Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (8): 1699-1712.doi: 10.16420/j.issn.0513-353x.2021-0604
• Research Papers • Previous Articles Next Articles
DONG Sangjie1, GE Shibei1, LI Lan1, HE Liqun1, FAN Feijun3, QI Zhenyu2, YU Jingquan1, ZHOU Yanhong1,*()
Received:
2021-12-09
Revised:
2022-04-11
Online:
2022-08-25
Published:
2022-09-05
Contact:
ZHOU Yanhong
E-mail:yanhongzhou@zju.edu.cn
CLC Number:
DONG Sangjie, GE Shibei, LI Lan, HE Liqun, FAN Feijun, QI Zhenyu, YU Jingquan, ZHOU Yanhong. Effects of Supplemental Lighting on Growth,Root Colonization by Arbuscular Mycorrhizal Fungi and Phosphorus Uptake in Pepper Seedlings[J]. Acta Horticulturae Sinica, 2022, 49(8): 1699-1712.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0604
Fig 1 The spectra of supplemental lighting and its effect on the phenotype of 21 d pepper seedlings WL:White light;WL + R:Supplementary red light;WL + FR:Supplementary far red light;WL + B:Supplementary blue light. The same below.
基因名称 Gene name | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
UBI-3 | TGTCCATCTGCTCTCTGTTG | CACCCCAAGCACAATAAGAC |
PT4 | CGAAACAGGGCGATACACTG | AATGAAACCCGTGGTGTTGG |
PT5 | AGCCTGAGGCGGATTATGTT | ATCGCGGCTTGTTTAGCATT |
Table 1 Primers used for real-time quantitative PCR
基因名称 Gene name | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
UBI-3 | TGTCCATCTGCTCTCTGTTG | CACCCCAAGCACAATAAGAC |
PT4 | CGAAACAGGGCGATACACTG | AATGAAACCCGTGGTGTTGG |
PT5 | AGCCTGAGGCGGATTATGTT | ATCGCGGCTTGTTTAGCATT |
处理 Treatment | 株高/cm Plant height | 茎粗/mm Stem thickness | 第1节间 距/cm First section spacing | 下胚轴长/ cm Hypocotyl length | 叶片数Leaf number | 鲜质量/g Fresh weight | 干质量/g Dry weight | 壮苗 指数 Strong seedling index | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Underground | 总计 Total | 地上部 Above ground | 地下部 Underground | 总计 Total | |||||||
WL | 8.34 c | 2.14 b | 2.84 c | 3.50 b | 5.00 b | 1.63 b | 0.30 b | 1.93 b | 0.264 c | 0.040 b | 0.304 c | 0.124 b |
WL + R | 10.56 b | 2.55 a | 3.40 b | 3.46 b | 6.00 a | 2.64 a | 0.54 a | 3.19 a | 0.376 a | 0.072 a | 0.448 a | 0.194 a |
WL + FR | 13.10 a | 1.62 c | 4.94 a | 5.04 a | 4.60 b | 1.59 b | 0.33 b | 1.92 b | 0.266 c | 0.042 b | 0.309 c | 0.087 c |
WL + B | 9.96 b | 2.22 b | 2.86 c | 3.22 c | 6.00 a | 2.56 a | 0.54 a | 3.10 a | 0.361 b | 0.074 a | 0.435 b | 0.187 a |
Table 2 Effects of supplemental lighting for 21 d on the growth and biomass accumulation in pepper seedlings
处理 Treatment | 株高/cm Plant height | 茎粗/mm Stem thickness | 第1节间 距/cm First section spacing | 下胚轴长/ cm Hypocotyl length | 叶片数Leaf number | 鲜质量/g Fresh weight | 干质量/g Dry weight | 壮苗 指数 Strong seedling index | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
地上部 Above ground | 地下部 Underground | 总计 Total | 地上部 Above ground | 地下部 Underground | 总计 Total | |||||||
WL | 8.34 c | 2.14 b | 2.84 c | 3.50 b | 5.00 b | 1.63 b | 0.30 b | 1.93 b | 0.264 c | 0.040 b | 0.304 c | 0.124 b |
WL + R | 10.56 b | 2.55 a | 3.40 b | 3.46 b | 6.00 a | 2.64 a | 0.54 a | 3.19 a | 0.376 a | 0.072 a | 0.448 a | 0.194 a |
WL + FR | 13.10 a | 1.62 c | 4.94 a | 5.04 a | 4.60 b | 1.59 b | 0.33 b | 1.92 b | 0.266 c | 0.042 b | 0.309 c | 0.087 c |
WL + B | 9.96 b | 2.22 b | 2.86 c | 3.22 c | 6.00 a | 2.56 a | 0.54 a | 3.10 a | 0.361 b | 0.074 a | 0.435 b | 0.187 a |
Fig. 2 Effects of supplemental lighting for 21 d on the photosynthetic rate and pigment contents in leaves of pepper seedlings Different small letters indicate significant differences. The same below.
处理 Treatment | 蔗糖占比 Proportion of sucrose content | 总糖占比 Proportion of sucrose content | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
WL | 8 b | 45 c | 47 a | 12 c | 38 b | 50 a |
WL + R | 10 a | 51 b | 39 c | 17 a | 35 c | 48 a |
WL + FR | 6 c | 59 a | 35 d | 9 d | 44 a | 47 a |
WL + B | 9 a | 48 bc | 43 b | 14 b | 36 bc | 50 a |
Table 3 Effects of supplemental lighting for 21 d on the proportion of carbohydrate in pepper seedling leaves and roots %
处理 Treatment | 蔗糖占比 Proportion of sucrose content | 总糖占比 Proportion of sucrose content | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
WL | 8 b | 45 c | 47 a | 12 c | 38 b | 50 a |
WL + R | 10 a | 51 b | 39 c | 17 a | 35 c | 48 a |
WL + FR | 6 c | 59 a | 35 d | 9 d | 44 a | 47 a |
WL + B | 9 a | 48 bc | 43 b | 14 b | 36 bc | 50 a |
Fig. 8 Effects of supplemental lighting on phosphorus absorption in pepper during seedling stage after inoculation with arbuscular mycorrhizal fungi for 21 d
[1] |
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 64 (6):1002-1017.
doi: 10.1111/j.1365-313X.2010.04385.x URL |
[2] |
Brundrett M C, Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220 (4):1108-1115.
doi: 10.1111/nph.14976 pmid: 29355963 |
[3] | Cao Gang, Zhang Guo-bin, Yu Ji-hua, Ma Yan-xia. 2013. Effects of different LED light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultra Sinica, 46 (6):1297-1304. (in Chinese) |
曹刚, 张国斌, 郁继华, 马彦霞. 2013. 不同光质LED光源对黄瓜苗期生长及叶绿素荧光参数的影响. 中国农业科学, 46 (6):1297-1304. | |
[4] |
D'Incecco P, Ong L, Gras S, Pellegrino L. 2018. A fluorescence in situ staining method for investigating spores and vegetative cells of Clostridia by confocal laser scanning microscopy and structured illuminated microscopy. Micron, 110:1-9.
doi: S0968-4328(18)30087-8 pmid: 29689432 |
[5] | Dong F, Wang C, Sun X, Bao Z, Liu S. 2019. Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. Plant Growth Regulation, 88 (3):754-760. |
[6] | Drigo B, Pijl A S, Duyts H, Kielak A, Gamper H A, Houtekamer M J, Boschker H T, Bodelier P L, Whiteley A S, van Veen J A, Kowalchuk G A. 2010. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107 (24):10938-10942. |
[7] | Ge Shibei, Jiang Xiaochun, Wang Lingyu, Yu Jingquan, Zhou Yanhong. 2020. Recent advances in the role and mechanism of arbuscular mycorrhiza- induced improvement of abiotic stress tolerance in horticultural plants. Acta Horticulturae Sinica, 47 (9):1752-1776. (in Chinese) |
葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 2020. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展. 园艺学报, 47 (9):1752-1776. | |
[8] |
Ho I, Trappe J M. 1973. Translocation of 14C from festuca plants to their endomycorrhizal fungi. Nature New Biology, 244 (131):30-31.
doi: 10.1038/newbio244030a0 URL |
[9] |
Jia K P, Baz L, Al-Babili S. 2018. From carotenoids to strigolactones. Journal of Experimental Botany, 69 (9):2189-2204.
doi: 10.1093/jxb/erx476 URL |
[10] |
Jiang C F, Gao X H, Liao L L, Nicholas P H, Fu X D. 2007. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145:1460-1470.
doi: 10.1104/pp.107.103788 URL |
[11] |
Jiang X C, Xu J, Lin R, Song J N, Shao S J, Yu J Q, Zhou Y H. 2020. Light-induced HY 5 functions as a systemic signal to coordinate the photoprotective response to light fluctuation. Plant Physiology, 184 (2):1181-1193.
doi: 10.1104/pp.20.00294 URL |
[12] |
Lanfranco L, Fiorilli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220 (4):1031-1046.
doi: 10.1111/nph.15230 pmid: 29806959 |
[13] |
Li Y, Xin G, Wei M, Shi Q, Yang F, Wang X. 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Scientia Horticulturae, 225:490-497.
doi: 10.1016/j.scienta.2017.07.053 URL |
[14] | Ling Dan-dan, Luo Jia-ming, Liu Xiao-ying, Chu Jing-yu, Xu Zhi-gang, Fan Xiao-xue. 2021. Effects of different light quality combinations on carbon and nitrogen eetabolism and enzyme activities of tomato in early flowering period. Journal of Nanjing Agricultural University, 44 (4):622-627. (in Chinese) |
凌丹丹, 雒佳铭, 刘晓英, 储靖宇, 徐志刚, 樊小雪. 2021. 不同光质及组合对番茄开花初期碳氮代谢及其关键酶活性的影响. 南京农业大学学报, 44 (4):622-627. | |
[15] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[16] |
Ma Y, Xu A, Cheng Z M. 2021. Effects of light emitting diode lights on plant growth,development and traits a meta-analysis. Horticultural Plant Journal, 7 (6):552-564.
doi: 10.1016/j.hpj.2020.05.007 URL |
[17] | Manck-Gotzenberger J, Requena N. 2016. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science, 7:14-23. |
[18] |
Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K. 2016. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry, 130:90-98.
doi: 10.1016/j.phytochem.2016.05.012 URL |
[19] |
Mostofa M G, Li W, Nguyen K H, Fujita M, Lam-Son P T. 2018. Strigolactones in plant adaptation to abiotic stresses:an emerging avenue of plant research. Plant Cell and Environment, 41 (10):2227-2243.
doi: 10.1111/pce.13364 URL |
[20] | Nagata M, Yamamoto N, Miyamoto T, Shimomura A, Arima S, Hirsch A M, Suzuki A. 2016. Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus. Plant Signaling and Behavior, 11 (6):3-13. |
[21] |
Nagata M, Yamamoto N, Shigeyama T, Terasawa Y, Anai T, Sakai T, Inada S, Arima S, Hashiguchi M, Akashi R, Nakayama H, Ueno D, Hirsch A M, Suzuki A. 2015. Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling. Plant and Cell Physiology, 56 (11):2100-2109.
doi: 10.1093/pcp/pcv135 pmid: 26412782 |
[22] |
Ning Yu,Ai Xi-zhen,Li Qing-ming,Bi Huan-gai. 2019. Effects of light quality on carbon-nitrogen metabolism,growth,and quality of Chinese chives. Chinese Journal of Applied Ecology, 30 (1):251-258. (in Chinese)
doi: 10.13287/j.1001-9332.201901.032 |
宁宇, 艾希珍, 李清明, 毕焕改. 2019. 光质对韭菜碳氮代谢、生长和品质的影响. 应用生态学报, 30 (1):251-258.
doi: 10.13287/j.1001-9332.201901.032 |
|
[23] | Qin Yong-mei, Han Feng-ying, Yang Hui, Liu Min. 2020. Effects of light quality on morphogenesis and carbon and nitrogen metabolism of bitter gourd seedlings. China Cucurbits and Vegetables, 33 (7):24-27. (in Chinese) |
秦永梅, 韩凤英, 杨慧, 刘敏. 2020. 光质对苦瓜幼苗形态建成及碳氮代谢的影响. 中国瓜菜, 33 (7):24-27. | |
[24] |
Redecker D, Kodner R, Graham L E. 2000. Glomalean fungi from the Ordovician. Science, 289 (5486):1920-1921.
pmid: 10988069 |
[25] |
Smith S E, Smith F A. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62:227-250.
doi: 10.1146/annurev-arplant-042110-103846 URL |
[26] |
Smith S E, Smith F A, Jakobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133 (1):16-20.
doi: 10.1104/pp.103.024380 URL |
[27] |
Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P. 2010. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology, 6 (10):741-749.
doi: 10.1038/nchembio.435 URL |
[28] | Wang Jia-qi. 2020. Study on the effect of different light quality LED supplementary light on the growth and development of blueberry in greenhouse[M. D. Dissertation]. Jinhua: Zhejiang Normal University. (in Chinese) |
王佳淇. 2020. 不同光质LED补光对大棚蓝莓生长发育的影响研究[硕士论文]. 金华: 浙江师范大学. | |
[29] |
Wang S B, Liu K W, Diao W P, Zhi L, Ge W, Liu J B, Pan B G, Wan H J, Chen J F. 2012. Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Molecular Breeding, 30 (3):1393-1400.
doi: 10.1007/s11032-012-9726-7 URL |
[30] | Wen Lian-lian, Li Yan, Qin Li-jie, Zhou Xin, Ni Xiu-nan, Liu Shu-xia, Jiao Juan, Wei Min. 2018. Effects of proportions of white,red and blue light qualities on the strong plants and photosynthetic characteristcs in tomato seedlings. Plant Physiology Journal, 54 (7):1223-1232. (in Chinese) |
文莲莲, 李岩, 秦利杰, 周鑫, 倪秀男, 刘淑侠, 焦娟, 魏珉. 2018. 白光与红蓝光比例对番茄壮苗及光合特性的影响. 植物生理学报, 54 (7):1223-1232. | |
[31] |
Xie Y R, Liu Y, Ma M D, Zhou Q, Zhao Y P, Zhao B B, Wang B B, Wei H B, Wang H Y. 2020. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nature Communications, 11 (1):1-13.
doi: 10.1038/s41467-019-13993-7 URL |
[32] |
Xu J, Guo Z, Jiang X, Ahammed G J, Zhou Y. 2021. Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal, 7 (5):367-379.
doi: 10.1016/j.hpj.2021.01.005 URL |
[33] | Yang Z C, He W, Mou S T, Wang X X, Chen D Y, Hu X T, Chen L H, Bai J Y. 2017. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs. Transactions of the Chinese Society of Agricultural Engineering, 33 (17):173-180. |
[34] | Yu Yi, Yang Qi-zhang, Liu Wen-ke. 2014. Effects of LED red and blue light component on growth and photosynthetic pigment contents of two leaf-color lettuce cultivars. Agricultural Engineering, 4 (S1):1-3. (in Chinese) |
余意, 杨其长, 刘文科. 2014. LED红蓝光质对两种叶色生菜产量和光合色素含量的影响. 农业工程, 4 (S1):1-3. | |
[35] |
Zhou Y H, Ge S B, Jin L J, Yao K Q, Wang Y, Wu X D, Zhou J, Xia X J, Shi K, Foyer C H, Yu J Q. 2019. A novel CO2-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist, 224 (1):106-116.
doi: 10.1111/nph.15917 URL |
[1] | LUO Hailin, YUAN Lei, WENG Hua, YAN Jiahui, GUO Qingyun, WANG Wenqing, MA Xinming. Identification and Analysis of Complete Genomic Sequence of Broad Bean Wilt Virus 2 Pepper Isolate in Qinghai Province [J]. Acta Horticulturae Sinica, 2023, 50(1): 161-169. |
[2] | CAO Yacong, ZHANG Zhenghai, YU Hailong, FENG Xigang, ZHANG Baoxi, and WANG Lihao. A New Spiral Pepper Cultivar‘Zhongjiao 409’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 111-112. |
[3] | CAO Yacong, ZHANG Zhenghai, YU Hailong, FENG Xigang, ZHANG Baoxi, and WANG Lihao. A New Disease-resistant Spiral Hot Pepper Cultivar‘Zhongjiao 209’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 113-114. |
[4] | WANG Yongping, HU Mingwen, ZHU Wenchao, LIAO Fangfang, BAI Liwei, and GAO Gang. A New Pepper Cultivar‘Hongla 3’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 115-116. |
[5] | Liu Shujun, Hui Chengzhang, Zhao Lili, Sun Yongsheng, and Liu Aiqun . A New Mid-early Ripening Pepper Cultivar‘Meroka’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 117-118. |
[6] | WANG Fei, LI Ning, YIN Yanxu, GAO Shenghua, XU Kai, and YAO Minghua. A New Pepper Cultivar‘Ejiao Hongyuanshuai’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 119-120. |
[7] | LI Ning, YIN Yanxu, GAO Shenghua, XU Kai, WANG Fei, and YAO Minghua. A New Pepper Cultivar‘Jinxiuhong 117’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 121-122. |
[8] | FANG Rong, CHEN Xuejun, ZHOU Kunhua, YUAN Xinjie, LEI Gang, and HUANG Yueqin. A New Pepper Cultivar‘Ganjiao 18’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 75-76. |
[9] | LI Ying, WANG Hengming, XU Xiaowan, XU Xiaomei, HUANG Zhiwen. A New Pepper Cultivar‘Yuejiao 8’ [J]. Acta Horticulturae Sinica, 2022, 49(8): 1837-1838. |
[10] | ZOU Xuexiao, ZHU Fan. Origin,Evolution and Cultivation History of the Pepper [J]. Acta Horticulturae Sinica, 2022, 49(6): 1371-1381. |
[11] | FU Hongfei, NIE Zhixing, CHEN Jianying. A New Pepper‘Hangjiao 12’ [J]. Acta Horticulturae Sinica, 2022, 49(6): 1395-1396. |
[12] | GONG Mingxia, ZHAO Hu, WANG Meng, WU Xing, ZHAO Zengjing, HE Zhi, HUANG Jinmei, MENG Shengde, WANG Risheng. Identification of Viruses Infecting Peppers in Guangxi by Small RNA Deep Sequencing and RT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(5): 1060-1072. |
[13] | ZHANG Shicai, LI Yifei, WANG Chunping, YANG Xiaomiao, HUANG Qizhong, HUANG Renzhong. Resistance Identification and Evaluation of Pepper Germplasm to Colletotrichum acutatum [J]. Acta Horticulturae Sinica, 2022, 49(4): 885-892. |
[14] | ZOU Xuexiao, HU Bowen, XIONG Cheng, DAI Xiongze, LIU Feng, OU Lijun, YANG Bozhi, LIU Zhoubin, SUO Huan, XU Hao, ZHU Fan, and YUAN Fang. Review and Prospects of Pepper Breeding for the Past 60 Years in China [J]. Acta Horticulturae Sinica, 2022, 49(10): 2099-2118. |
[15] | FANG Rong, ZHOU Kunhua, YUAN Xinjie, HUANG Yueqin, LEI Gang, CHEN Xuejun. A New Hot Pepper Cultivar'Ganjiao 20'for Both Dry and Fresh Fruit Production [J]. Acta Horticulturae Sinica, 2022, 49(10): 2287-2288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd