Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (8): 1650-1662.doi: 10.16420/j.issn.0513-353x.2021-0518
• Research Papers • Previous Articles Next Articles
LIU Chaoyang(), LIAO Zhichan, LU Xinxin, HE Yehua
Received:
2022-02-22
Revised:
2022-05-09
Online:
2022-08-25
Published:
2022-09-05
CLC Number:
LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a[J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0518
引物用途 Primer use | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因ORF克隆 ORF Cloning | AcoCSLD2a-F | ATGGCATCGAACAGCGCGCTT |
AcoCSLD2a-R | TTAAGGGAATGTGAAGGAACC | |
植物表达载体构建 Plant expression vector construction | EcoRⅠ-ProAtUBQ10-F | GAATTCCGACGAGTCAGTAATAAAC |
BamHⅠ-ProAtUBQ10-R | GGATTCTGTTAATCAGAAAAACTCAG | |
EcoRⅠ-ProAtCSLD3-F | GAATTCCACTTGTGTCCTGATACTCTC | |
BamHⅠ-ProAtCSLD3-R | GGATTCTGTCTAATAATAACACTAT | |
PstⅠ-AcoCSLD2a-F | CTGCAGATGGCATCGAACAGCGCGCTT | |
SpeⅠ-AcoCSLD2a-R | ACTAGTTTAAGGGAATGTGAAGGAACC | |
亚细胞定位 载体构建 Subcellular localization vector construction | XbaⅠ-GFP-AcoCSLD2a-F | TCTAGAATGGCATCGAACAGCGCGCTT |
SacⅠ-GFP-AcoCSLD2a-R | GAGCTCAGGGAATGTGAAGGAACC |
Table 1 The primer sequences used in this study
引物用途 Primer use | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因ORF克隆 ORF Cloning | AcoCSLD2a-F | ATGGCATCGAACAGCGCGCTT |
AcoCSLD2a-R | TTAAGGGAATGTGAAGGAACC | |
植物表达载体构建 Plant expression vector construction | EcoRⅠ-ProAtUBQ10-F | GAATTCCGACGAGTCAGTAATAAAC |
BamHⅠ-ProAtUBQ10-R | GGATTCTGTTAATCAGAAAAACTCAG | |
EcoRⅠ-ProAtCSLD3-F | GAATTCCACTTGTGTCCTGATACTCTC | |
BamHⅠ-ProAtCSLD3-R | GGATTCTGTCTAATAATAACACTAT | |
PstⅠ-AcoCSLD2a-F | CTGCAGATGGCATCGAACAGCGCGCTT | |
SpeⅠ-AcoCSLD2a-R | ACTAGTTTAAGGGAATGTGAAGGAACC | |
亚细胞定位 载体构建 Subcellular localization vector construction | XbaⅠ-GFP-AcoCSLD2a-F | TCTAGAATGGCATCGAACAGCGCGCTT |
SacⅠ-GFP-AcoCSLD2a-R | GAGCTCAGGGAATGTGAAGGAACC |
Fig. 2 Phylogenetic tree of CslD proteins in pineapple and other ten species At:Arabidopsis thaliana;Os:Oryza sativa;Zm:Zea mays;Sb:Sorghum bicolor;Bd:Brachypodium distachyon;Ma:Musa acuminate;Gr:Gossypium raimondii;Prupe:Prunus persica;Solyc:Solanum lycopersicum;Ptr:Populus trichocarpa.
Fig. 4 Synteny analysis of CslD genes from pineapple,Brachypodium distachyon and rice(A)and synteny analysis of CslD genes from pineapple,banana,maize and Arabidopsis(B) Lines with different colors indicated the syntenic CslD gene pairs between pineapple and other species. Ac:Ananas comosus;Bd:Brachypodium distachyon;Os:Oryza sativa;Ma:Musa acuminata;Zm:Zea mays;At:Arabidopsis thaliana.
Fig. 5 Heat map of pineapple CslD gene expression in various pineapple tissues during different developmental stages M:Stamen;T:Style;P:Petal;L:Leaf;S:Stem;R:Root;S1-S5 indicate different development stages for flower and fruit of pineapple,respectively.
[1] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[2] |
Doblin M S, Pettolino F, Bacic A. 2010. Plant cell walls:the skeleton of the plant world. Functional Plant Biology, 37 (5):357-381.
doi: 10.1071/FP09279 URL |
[3] |
Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin M S, Beahan C T, Kopischke M, Fuchs R, Lipka V, Niks E R, Bulone V, Chowdhury J, Little A, Burton R A, Bacic A, Fincher G B, Schweizer P. 2016. The barley(Hordeum vulgare)cellulose synthase-like D 2 gene(HvCslD2)mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytologist, 212 (2):421-433.
doi: 10.1111/nph.14065 pmid: 27352228 |
[4] |
Endler A, Persson S. 2011. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant, 4 (2):199-211.
doi: 10.1093/mp/ssq079 pmid: 21307367 |
[5] | Gu F, Bringmann M, Combs J R, Yang J, Bergmann D C, Nielsen E. 2016. Arabidopsis CSLD 5 functions in cell plate formation in a cell cycle-dependent manner. The Plant Cell, 28 (7):1722-1737. |
[6] |
Handakumbura P P, Matos D A, Osmont K S, Harrington M J, Heo K, Kafle K, Kim S H, Kim S H, Baskin T I, Hazen S P. 2013. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biology, 13 (1):1-16.
doi: 10.1186/1471-2229-13-1 URL |
[7] |
Hsieh Y S, Harris P J. 2009. Xyloglucans of monocotyledons have diverse structures. Molecular Plant, 2 (5):943-965.
doi: 10.1093/mp/ssp061 pmid: 19825671 |
[8] |
Kaur S, Dhugga K S, Beech R, Singh J. 2017. Genome-wide analysis of the cellulose synthase-like(Csl)gene family in bread wheat(Triticum aestivum L.). BMC Plant Biology, 17 (1):1-17.
doi: 10.1186/s12870-016-0951-9 URL |
[9] |
Kim C M, Park S H, Je B I, Park S H, Park S J, Piao H L, Eun M Y, Dolan L, Han C. 2007. OsCSLD1,a cellulose synthase-like D 1 gene,is required for root hair morphogenesis in rice. Plant Physiology, 143 (3):1220-1230.
doi: 10.1104/pp.106.091546 URL |
[10] |
Li L, Hey S, Liu S, Liu Q, Mcninch C, Hu H C, Wen T J, Marcon C, Paschold A, Bruce W, Schnable P S, Hochholdinger F. 2016. Characterization of maize roothairless 6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 6 (1):1-12.
doi: 10.1038/s41598-016-0001-8 URL |
[11] |
Li W, Yang Z, Yao J, Li J, Song W, Yang X. 2018. Cellulose synthase-like D 1 controls organ size in maize. BMC Plant Biology, 18 (1):1-15.
doi: 10.1186/s12870-017-1213-1 URL |
[12] | Li Weiya. 2019. Molecular mechanism analysis of ZmCSLD1 and map based cloning of qLA2-1 for plant architecture development[Ph. D. Dissertation]. Beijing: China Agricultural University. (in Chinese) |
李威亚. 2019. 玉米株型关键基因ZmCSLD1分子机制解析及叶夹角qLA2-1精细定位[博士论文]. 北京: 中国农业大学. | |
[13] |
Li Y, Yang T, Dai D, Hu Y, Guo X, Guo H. 2017. Evolution,gene expression profiling and 3D modeling of CSLD proteins in cotton. BMC Plant Biology, 17 (1):1-19.
doi: 10.1186/s12870-016-0951-9 URL |
[14] |
Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O’Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B, Burton R A. 2018. Revised phylogeny of the cellulose synthase gene superfamily:insights into cell wall evolution. Plant Physiology, 177 (3):1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036 |
[15] |
Mao Q, Chen C, Xie T, Luan A, Liu C, He Y. 2018. Comprehensive tissue-specific transcriptome profiling of pineapple(Ananas comosus)and building an eFP-browser for further study. Peer J, 6:e6028.
doi: 10.7717/peerj.6028 URL |
[16] |
Ming R, van Buren R, Wai C M, Tang H, Schatz M C, Bowers J E, Lyons E, Wang M L, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim W C, Priest H D, Zheng C, Woodhouse M, Edger P P, Guyot R, Guo H B, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck F J, Harkess A, McKain M R, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen L Y, Shirley N, Lin Y R, Liu L Y, Hernandez A G, Wright C L, Bulone V, Tuskan G A, Heath K, Zee F, Moore P H, Sunkar R, Leebens-Mack J H, Mockler T, Bennetzen J L, Freeling M, Sankoff D, Paterson A H, Zhu X, Yang X, Smith J A, Cushman J C, Paull R E, Yu Q. 2015. The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 47 (12):1435-1442.
doi: 10.1038/ng.3435 pmid: 26523774 |
[17] |
Mishra S, Mohanty A K, Drzal L T, Misra M, Hinrichsen G. 2004. A review on pineapple leaf fibers,sisal fibers and their biocomposites. Macromolecular Materials and Engineering, 289 (11):955-974.
doi: 10.1002/mame.200400132 URL |
[18] |
Nelson B K, Cai X, Nebenführ A. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal, 51 (6):1126-1136.
doi: 10.1111/j.1365-313X.2007.03212.x URL |
[19] |
Park S, Szumlanski A L, Gu F, Guo F, Nielsen E. 2011. A role for CSLD 3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nature Cell Biology, 13 (8):973-980.
doi: 10.1038/ncb2294 URL |
[20] |
Paull R E, Chen N J, Ming R, Wai C M, Shirley N, Schwerdt J, Bulone V. 2016. Carbon flux and carbohydrate gene families in pineapple. Tropical Plant Biology, 9 (3):200-213.
doi: 10.1007/s12042-016-9176-1 URL |
[21] |
Peng X, Pang H, Abbas M, Yan X, Dai X, Li Y, Li Q. 2019. Characterization of Cellulose synthase-like D(CSLD)family revealed the involvement of PtrCslD 5 in root hair formation in Populus trichocarpa. Scientific Reports, 9 (1):1-9.
doi: 10.1038/s41598-018-37186-2 URL |
[22] | Richmond T A, Somerville C R. 2001. Integrative approaches to determining Csl function//Plant cell walls. Dordrecht:Springer:131-143. |
[23] |
Schwerdt J G, Mackenzie K, Wright F, Oehme D, Wagner J M, Harvey A J, Shirley N J, Burton R A, Schreiber M, Halpin C, Zimmer J, Marchall D F, Waugh R, Fincher G B. 2015. Evolutionary dynamics of the cellulose synthase gene superfamily in grasses. Plant Physiology, 168 (3):968-983.
doi: 10.1104/pp.15.00140 pmid: 25999407 |
[24] |
Song X, Xu L, Yu J, Tian P, Hu X, Wang Q, Pan Y. 2019. Genome-wide characterization of the cellulose synthase gene superfamily in Solanum lycopersicum. Gene, 688:71-83.
doi: 10.1016/j.gene.2018.11.039 URL |
[25] | Verhertbruggen Y, Yin L, Oikawa A, Scheller H V. 2011. Mannan synthase activity in the CSLD family. Plant Signaling & Behavior, 6 (10):1620-1623. |
[26] |
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L. 2010. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology, 10 (1):1-16.
doi: 10.1186/1471-2229-10-1 URL |
[27] |
Wang W, Wang L, Chen C, Xiong G, Tan X, Yang K, Wang Z, Zhou Y, Ye D, Chen L. 2011. Arabidopsis CSLD1 and CSLD 4 are required for cellulose deposition and normal growth of pollen tubes. Journal of Experimental Botany, 62 (14):5161-5177.
doi: 10.1093/jxb/err221 pmid: 21765162 |
[28] | Wu Aimin, Zhao Xianhai, Xie Qiaoli, Xie Xinming. 2015. Research progress in glucuronoxylan biosynthesis. Journal of South China Agricultural University, 36 (4):1-10. (in Chinese) |
吴蔼民, 赵先海, 解巧丽, 解新明. 2015. 葡萄糖醛酸木聚糖生物合成研究进展. 华南农业大学学报, 36 (4):1-10. | |
[29] | Xiao Yinyan, Yuan Weina, Liu Jing, Meng Jian, Sheng Qiming, Tan Yehuan, Xu Chunxiang. 2020. Xyloglucan and the advances in its roles in plant tolerance to stresses. Chinese Bulletin of Botany, 55 (6):777-787. (in Chinese) |
肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香. 2020. 木葡聚糖及其在植物抗逆过程中的功能研究进展. 植物学报, 55 (6):777-787. | |
[30] |
Yang J, Zhang Y. 2015. I-TASSER server:new development for protein structure and function predictions. Nucleic Acids Research, 43 (W1):W174-W181.
doi: 10.1093/nar/gkv342 URL |
[31] |
Yin Y, Huang J, Xu Y. 2009. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biology, 9 (1):1-14
doi: 10.1186/1471-2229-9-1 URL |
[32] |
Yoshikawa T, Eiguchi M, Hibara K, Ito J, Nagato Y. 2013. Rice slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. Journal of Experimental Botany, 64 (7):2049-2061.
doi: 10.1093/jxb/ert060 pmid: 23519729 |
[33] |
Yuan W, Liu J, Takac T, Chen H, Li X, Meng J, Tan Y, Ning T, He Z, Yi G, Xu C. 2021. Genome-wide identification of banana Csl gene family and their different responses to low temperature between chilling-sensitive and tolerant cultivars. Plants, 10 (1):122.
doi: 10.3390/plants10010122 URL |
[34] | Zhou Wenzhao. 2003. Preliminary determination of fiber characteristics of pineapple varieties. Agricultural Research and Application,(4):13-14. (in Chinese) |
周文钊. 2003. 菠萝品种纤维特性的初步测定. 广西热带农业,(4):13-14. |
[1] | LIU Chuanhe, HE Han, SHAO Xuehua, LAI Duo, KUANG Shizi, XIAO Weiqiang, LIU Yan. A New Pineapple Cultivar‘Yuetong’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2053-2054. |
[2] | WU Jing, HE Yehua, ZHANG Wei, LIU Chaoyang, GONG Xue, XUE Biao, LIU Jiarou, LUAN Aiping, LIN Wenqiu, GAN Jichang, ZHONG Yizhong, LIAO Zhichan, QIU Mengqing, LI Jingjing. Histological Observation of Eye Formation in Pineapple [J]. Acta Horticulturae Sinica, 2022, 49(2): 293-303. |
[3] | HUANG Yijin, HE Jiali, JIANG Lina, CAO Yanhong, QIN Sijun, LÜ Deguo. The Physiological and Biochemical Research Progress for the Changes of Fruit Crispy [J]. Acta Horticulturae Sinica, 2022, 49(12): 2641-2658. |
[4] | XIE Guofang, LIU Na, SONG Yi, GUAN Chunhua, ZHANG Mingsheng. The Relationship Between Changes of Endogenous Hormones and Cell Wall Metabolism of Common Bean During Bean Development [J]. Acta Horticulturae Sinica, 2021, 48(2): 289-299. |
[5] | ZHANG Xiaonan, YU Xin, YE Zimao, LIU Xiaofeng, ZHU Yansong, YANG Shengnan, WANG Xu, LIU Mengyu, ZHAO Xiaochun. Ease of Peeling and Its Relationship with Cell Wall Polysaccharides in Mandarin Fruit [J]. Acta Horticulturae Sinica, 2021, 48(12): 2336-2348. |
[6] | ZHU Jian, LIU Benyong, LI Shuju, BAI Zhilan, LIU Cong, DENG Xiaodong, ZHANG Yu, XIE Zongzhou, and LIU Jihong, . Effects of 2,4-D on Keeping Citrus Fruit Fresh on Tree and the Underlying Mechanisms [J]. Acta Horticulturae Sinica, 2020, 47(11): 2086-2094. |
[7] | GUO Hongyan1,BAI Jinhua1,DUAN Fengqin1,XI Xin1,LI Tao1,and GUO Jinping2,* . Effect of CaCl2 Treatment on Cell Wall Degrading Enzymes Activities and Microstructure of Fruit Cracking of Ziziphus jujuba‘Huping Zao’ [J]. ACTA HORTICULTURAE SINICA, 2019, 46(8): 1486-1494. |
[8] | DU Chenqing,WU Xiuwen,YAN Lei,LIU Yalin,and JIANG Cuncang*. Effect of Boron Deficiency and Low pH on Cell Wall Components and Boron Distribution in Cell of Trifoliate Root [J]. ACTA HORTICULTURAE SINICA, 2018, 45(7): 1272-1282. |
[9] | WANG Yajie,GAO Yu,CHEN Xiaomeng,LIU Mengling,and ZHANG Dongdong*. Biocontrol Ability of Bacillus amyloliquefaciens Against Gray Mold on Tomato Fruit [J]. ACTA HORTICULTURAE SINICA, 2018, 45(7): 1296-1304. |
[10] | XIE Xiaobo1,2,*,HUANG Yun3,TIAN Shenping1,LI Guili3,and CAO Shangyin2,*. Relationship of Seed Hardness Development and Microstructure of Seed Coat Cell in Soft Seed Pomegranate [J]. ACTA HORTICULTURAE SINICA, 2017, 44(6): 1174-1180. |
[11] | SU Jing,NIE Lan-chun*,QI Ying-bin,and WANG Miao-miao. Effect of Foliar Application of Silicon and Calcium on the Firmness and Related Physiological Metabolism of Tomato Fruits [J]. ACTA HORTICULTURAE SINICA, 2016, 43(4): 789-795. |
[12] | SONG Shun-hua1,SONG Song-quan2,*,WU Ping1,MENG Shu-chun1,and XING Bao-tian1. Thermoinhibition of Brassica rapa ssp. chinensis Seed Germination in Relation to Degrading Enzymes of Cell Walls [J]. ACTA HORTICULTURAE SINICA, 2014, 41(6): 1115-1124. |
[13] | HU Jia-yi1,2,LUO Zhi-wen2,FAN Hong-yan2,LI Xiang-hong2,LIU Zhi-xin3,and HE Fan2,*. Development of a Real-time Fluorescent Quantitative RT-PCR Method for the Detection of Pineapple mealybug wilt associated virus-2 [J]. ACTA HORTICULTURAE SINICA, 2014, 41(6): 1257-1266. |
[14] | WANG Ling-Li-1, 2 , LIU , CHAO 1, HUANG Yan-Hua-1, LI Xing-Fa-1, ZENG , MING 1, 2 , * . Effects of Postharvest Heat and Calcium Treatments on Calcium Fractions and Cell Wall Metabolism of‘Huangguan’Pear Fruit [J]. ACTA HORTICULTURAE SINICA, 2014, 41(2): 249-258. |
[15] | LI Gai-Li, ZHANG Yan-Long, NIU Li-Xin. Effect of Thidiazuron on Fruit Growth and Development of Lilium Oriental Hybrids‘Sorbonne’ [J]. ACTA HORTICULTURAE SINICA, 2013, 40(2): 299-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd