | 477 | 0.610 | 0.620 | 0.610 |
GGT | G | 2.140 | 2.090 | 2.140 | 1 052 | 1 068 | 1 052 | 1.350 | 1.340 | 1.350 |
CAC | H | 0.547 | 0.546 | 0.547 | 269 | 279 | 269 | 0.450 | 0.450 | 0.450 |
CAT | H | 1.906 | 1.869 | 1.906 | 937 | 955 | 937 | 1.550 | 1.550 | 1.550 |
ATA | I | 2.888 | 2.947 | 2.893 | 1 420 | 1 506 | 1 422 | 0.990 | 1.000 | 0.990 |
ATC | I | 1.621 | 1.622 | 1.621 | 797 | 829 | 797 | 0.550 | 0.550 | 0.550 |
ATT | I | 4.274 | 4.283 | 4.274 | 2 101 | 2 189 | 2 101 | 1.460 | 1.450 | 1.460 |
AAA | K | 3.995 | 4.133 | 3.995 | 1 964 | 2 112 | 1 964 | 1.450 | 1.450 | 1.450 |
AAG | K | 1.511 | 1.552 | 1.507 | 743 | 793 | 741 | 0.550 | 0.550 | 0.550 |
CTA | L | 1.336 | 1.333 | 1.332 | 657 | 681 | 655 | 0.760 | 0.760 | 0.760 |
CTC | L | 0.755 | 0.757 | 0.755 | 371 | 387 | 371 | 0.430 | 0.430 | 0.430 |
CTG | L | 0.675 | 0.681 | 0.675 | 332 | 348 | 332 | 0.390 | 0.390 | 0.390 |
CTT | L | 2.258 | 2.227 | 2.258 | 1 110 | 1 138 | 1 110 | 1.290 | 1.280 | 1.290 |
TTA | L | 3.242 | 3.260 | 3.242 | 1 594 | 1 666 | 1 594 | 1.850 | 1.870 | 1.850 |
TTG | L | 2.246 | 2.199 | 2.246 | 1 104 | 1 124 | 1 104 | 1.280 | 1.260 | 1.280 |
ATG | M | 2.244 | 2.225 | 2.244 | 1 103 | 1 137 | 1 103 | 1.000 | 1.000 | 1.000 |
AAC | N | 1.153 | 1.156 | 1.153 | 567 | 591 | 567 | 0.470 | 0.460 | 0.470 |
AAT | N | 3.794 | 3.837 | 3.802 | 1 865 | 1 961 | 1 869 | 1.530 | 1.540 | 1.530 |
密码子Codon | 氨基酸 Amino acid | 频率/% Frequency | 数量 Number | RSCU | ||||||
金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | ||
CCA | P | 1.168 | 1.155 | 1.168 | 574 | 590 | 574 | 1.140 | 1.130 | 1.140 |
CCC | P | 0.816 | 0.816 | 0.816 | 401 | 417 | 401 | 0.800 | 0.800 | 0.800 |
CCG | P | 0.633 | 0.640 | 0.633 | 311 | 327 | 311 | 0.620 | 0.630 | 0.620 |
CCT | P | 1.479 | 1.477 | 1.479 | 727 | 755 | 727 | 1.440 | 1.450 | 1.440 |
CAA | Q | 2.805 | 2.820 | 2.805 | 1 379 | 1 441 | 1 379 | 1.550 | 1.560 | 1.550 |
CAG | Q | 0.818 | 0.806 | 0.818 | 402 | 412 | 402 | 0.450 | 0.440 | 0.450 |
AGA | R | 1.827 | 1.828 | 1.827 | 898 | 934 | 898 | 1.810 | 1.820 | 1.810 |
AGG | R | 0.716 | 0.704 | 0.716 | 352 | 360 | 352 | 0.710 | 0.700 | 0.710 |
CGA | R | 1.367 | 1.374 | 1.367 | 672 | 702 | 672 | 1.350 | 1.370 | 1.350 |
CGC | R | 0.393 | 0.389 | 0.393 | 193 | 199 | 193 | 0.390 | 0.390 | 0.390 |
CGG | R | 0.472 | 0.458 | 0.472 | 232 | 234 | 232 | 0.470 | 0.460 | 0.470 |
CGT | R | 1.288 | 1.274 | 1.288 | 633 | 651 | 633 | 1.270 | 1.270 | 1.270 |
AGC | S | 0.535 | 0.538 | 0.535 | 263 | 275 | 263 | 0.420 | 0.420 | 0.420 |
AGT | S | 1.530 | 1.511 | 1.526 | 752 | 772 | 750 | 1.200 | 1.190 | 1.200 |
TCA | S | 1.526 | 1.542 | 1.526 | 750 | 788 | 750 | 1.200 | 1.220 | 1.200 |
TCC | S | 1.202 | 1.192 | 1.202 | 591 | 609 | 591 | 0.940 | 0.940 | 0.940 |
TCG | S | 0.738 | 0.726 | 0.738 | 363 | 371 | 363 | 0.580 | 0.570 | 0.580 |
TCT | S | 2.126 | 2.107 | 2.126 | 1 045 | 1 077 | 1 045 | 1.670 | 1.660 | 1.670 |
ACA | T | 1.471 | 1.493 | 1.471 | 723 | 763 | 723 | 1.220 | 1.230 | 1.220 |
ACC | T | 0.828 | 0.828 | 0.828 | 407 | 423 | 407 | 0.690 | 0.680 | 0.690 |
ACG | T | 0.531 | 0.530 | 0.531 | 261 | 271 | 261 | 0.440 | 0.440 | 0.440 |
ACT | T | 1.991 | 1.998 | 1.991 | 979 | 1 021 | 979 | 1.650 | 1.650 | 1.650 |
GTA | V | 1.983 | 1.970 | 1.983 | 975 | 1 007 | 975 | 1.530 | 1.530 | 1.530 |
GTC | V | 0.631 | 0.638 | 0.631 | 310 | 326 | 310 | 0.490 | 0.500 | 0.490 |
GTG | V | 0.677 | 0.663 | 0.677 | 333 | 339 | 333 | 0.520 | 0.520 | 0.520 |
GTT | V | 1.906 | 1.869 | 1.906 | 937 | 955 | 937 | 1.470 | 1.450 | 1.470 |
TGG | W | 1.855 | 1.847 | 1.855 | 912 | 944 | 912 | 1.000 | 1.000 | 1.000 |
TAC | Y | 0.767 | 0.753 | 0.767 | 377 | 385 | 377 | 0.410 | 0.400 | 0.410 |
TAT | Y | 3.015 | 3.021 | 3.015 | 1 482 | 1 544 | 1 482 | 1.590 | 1.600 | 1.590 |
TAA | * | 0.283 | 0.276 | 0.283 | 139 | 141 | 139 | 1.260 | 1.270 | 1.260 |
TAG | * | 0.205 | 0.198 | 0.205 | 101 | 101 | 101 | 0.920 | 0.910 | 0.920 |
TGA | * | 0.185 | 0.178 | 0.185 | 91 | 91 | 91 | 0.830 | 0.820 | 0.830 |
Table 4 Relative synonymous codon usage in chloroplast genes of Carya illinoinensis‘Jinhua’‘Pawnee’and Seedling individual
密码子Codon | 氨基酸 Amino acid | 频率/% Frequency | 数量 Number | RSCU | ||||||
---|---|---|---|---|---|---|---|---|---|---|
金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | ||
GCA | A | 1.454 | 1.426 | 1.454 | 715 | 729 | 715 | 1.130 | 1.140 | 1.130 |
GCC | A | 0.679 | 0.665 | 0.679 | 334 | 340 | 334 | 0.530 | 0.530 | 0.530 |
GCG | A | 0.596 | 0.585 | 0.592 | 293 | 299 | 291 | 0.460 | 0.470 | 0.460 |
GCT | A | 2.408 | 2.348 | 2.408 | 1 184 | 1 200 | 1 184 | 1.870 | 1.870 | 1.880 |
TGC | C | 0.334 | 0.333 | 0.334 | 164 | 170 | 164 | 0.560 | 0.560 | 0.560 |
TGT | C | 0.860 | 0.855 | 0.860 | 423 | 437 | 423 | 1.440 | 1.440 | 1.440 |
GAC | D | 0.810 | 0.802 | 0.810 | 398 | 410 | 398 | 0.400 | 0.390 | 0.400 |
GAT | D | 3.259 | 3.272 | 3.259 | 1 602 | 1 672 | 1 602 | 1.600 | 1.610 | 1.600 |
GAA | E | 3.897 | 3.996 | 3.897 | 1 916 | 2 042 | 1 916 | 1.490 | 1.500 | 1.490 |
GAG | E | 1.328 | 1.336 | 1.332 | 653 | 683 | 655 | 0.510 | 0.500 | 0.510 |
TTC | F | 2.018 | 2.015 | 2.018 | 992 | 1 030 | 992 | 0.690 | 0.680 | 0.690 |
TTT | F | 3.794 | 3.872 | 3.794 | 1 865 | 1 979 | 1 865 | 1.310 | 1.320 | 1.310 |
GGA | G | 2.532 | 2.499 | 2.532 | 1 245 | 1 277 | 1 245 | 1.590 | 1.600 | 1.590 |
GGC | G | 0.712 | 0.701 | 0.712 | 350 | 358 | 350 | 0.450 | 0.450 | 0.450 |
GGG | G | 0.970 | 0.961 | 0.970 | 477 | 491 | 477 | 0.610 | 0.620 | 0.610 |
GGT | G | 2.140 | 2.090 | 2.140 | 1 052 | 1 068 | 1 052 | 1.350 | 1.340 | 1.350 |
CAC | H | 0.547 | 0.546 | 0.547 | 269 | 279 | 269 | 0.450 | 0.450 | 0.450 |
CAT | H | 1.906 | 1.869 | 1.906 | 937 | 955 | 937 | 1.550 | 1.550 | 1.550 |
ATA | I | 2.888 | 2.947 | 2.893 | 1 420 | 1 506 | 1 422 | 0.990 | 1.000 | 0.990 |
ATC | I | 1.621 | 1.622 | 1.621 | 797 | 829 | 797 | 0.550 | 0.550 | 0.550 |
ATT | I | 4.274 | 4.283 | 4.274 | 2 101 | 2 189 | 2 101 | 1.460 | 1.450 | 1.460 |
AAA | K | 3.995 | 4.133 | 3.995 | 1 964 | 2 112 | 1 964 | 1.450 | 1.450 | 1.450 |
AAG | K | 1.511 | 1.552 | 1.507 | 743 | 793 | 741 | 0.550 | 0.550 | 0.550 |
CTA | L | 1.336 | 1.333 | 1.332 | 657 | 681 | 655 | 0.760 | 0.760 | 0.760 |
CTC | L | 0.755 | 0.757 | 0.755 | 371 | 387 | 371 | 0.430 | 0.430 | 0.430 |
CTG | L | 0.675 | 0.681 | 0.675 | 332 | 348 | 332 | 0.390 | 0.390 | 0.390 |
CTT | L | 2.258 | 2.227 | 2.258 | 1 110 | 1 138 | 1 110 | 1.290 | 1.280 | 1.290 |
TTA | L | 3.242 | 3.260 | 3.242 | 1 594 | 1 666 | 1 594 | 1.850 | 1.870 | 1.850 |
TTG | L | 2.246 | 2.199 | 2.246 | 1 104 | 1 124 | 1 104 | 1.280 | 1.260 | 1.280 |
ATG | M | 2.244 | 2.225 | 2.244 | 1 103 | 1 137 | 1 103 | 1.000 | 1.000 | 1.000 |
AAC | N | 1.153 | 1.156 | 1.153 | 567 | 591 | 567 | 0.470 | 0.460 | 0.470 |
AAT | N | 3.794 | 3.837 | 3.802 | 1 865 | 1 961 | 1 869 | 1.530 | 1.540 | 1.530 |
密码子Codon | 氨基酸 Amino acid | 频率/% Frequency | 数量 Number | RSCU | ||||||
金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | 金华 Jinhua | 波尼 Pawnee | 实生单株 Seedling individual | ||
CCA | P | 1.168 | 1.155 | 1.168 | 574 | 590 | 574 | 1.140 | 1.130 | 1.140 |
CCC | P | 0.816 | 0.816 | 0.816 | 401 | 417 | 401 | 0.800 | 0.800 | 0.800 |
CCG | P | 0.633 | 0.640 | 0.633 | 311 | 327 | 311 | 0.620 | 0.630 | 0.620 |
CCT | P | 1.479 | 1.477 | 1.479 | 727 | 755 | 727 | 1.440 | 1.450 | 1.440 |
CAA | Q | 2.805 | 2.820 | 2.805 | 1 379 | 1 441 | 1 379 | 1.550 | 1.560 | 1.550 |
CAG | Q | 0.818 | 0.806 | 0.818 | 402 | 412 | 402 | 0.450 | 0.440 | 0.450 |
AGA | R | 1.827 | 1.828 | 1.827 | 898 | 934 | 898 | 1.810 | 1.820 | 1.810 |
AGG | R | 0.716 | 0.704 | 0.716 | 352 | 360 | 352 | 0.710 | 0.700 | 0.710 |
CGA | R | 1.367 | 1.374 | 1.367 | 672 | 702 | 672 | 1.350 | 1.370 | 1.350 |
CGC | R | 0.393 | 0.389 | 0.393 | 193 | 199 | 193 | 0.390 | 0.390 | 0.390 |
CGG | R | 0.472 | 0.458 | 0.472 | 232 | 234 | 232 | 0.470 | 0.460 | 0.470 |
CGT | R | 1.288 | 1.274 | 1.288 | 633 | 651 | 633 | 1.270 | 1.270 | 1.270 |
AGC | S | 0.535 | 0.538 | 0.535 | 263 | 275 | 263 | 0.420 | 0.420 | 0.420 |
AGT | S | 1.530 | 1.511 | 1.526 | 752 | 772 | 750 | 1.200 | 1.190 | 1.200 |
TCA | S | 1.526 | 1.542 | 1.526 | 750 | 788 | 750 | 1.200 | 1.220 | 1.200 |
TCC | S | 1.202 | 1.192 | 1.202 | 591 | 609 | 591 | 0.940 | 0.940 | 0.940 |
TCG | S | 0.738 | 0.726 | 0.738 | 363 | 371 | 363 | 0.580 | 0.570 | 0.580 |
TCT | S | 2.126 | 2.107 | 2.126 | 1 045 | 1 077 | 1 045 | 1.670 | 1.660 | 1.670 |
ACA | T | 1.471 | 1.493 | 1.471 | 723 | 763 | 723 | 1.220 | 1.230 | 1.220 |
ACC | T | 0.828 | 0.828 | 0.828 | 407 | 423 | 407 | 0.690 | 0.680 | 0.690 |
ACG | T | 0.531 | 0.530 | 0.531 | 261 | 271 | 261 | 0.440 | 0.440 | 0.440 |
ACT | T | 1.991 | 1.998 | 1.991 | 979 | 1 021 | 979 | 1.650 | 1.650 | 1.650 |
GTA | V | 1.983 | 1.970 | 1.983 | 975 | 1 007 | 975 | 1.530 | 1.530 | 1.530 |
GTC | V | 0.631 | 0.638 | 0.631 | 310 | 326 | 310 | 0.490 | 0.500 | 0.490 |
GTG | V | 0.677 | 0.663 | 0.677 | 333 | 339 | 333 | 0.520 | 0.520 | 0.520 |
GTT | V | 1.906 | 1.869 | 1.906 | 937 | 955 | 937 | 1.470 | 1.450 | 1.470 |
TGG | W | 1.855 | 1.847 | 1.855 | 912 | 944 | 912 | 1.000 | 1.000 | 1.000 |
TAC | Y | 0.767 | 0.753 | 0.767 | 377 | 385 | 377 | 0.410 | 0.400 | 0.410 |
TAT | Y | 3.015 | 3.021 | 3.015 | 1 482 | 1 544 | 1 482 | 1.590 | 1.600 | 1.590 |
TAA | * | 0.283 | 0.276 | 0.283 | 139 | 141 | 139 | 1.260 | 1.270 | 1.260 |
TAG | * | 0.205 | 0.198 | 0.205 | 101 | 101 | 101 | 0.920 | 0.910 | 0.920 |
TGA | * | 0.185 | 0.178 | 0.185 | 91 | 91 | 91 | 0.830 | 0.820 | 0.830 |
[1] | Alexander L W, Woeste K E. 2014. Pyrosequencing of the northern red oak(Quercus rubra L.)chloroplast genome reveals high quality polymorphisms for population management. Tree Genetics & Genomes, 10 (4):803-812. |
[2] |
Beier S, Thiel T, Munch T, Scholz U, Mascher M. 2017. MISA-web:a web server for microsatellite prediction. Bioinformatics, 33:2583-2585.
doi: 10.1093/bioinformatics/btx198 URL |
[3] | Chan P P, Lowe T M. 2019. tRNAscan-SE:searching for tRNA genes in genomic sequences. Methods in Molecular Biology, 1962:1-14. |
[4] | Chang Jun, Zhang Xiao-dan, Yao Xiao-hua, Yang Shui-ping, Wang Kai-liang, Ren Hua-dong. 2021. Amino acid composition and nutritional value evaluation of different varieties of pecan(Carya illinoensis K. Koch). Journal of Southwest University(Natural Science Edition), 43 (4):44-52. (in Chinese) |
常君, 张潇丹, 姚小华, 杨水平, 王开良, 任华东. 2021. 不同品种薄壳山核桃氨基酸组成及营养价值评价. 西南大学学报(自然科学版), 43 (4):44-52. | |
[5] | Dong W, Xu C, Cheng T, Zhou S. 2013. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales. PLoS ONE, 8 (10):e77965. |
[6] | Frazer K A, Lior P, Alexander P, Rubin E M, Inna D. 2004. VISTA:Computational tools for comparative genomics. Nucleic Acids Research, 32:W273-W279. |
[7] | Grauke L J, Mendoza-herrera M A, Binzel M L. 2010. Plastid microsatellite markers in Carya. Acta Horticulturae, 859:237-246. |
[8] |
Grauke L J, Wood B W, Harris M K. 2016. Crop vulnerability:Carya. HortScience, 51 (6):653-663.
doi: 10.21273/HORTSCI.51.6.653 URL |
[9] |
Greiner S, Lehwark P, Boc R. 2019. OrganellarGenomeDRAW(OGDRAW)version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 47:W59-W64.
doi: 10.1093/nar/gkz238 URL |
[10] | Hou Dong-pei, Xi Xue-liang, Shi Zhuo-gong. 2007. The survey research of Carya illinoensis in China. Journal of Shandong Forestry Science and Technology,(4):53-55. (in Chinese) |
侯冬培, 习学良, 石卓功. 2007. 我国薄壳山核桃研究概况. 山东林业科技,(4):53-55. | |
[11] | Hu Yi-heng. 2018. Phylogenetic and population genetics of Juglandaceae based on genomics and transcriptomics[M. D. Dissertation]. Xi’an: Northwestern University. (in Chinese) |
胡昳恒. 2018. 基于基因组学与转录组学的胡桃科植物系统进化及群体遗传学研究[硕士论文]. 西安: 西北大学. | |
[12] |
Ishizuka W, Tabata A, Ono K, Fukuda Y, Hara T. 2017. Draft chloroplast genome of Larix gmelinii var. japonica:insight into intraspecific divergence. Journal of Forest Research, 22 (6):393-398.
doi: 10.1080/13416979.2017.1386019 URL |
[13] | Jansen R K, Cai Z, Raubeson L A, Daniell H, Depamphilis C W, Leebens-Mack J, Müller K F, Guisinger-Bellian M, Haberle R C, Hansen A K, Chumley T W, Lee S B, Peery R, McNeal J R, Kuehl J V, Boore J L. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proceedings of the National Academy of Sciences, 104 (49):19369-19374. |
[14] |
Jansen R K, Kaittanis C, Saski C, Lee S B, Tomkins J, Alverson A J, Daniell H. 2006. Phylogenetic analyses of Vitis(Vitaceae)based on complete chloroplast genome sequences:effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology, 6 (1):1-14.
doi: 10.1186/1471-2148-6-1 URL |
[15] |
Kang H I, Lee H O, Lee I H, Kim I S, Shim D. 2019. Complete chloroplast genome of Pinus densiflora Siebold & Zucc. and comparative analysis with five pine trees. Forests, 10 (7):600.
doi: 10.3390/f10070600 URL |
[16] | Li Qian, Guo Qiqiang, Gao Chao, Li Hui’e. 2020. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province. Acta Horticulturae Sinica, 47 (4):779-781. (in Chinese) |
李倩, 郭其强, 高超, 李慧娥. 2020. 贵州威宁红花油茶的叶绿体基因组特征分析. 园艺学报, 47 (4):779-787. | |
[17] | Li Yongtan, Zhang Jun, Huang Yali, Fan Jianmin, Zhang Yiwen, Zuo Lihui. 2020. Analysis of chloroplast genome of Pyrus betulaefolia. Acta Horticulturae Sinica, 47 (6):1021-1032. (in Chinese) |
李泳潭, 张军, 黄亚丽, 范建敏, 张益文, 左力辉. 2020. 杜梨叶绿体基因组分析. 园艺学报, 47 (6):1021-1032. | |
[18] |
Lin C P, Wu C S, Huang Y Y, Chaw S M. 2012. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biology and Evolution, 4 (3):374-381.
doi: 10.1093/gbe/evs021 URL |
[19] |
Lin C S, Chen J J, Chiu C C, Hsiao H C, Yang C J, Jin X H, Leebens-Mack J, de Pamphilis C W, Huang Y T, Yang L H, Chang W J, Kui L W, Gane K S H, Wang J M, WenShih M C. 2017. Concomitant loss of NDH complex-related genes within chloroplast and nuclear genome is some orchids. The Plant Journal, 90 (5):994-1006.
doi: 10.1111/tpj.13525 URL |
[20] |
Liu Q, Xue Q. 2005. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. Journal of Genetics, 84 (1):55-62.
doi: 10.1007/BF02715890 URL |
[21] |
Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research, 41:W575-W581.
doi: 10.1093/nar/gkt289 URL |
[22] | Luo R B, Liu B H, Xie Y L, Li Z Y, Huang W H, Yuan J Y, He G Z, Chen Y X, Pan Q, Liu Y J, Tang J B, Wu G X, Zhuang H, Shi Y J, Liu Y, Yu C, Wang B, Lu Y, Han C L, Cheung D W, Yiu S M, Peng S L, Zhu X Q, Liu G M, Liao X K, Li Y R, Yang H M, Wang J, Lam W T, Wang J. 2012. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1 (1):2047-217X-1-18. |
[23] |
Manos P S, Soltis P S, Soltis D E, Manchester S R, Oh S H, Bel C D, Dilcher D L, Stone D E. 2007. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology, 56 (3):412-430.
pmid: 17558964 |
[24] |
Manos P S, Stone D E. 2001. Evolution,phylogeny,and systematics of the Juglandaceae. Annals of the Missouri Botanical Garden, 88 (2):231-269.
doi: 10.2307/2666226 URL |
[25] |
Mo Z, Lou W, Chen Y, Jia X, Zhai M, Guo Z, Xuan J. 2020. The chloroplast genome of Carya illinoinensis:genome structure,adaptive evolution,and phylogenetic analysis. Forests, 11 (2):207.
doi: 10.3390/f11020207 URL |
[26] | Moore M J, Soltis P S, Bell C D, Burleigh J G, Soltis D E. 2010. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Academy of Sciences, 107 (10):4623-4628. |
[27] | Olsson S, Grivet D, Vian J C. 2018. Species-diagnostic markers in the genus Pinus:evaluation of the chloroplast regions matK and ycf1. Forest Systems, 27 (3):2. |
[28] |
Palmer J D, Thompson W F. 1982. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell, 29 (2):537-550.
pmid: 6288261 |
[29] | Qi Jian-xun, Hao Yan-bin, Zhu Yan, Wu Chun-lin, Wang Wei-xia, Leng Ping. 2011. Studies on germplasm of Juglans by EST-SSR markers. Acta Horticulturae Sinica, 38 (3):441-448. (in Chinese) |
齐建勋, 郝艳宾, 朱艳, 吴春林, 王维霞, 冷平. 2011. 核桃属种质资源的EST-SSR标记研究. 园艺学报, 38 (3):441-448. | |
[30] |
Raman G, Park S J. 2016. The complete chloroplast genome sequence of ampelopsis:gene organization,comparative analysis,and phylogenetic relationships to other angiosperms. Frontiers in Plant Science, 7:341.
doi: 10.3389/fpls.2016.00341 URL |
[31] |
Ranade S S, Garcia-Gil M R, Rossello J A. 2016. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch):insights from in silico analysis of nuclear and organellar genomes. Molecular Genetics and Genomics, 291 (2):935-941.
doi: 10.1007/s00438-015-1159-7 URL |
[32] |
Redwan R M, Saidin A, Kumar S V. 2015. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biology, 15 (196):1-20.
doi: 10.1186/s12870-014-0410-4 URL |
[33] |
Sharp P M, Li W H. 1987. The codon adaptation index-a measure of directional synonymous codon usage bias,and its potential applications. Nucleic Acids Research, 15 (3):1281-1295.
pmid: 3547335 |
[34] |
Stamatakis A. 2014. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9):1312-1313.
doi: 10.1093/bioinformatics/btu033 URL |
[35] |
Sugiura M. 1992. The chloroplast genome. Plant Molecular Biology, 19 (1):149-168.
pmid: 1600166 |
[36] | Thompson T E, Grauke L J. 2000. ‘Pawnee’pecan. Journal of American Pomological Society, 54 (3):110-113. |
[37] | Wang Man, Ning De-lu, Li Xian-zhong, Zhang Yu, Li Yong-jie. 2010. The survey research and development trends of Carya illinoensis. Forest by-Product and Speciality in China,(2):84-86. (in Chinese) |
王曼, 宁德鲁, 李贤忠, 张雨, 李勇杰. 2010. 薄壳山核桃研究概况. 中国林副特产,(2):84-86. | |
[38] |
Wu F, Li M, Liao B, Shi X, Xu Y. 2019. DNA barcoding analysis and phylogenetic relation of mangroves in Guangdong Province,China. Forests, 10 (1):56.
doi: 10.3390/f10010056 URL |
[39] | Wu Yan-min, Liu Ying, Dong Feng-xiang, Xi Sheng-ke. 2000a. Study on different ecological types of Chinese walnut(J. regia)using RAPD marker. Journal of Beijing Forestry University, 22 (5):23-27. (in Chinese) |
吴燕民, 刘英, 董凤祥, 奚声珂. 2000a. 应用RAPD对我国栽培核桃不同地理生态型的研究. 北京林业大学学报, 22 (5):23-27. | |
[40] | Wu Yan-min, Pei Dong, Xi Sheng-ke, Li Jia-rui. 2000b. A study on the genetic relationship among species in Juglans L. using RAPD marker. Acta Horticulturae Sinica, 27 (1):17-22. (in Chinese) |
吴燕民, 裴东, 奚声珂, 李嘉瑞. 2000b. 运用RAPD对核桃属种间亲缘关系的研究. 园艺学报, 27 (1):17-22. | |
[41] |
Xiang X G, Wang W, Li R Q, Lin L, Liu Y, Zhou Z K, Li Z Y, Chen Z D. 2014. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspectives in Plant Ecology,Evolution and Systematics, 16 (3):101-110.
doi: 10.1016/j.ppees.2014.03.001 URL |
[42] |
Xie H, Jiao J, Fan X, Zhang Y, Jiang J, Liu C. 2016. The complete chloroplast genome sequence of Chinese wild grape Vitis amurensis (Vitaceae:Vitis L.). Conservation Genetics Resources, 9 (1):1-4.
doi: 10.1007/s12686-016-0602-3 URL |
[43] |
Yan C, Du J, Gao L, Li Y, Hou X. 2019. The complete chloroplast genome sequence of watercress(Nasturtium officinale R. Br.):genome organization,adaptive evolution and phylogenetic relationships in Cardamineae. Gene, 699:24-36.
doi: 10.1016/j.gene.2019.02.075 URL |
[44] | Yang Jian-hua, Xi Xue-liang, Dong Run-quan, Fan Zhi-yuan, Li Shu-fang, Zou Wei-lie, Xiong Xin-wu, Chen Qin. 2018. Breeding of thin-shished hickory variety‘Jinhua’. South China Fruits, 47 (1):149-150. (in Chinese) |
杨建华, 习学良, 董润泉, 范志远, 李淑芳, 邹伟烈, 熊新武, 陈勤. 2018. 薄壳山核桃品种‘金华’的选育. 中国南方果树, 47 (1):149-150. | |
[45] | Yang Y, Dong Y Y, Li Q, Lu J J, Li X W, Wang Y T. 2014. Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium:organizations and implications for genetic engineering. PLoS ONE, 9 (11):e110656. |
[46] | Yang Yameng, Jiao Jian, Fan Xiucai, Zhang Ying, Jiang Jianfu, Li Min, Liu Chonghuai. 2019. Complete chloroplast genome sequence and characteristics analysis of Vitis ficifolia. Acta Horticulturae Sinica, 46 (4):635-648. (in Chinese) |
杨亚蒙, 焦健, 樊秀彩, 张颖, 姜建福, 李民, 刘崇怀. 2019. 桑叶葡萄叶绿体基因组及其特征分析. 园艺学报, 46 (4):635-648.
doi: 10.16420/j.issn.0513-353x.2018-0596 |
|
[47] |
Zhang R, Peng F, Li Y. 2015. Pecan production in China. Scientia Horticulturae, 197:719-727.
doi: 10.1016/j.scienta.2015.10.035 URL |
[48] | Zheng Yi, Zhang Hui, Wang Qinmei, Gao Yue, Zhang Zhihong, Sun Yuxin. 2020. Complete chloroplast genome sequence of Clivia miniata and its characteristics. Acta Horticulturae Sinica, 47 (12):2439-2450. (in Chinese) |
郑祎, 张卉, 王钦美, 高悦, 张志宏, 孙玉新. 2020. 大花君子兰叶绿体基因组及其特征. 园艺学报, 47 (12):2439-2450. | |
[49] | Zuo L H, Shang A Q, Zhang S, Yu X Y, Ren Y C, Yang M S, Wang J M. 2017. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing:Genome comparative and taxonomic position analysis. PLoS ONE, 12 (2):e0171264. |
[1] | TANG Chenqian, QIU Zhixin, TAN Chao, QIAN Yuming, CHEN Xin. Sorbus koehneana(Rosaceae):Its Complete Chloroplast Genome and Phylogenetic Relationship with S. unguiculata [J]. Acta Horticulturae Sinica, 2022, 49(3): 641-654. |
[2] | SONG Yun, JIA Mengjun, CAO Yaping, LI Zheng, HE Jiaxin, WANG Yongfei, ZHANG Xinrui, QIAO Yonggang. Analysis on Chloroplast Genomic Characteristics of Forsythia suspensa [J]. Acta Horticulturae Sinica, 2022, 49(1): 187-199. |
[3] | LI Yongtan,ZHANG Jun*,HUANG Yali,FAN Jianmin,ZHANG Yiwen,and ZUO Lihui. Analysis of Chloroplast Genome of Pyrus betulaefolia [J]. ACTA HORTICULTURAE SINICA, 2020, 47(6): 1021-1032. |
[4] | LI Qian1,GUO Qiqiang2,GAO Chao2,and LI Huie1,*. Characterization of Complete Chloroplast Genome of Camellia weiningensis in Weining,Guizhou Province [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 779-787. |
[5] | ZHENG Yi, ZHANG Hui, WANG Qinmei, GAO Yue, ZHANG Zhihong, and SUN Yuxin. Complete Chloroplast Genome Sequence of Clivia miniata and Its Characteristics [J]. Acta Horticulturae Sinica, 2020, 47(12): 2439-2450. |
[6] | YANG Yameng1,JIAO Jian2,FAN Xiucai1,ZHANG Ying1,JIANG Jianfu1,LI Min1,and LIU Chonghuai1,*. Complete Chloroplast Genome Sequence and Characteristics Analysis of Vitis ficifolia [J]. ACTA HORTICULTURAE SINICA, 2019, 46(4): 635-648. |
[7] | WEI Xiuqing,XU Ling,ZHANG Xijuan,YU Dong,CHEN Zhifeng,ZHANG Limei,CHEN Changzhong,and XU Jiahui*. Analysis on SSR Information in Transcriptome and Development of Molecular Markers in Wax Apple [J]. ACTA HORTICULTURAE SINICA, 2018, 45(3): 541-551. |
[8] | LI Yongping,LIU Jianting,CHEN Mindong,ZHANG Qianrong,ZHU Haisheng*,and WEN Qingfang*. SSR Markers Excavation and Germplasm Analysis Using the Transcriptome Information of Hibiscus esculentus [J]. ACTA HORTICULTURAE SINICA, 2018, 45(3): 579-590. |
[9] | CHENG Yunqing,ZHANG Lina,ZHAO Yongbin,and LIU Jianfeng*. Analysis of SSR Markers Information and Primer Selection from Transcriptome Sequence of Hybrid Hazelnut Corylus heterophylla × C. avellana [J]. ACTA HORTICULTURAE SINICA, 2018, 45(1): 139-148. |
[10] | HE Huaqi1,LIU Minxiang1,WANG Ying2,MAO Wenjun2,and BAO Dapeng2,*. Genetic Diversity Analysis of Cordyceps militaris Using SSR Molecular#br# Markers [J]. ACTA HORTICULTURAE SINICA, 2017, 44(11): 2195-2202. |
[11] | LIANG Wu-Jun, JIE Kai-Dong, GUO Da-Yong, XIE Zong-Zhou, XU , QIANG , YI Hua-Lin, GUO Wen-Wu. Spontaneous Generation and SSR Characterization of Polyploids from Ten Citrus Cultivars [J]. ACTA HORTICULTURAE SINICA, 2014, 41(3): 409-416. |
[12] | JIA Xin-Ping, SUN Xiao-Bo, DENG Yan-Ming, LIANG Li-Jian, YE Xiao-Qing. Sequencing and Analysis of the Transcriptome of Asplenium nidus [J]. ACTA HORTICULTURAE SINICA, 2014, 41(11): 2329-2341. |
[13] | YANG Su-li;MING Jun;LIU Chun;MU Ding;and LI Ming-yang. Data mining for simple sequence repeats marker development in expressed sequence tags from Lilium L. [J]. ACTA HORTICULTURAE SINICA, 2008, 35(7): 1069-1074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd