Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (8): 1637-1649.doi: 10.16420/j.issn.0513-353x.2021-0642
• Research Papers • Previous Articles Next Articles
LIU Jinming, GUO Caihua, YUAN Xing, KANG Chao, QUAN Shaowen, NIU Jianxin*()
Received:
2022-01-07
Revised:
2022-05-30
Online:
2022-08-25
Published:
2022-09-05
Contact:
NIU Jianxin
E-mail:njx105@163.com
CLC Number:
LIU Jinming, GUO Caihua, YUAN Xing, KANG Chao, QUAN Shaowen, NIU Jianxin. Genome-wide Identification of Dof Family Genes and Expression Analysis Sepal Persistent and Abscission in Pear[J]. Acta Horticulturae Sinica, 2022, 49(8): 1637-1649.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0642
基因 | 上游引物(5′-3′) | 下游引物(5′-3′) | ||
---|---|---|---|---|
Gene | Forward primer | Reverse primer | ||
PbDof11 | AACTCATGCCCTAAGCCTGC | TTGAACCACCTCCAACTGGG | ||
PbDof16 | CCGGTGTTCTGTGGCCTTAT | CCCTCGAATGCTTCCCCAAT | ||
PbDof19 | CTCCTTGGCCTTACCCTTGG | TCGAATGTTTCCCCAGGGTG | ||
PbDof34 | AGGTCCAAAACGGCCAAGAT | CAGCCCTTGCAGAAGTGTCT | ||
PbDof44 | CTCCTTGGCCTTACCCTTGG | CGGTGGAGCTTCTTCCTCAG | ||
PbDof51 | CGGCACTTCTGCAAATCCTG | ACTCAACTGTAAGGCCGCTC | ||
Actin | CCATCCAGGCTGTTCTCTC | GCAAGGTCCAGACGAAGG |
Table 1 Primer sequences for quantitative real time PCR
基因 | 上游引物(5′-3′) | 下游引物(5′-3′) | ||
---|---|---|---|---|
Gene | Forward primer | Reverse primer | ||
PbDof11 | AACTCATGCCCTAAGCCTGC | TTGAACCACCTCCAACTGGG | ||
PbDof16 | CCGGTGTTCTGTGGCCTTAT | CCCTCGAATGCTTCCCCAAT | ||
PbDof19 | CTCCTTGGCCTTACCCTTGG | TCGAATGTTTCCCCAGGGTG | ||
PbDof34 | AGGTCCAAAACGGCCAAGAT | CAGCCCTTGCAGAAGTGTCT | ||
PbDof44 | CTCCTTGGCCTTACCCTTGG | CGGTGGAGCTTCTTCCTCAG | ||
PbDof51 | CGGCACTTCTGCAAATCCTG | ACTCAACTGTAAGGCCGCTC | ||
Actin | CCATCCAGGCTGTTCTCTC | GCAAGGTCCAGACGAAGG |
基因 Gene | ID | 染色体位置 Chromosome location | 染色体重命名 Chromosome rename | 长度/aa Length | 分子量/kD MW | 等电点 pI | α-螺旋/% α-helix | β-转角/% β-turn | 无规则卷曲/% Random coil | 延长链/% Extended strand |
---|---|---|---|---|---|---|---|---|---|---|
PbDof1 | XM_009365818.2 | Scaffold3.0 | Scaff1 | 248 | 26.31 | 5.95 | 8.87 | 4.44 | 70.97 | 15.73 |
PbDof2 | XM_009368130.2 | Scaffold4.0 | Scaff2 | 387 | 41.62 | 9.33 | 17.83 | 3.88 | 66.41 | 11.89 |
PbDof3 | XM_018649999.1 | Scaffold4.0 | Scaff2 | 239 | 24.85 | 8.64 | 8.37 | 7.11 | 66.95 | 17.57 |
PbDof4 | XM_009354127.2 | Scaffold21.0 | Scaff3 | 304 | 33.58 | 6.45 | 15.13 | 3.62 | 64.47 | 16.78 |
PbDof5 | XM_009354128.2 | Scaffold21.0 | Scaff3 | 304 | 33.58 | 6.45 | 15.13 | 3.62 | 64.47 | 16.78 |
PbDof6 | XM_009354499.2 | Scaffold24.0 | Scaff4 | 163 | 18.27 | 9.43 | 10.43 | 4.91 | 68.71 | 15.95 |
PbDof7 | XM_009354615.2 | Scaffold24.0 | Scaff4 | 378 | 41.07 | 8.05 | 13.23 | 0.79 | 77.78 | 8.20 |
PbDof8 | XM_009354693.2 | Scaffold24.0 | Scaff4 | 290 | 31.20 | 8.51 | 11.72 | 3.45 | 75.17 | 9.66 |
PbDof9 | XM_009355416.2 | Scaffold31.0 | Scaff5 | 368 | 39.79 | 8.59 | 8.97 | 3.80 | 75.82 | 11.41 |
PbDof10 | XM_009359983.2 | Scaffold63.0 | Scaff6 | 291 | 32.10 | 7.64 | 15.81 | 3.09 | 67.35 | 13.75 |
PbDof11 | XM_009360389.2 | Scaffold67.0 | Scaff7 | 314 | 34.38 | 9.33 | 9.24 | 2.23 | 77.71 | 10.83 |
基因 Gene | ID | 染色体位置 Chromosome location | 染色体重命名 Chromosome rename | 长度/aa Length | 分子量/kD MW | 等电点 pI | α-螺旋/% α-helix | β-转角/% β-turn | 无规则卷曲/% Random coil | 延长链/% Extended strand |
PbDof12 | XM_009361313.1 | Scaffold75.0 | Scaff8 | 327 | 36.06 | 9.00 | 7.95 | 1.53 | 74.62 | 15.90 |
PbDof13 | XM_018648309.1 | Scaffold83.0 | Scaff9 | 523 | 55.98 | 5.94 | 13.77 | 2.29 | 76.67 | 7.27 |
PbDof14 | XM_018648376.1 | Scaffold84.0 | Scaff10 | 302 | 33.89 | 5.11 | 25.50 | 1.66 | 66.89 | 5.96 |
PbDof15 | XM_009364743.2 | Scaffold106.0 | Scaff11 | 327 | 36.23 | 6.69 | 12.54 | 2.75 | 66.36 | 18.35 |
PbDof16 | XM_009371010.2 | Scaffold180.0 | Scaff12 | 465 | 50.96 | 5.79 | 12.04 | 1.94 | 79.78 | 6.24 |
PbDof17 | XM_009377147.2 | Scaffold275.0 | Scaff13 | 286 | 31.52 | 7.71 | 5.59 | 1.05 | 80.42 | 12.94 |
PbDof18 | XM_009377148.2 | Scaffold275.0 | Scaff13 | 270 | 29.76 | 8.44 | 6.30 | 3.33 | 77.78 | 12.59 |
PbDof19 | XM_009378003.2 | Scaffold292.0 | Scaff14 | 511 | 55.22 | 5.72 | 10.37 | 1.37 | 80.82 | 7.44 |
PbDof20 | XM_009336089.2 | Scaffold384.0 | Scaff15 | 289 | 31.75 | 7.68 | 8.30 | 1.73 | 80.28 | 9.69 |
PbDof21 | XM_009340481.2 | Scaffold499.0 | Scaff16 | 366 | 38.92 | 9.13 | 9.29 | 3.83 | 77.60 | 9.29 |
PbDof22 | XM_009344990.1 | Scaffold698.0 | Scaff17 | 316 | 35.40 | 6.43 | 12.03 | 2.53 | 74.68 | 10.76 |
PbDof23 | XM_009344991.1 | Scaffold698.0 | Scaff17 | 316 | 34.97 | 6.52 | 13.61 | 2.85 | 72.78 | 10.76 |
PbDof24 | XM_009345555.2 | Scaffold727.0 | Scaff18 | 372 | 40.05 | 8.78 | 8.06 | 2.42 | 79.84 | 9.68 |
PbDof25 | XM_009345556.2 | Scaffold727.0 | Scaff18 | 337 | 36.26 | 8.96 | 6.53 | 2.97 | 81.31 | 9.20 |
PbDof26 | XM_009346163.2 | Scaffold765.0 | Scaff19 | 225 | 24.05 | 8.18 | 6.67 | 3.56 | 79.11 | 10.67 |
PbDof27 | XM_009346170.2 | Scaffold765.0 | Scaff19 | 225 | 24.05 | 8.18 | 6.67 | 3.56 | 79.11 | 10.67 |
PbDof28 | XM_009348304.2 | Scaffold915.0 | Scaff20 | 304 | 33.60 | 6.62 | 18.42 | 1.64 | 64.80 | 15.13 |
PbDof29 | XM_009348967.2 | Scaffold973.0 | Scaff21 | 347 | 37.14 | 8.90 | 20.46 | 2.59 | 66.28 | 10.66 |
PbDof30 | XM_009349812.2 | Scaffold1047.0 | Scaff22 | 346 | 36.91 | 8.84 | 19.65 | 3.18 | 65.32 | 11.85 |
PbDof31 | XM_009352168.2 | Scaffold1355.0 | Scaff23 | 303 | 33.81 | 4.94 | 20.79 | 1.65 | 69.64 | 7.92 |
PbDof32 | XM_009336822.2 | Scaffold1.0.1 | Scaff24 | 291 | 32.49 | 7.70 | 15.81 | 2.06 | 74.23 | 7.90 |
PbDof33 | XM_009343730.2 | Scaffold1.0.1 | Scaff24 | 378 | 41.13 | 8.58 | 15.08 | 0.53 | 76.19 | 8.20 |
PbDof34 | XM_009351106.2 | Scaffold1.0.1 | Scaff24 | 163 | 18.34 | 9.08 | 14.11 | 6.13 | 63.19 | 16.56 |
PbDof35 | XM_009354801.2 | Scaffold1.0.1 | Scaff24 | 291 | 31.31 | 9.30 | 16.84 | 5.50 | 63.23 | 14.43 |
PbDof36 | XM_009339603.2 | Scaffold14.0.1 | Scaff25 | 323 | 34.90 | 7.20 | 15.17 | 2.79 | 69.04 | 13.00 |
PbDof37 | XM_009340881.2 | Scaffold14.0.1 | Scaff25 | 463 | 50.48 | 5.48 | 13.17 | 1.51 | 76.89 | 8.42 |
PbDof38 | XM_009345020.2 | Scaffold16.0.1 | Scaff26 | 362 | 39.20 | 8.99 | 9.12 | 4.14 | 73.76 | 12.98 |
PbDof39 | XM_009347952.2 | Scaffold30.0.1 | Scaff27 | 325 | 34.81 | 7.21 | 8.31 | 1.85 | 76.00 | 13.85 |
PbDof40 | XM_009351662.2 | Scaffold17.0.2 | Scaff28 | 282 | 31.49 | 6.77 | 10.64 | 3.90 | 74.11 | 11.35 |
PbDof41 | XM_009353689.2 | Scaffold20.0.1 | Scaff29 | 320 | 35.00 | 7.23 | 10.94 | 2.50 | 75.94 | 10.62 |
PbDof42 | XM_009359445.2 | Scaffold58.0.1 | Scaff30 | 357 | 38.71 | 8.93 | 10.36 | 4.76 | 71.43 | 13.45 |
PbDof43 | XM_009362338.2 | Scaffold80.0.1 | Scaff31 | 539 | 58.63 | 6.66 | 13.17 | 1.67 | 78.11 | 7.05 |
PbDof44 | XM_009362339.2 | Scaffold80.0.1 | Scaff31 | 521 | 56.57 | 6.22 | 13.05 | 2.30 | 77.93 | 6.72 |
PbDof45 | XM_009363055.2 | Scaffold87.0.1 | Scaff32 | 316 | 34.47 | 8.16 | 9.18 | 4.43 | 74.05 | 12.34 |
PbDof46 | XM_009365959.2 | Scaffold116.0.1 | Scaff33 | 428 | 45.70 | 9.03 | 16.12 | 2.57 | 72.43 | 8.88 |
PbDof47 | XM_009366523.2 | Scaffold122.0.1 | Scaff34 | 384 | 40.83 | 8.75 | 15.10 | 2.08 | 73.96 | 8.85 |
PbDof48 | XM_009367372.2 | Scaffold131.0.1 | Scaff35 | 253 | 26.84 | 6.15 | 14.62 | 7.51 | 55.34 | 22.53 |
PbDof49 | XM_009369256.2 | Scaffold155.0.1 | Scaff36 | 221 | 23.59 | 8.13 | 10.86 | 2.71 | 76.02 | 10.41 |
PbDof50 | XM_009376412.2 | Scaffold262.0.1 | Scaff37 | 376 | 40.32 | 9.64 | 13.83 | 3.99 | 74.20 | 7.98 |
PbDof51 | XM_009378209.2 | Scaffold294.0.1 | Scaff38 | 247 | 25.39 | 8.18 | 9.31 | 5.67 | 67.61 | 17.41 |
Table 2 The Dof gene family of pear
基因 Gene | ID | 染色体位置 Chromosome location | 染色体重命名 Chromosome rename | 长度/aa Length | 分子量/kD MW | 等电点 pI | α-螺旋/% α-helix | β-转角/% β-turn | 无规则卷曲/% Random coil | 延长链/% Extended strand |
---|---|---|---|---|---|---|---|---|---|---|
PbDof1 | XM_009365818.2 | Scaffold3.0 | Scaff1 | 248 | 26.31 | 5.95 | 8.87 | 4.44 | 70.97 | 15.73 |
PbDof2 | XM_009368130.2 | Scaffold4.0 | Scaff2 | 387 | 41.62 | 9.33 | 17.83 | 3.88 | 66.41 | 11.89 |
PbDof3 | XM_018649999.1 | Scaffold4.0 | Scaff2 | 239 | 24.85 | 8.64 | 8.37 | 7.11 | 66.95 | 17.57 |
PbDof4 | XM_009354127.2 | Scaffold21.0 | Scaff3 | 304 | 33.58 | 6.45 | 15.13 | 3.62 | 64.47 | 16.78 |
PbDof5 | XM_009354128.2 | Scaffold21.0 | Scaff3 | 304 | 33.58 | 6.45 | 15.13 | 3.62 | 64.47 | 16.78 |
PbDof6 | XM_009354499.2 | Scaffold24.0 | Scaff4 | 163 | 18.27 | 9.43 | 10.43 | 4.91 | 68.71 | 15.95 |
PbDof7 | XM_009354615.2 | Scaffold24.0 | Scaff4 | 378 | 41.07 | 8.05 | 13.23 | 0.79 | 77.78 | 8.20 |
PbDof8 | XM_009354693.2 | Scaffold24.0 | Scaff4 | 290 | 31.20 | 8.51 | 11.72 | 3.45 | 75.17 | 9.66 |
PbDof9 | XM_009355416.2 | Scaffold31.0 | Scaff5 | 368 | 39.79 | 8.59 | 8.97 | 3.80 | 75.82 | 11.41 |
PbDof10 | XM_009359983.2 | Scaffold63.0 | Scaff6 | 291 | 32.10 | 7.64 | 15.81 | 3.09 | 67.35 | 13.75 |
PbDof11 | XM_009360389.2 | Scaffold67.0 | Scaff7 | 314 | 34.38 | 9.33 | 9.24 | 2.23 | 77.71 | 10.83 |
基因 Gene | ID | 染色体位置 Chromosome location | 染色体重命名 Chromosome rename | 长度/aa Length | 分子量/kD MW | 等电点 pI | α-螺旋/% α-helix | β-转角/% β-turn | 无规则卷曲/% Random coil | 延长链/% Extended strand |
PbDof12 | XM_009361313.1 | Scaffold75.0 | Scaff8 | 327 | 36.06 | 9.00 | 7.95 | 1.53 | 74.62 | 15.90 |
PbDof13 | XM_018648309.1 | Scaffold83.0 | Scaff9 | 523 | 55.98 | 5.94 | 13.77 | 2.29 | 76.67 | 7.27 |
PbDof14 | XM_018648376.1 | Scaffold84.0 | Scaff10 | 302 | 33.89 | 5.11 | 25.50 | 1.66 | 66.89 | 5.96 |
PbDof15 | XM_009364743.2 | Scaffold106.0 | Scaff11 | 327 | 36.23 | 6.69 | 12.54 | 2.75 | 66.36 | 18.35 |
PbDof16 | XM_009371010.2 | Scaffold180.0 | Scaff12 | 465 | 50.96 | 5.79 | 12.04 | 1.94 | 79.78 | 6.24 |
PbDof17 | XM_009377147.2 | Scaffold275.0 | Scaff13 | 286 | 31.52 | 7.71 | 5.59 | 1.05 | 80.42 | 12.94 |
PbDof18 | XM_009377148.2 | Scaffold275.0 | Scaff13 | 270 | 29.76 | 8.44 | 6.30 | 3.33 | 77.78 | 12.59 |
PbDof19 | XM_009378003.2 | Scaffold292.0 | Scaff14 | 511 | 55.22 | 5.72 | 10.37 | 1.37 | 80.82 | 7.44 |
PbDof20 | XM_009336089.2 | Scaffold384.0 | Scaff15 | 289 | 31.75 | 7.68 | 8.30 | 1.73 | 80.28 | 9.69 |
PbDof21 | XM_009340481.2 | Scaffold499.0 | Scaff16 | 366 | 38.92 | 9.13 | 9.29 | 3.83 | 77.60 | 9.29 |
PbDof22 | XM_009344990.1 | Scaffold698.0 | Scaff17 | 316 | 35.40 | 6.43 | 12.03 | 2.53 | 74.68 | 10.76 |
PbDof23 | XM_009344991.1 | Scaffold698.0 | Scaff17 | 316 | 34.97 | 6.52 | 13.61 | 2.85 | 72.78 | 10.76 |
PbDof24 | XM_009345555.2 | Scaffold727.0 | Scaff18 | 372 | 40.05 | 8.78 | 8.06 | 2.42 | 79.84 | 9.68 |
PbDof25 | XM_009345556.2 | Scaffold727.0 | Scaff18 | 337 | 36.26 | 8.96 | 6.53 | 2.97 | 81.31 | 9.20 |
PbDof26 | XM_009346163.2 | Scaffold765.0 | Scaff19 | 225 | 24.05 | 8.18 | 6.67 | 3.56 | 79.11 | 10.67 |
PbDof27 | XM_009346170.2 | Scaffold765.0 | Scaff19 | 225 | 24.05 | 8.18 | 6.67 | 3.56 | 79.11 | 10.67 |
PbDof28 | XM_009348304.2 | Scaffold915.0 | Scaff20 | 304 | 33.60 | 6.62 | 18.42 | 1.64 | 64.80 | 15.13 |
PbDof29 | XM_009348967.2 | Scaffold973.0 | Scaff21 | 347 | 37.14 | 8.90 | 20.46 | 2.59 | 66.28 | 10.66 |
PbDof30 | XM_009349812.2 | Scaffold1047.0 | Scaff22 | 346 | 36.91 | 8.84 | 19.65 | 3.18 | 65.32 | 11.85 |
PbDof31 | XM_009352168.2 | Scaffold1355.0 | Scaff23 | 303 | 33.81 | 4.94 | 20.79 | 1.65 | 69.64 | 7.92 |
PbDof32 | XM_009336822.2 | Scaffold1.0.1 | Scaff24 | 291 | 32.49 | 7.70 | 15.81 | 2.06 | 74.23 | 7.90 |
PbDof33 | XM_009343730.2 | Scaffold1.0.1 | Scaff24 | 378 | 41.13 | 8.58 | 15.08 | 0.53 | 76.19 | 8.20 |
PbDof34 | XM_009351106.2 | Scaffold1.0.1 | Scaff24 | 163 | 18.34 | 9.08 | 14.11 | 6.13 | 63.19 | 16.56 |
PbDof35 | XM_009354801.2 | Scaffold1.0.1 | Scaff24 | 291 | 31.31 | 9.30 | 16.84 | 5.50 | 63.23 | 14.43 |
PbDof36 | XM_009339603.2 | Scaffold14.0.1 | Scaff25 | 323 | 34.90 | 7.20 | 15.17 | 2.79 | 69.04 | 13.00 |
PbDof37 | XM_009340881.2 | Scaffold14.0.1 | Scaff25 | 463 | 50.48 | 5.48 | 13.17 | 1.51 | 76.89 | 8.42 |
PbDof38 | XM_009345020.2 | Scaffold16.0.1 | Scaff26 | 362 | 39.20 | 8.99 | 9.12 | 4.14 | 73.76 | 12.98 |
PbDof39 | XM_009347952.2 | Scaffold30.0.1 | Scaff27 | 325 | 34.81 | 7.21 | 8.31 | 1.85 | 76.00 | 13.85 |
PbDof40 | XM_009351662.2 | Scaffold17.0.2 | Scaff28 | 282 | 31.49 | 6.77 | 10.64 | 3.90 | 74.11 | 11.35 |
PbDof41 | XM_009353689.2 | Scaffold20.0.1 | Scaff29 | 320 | 35.00 | 7.23 | 10.94 | 2.50 | 75.94 | 10.62 |
PbDof42 | XM_009359445.2 | Scaffold58.0.1 | Scaff30 | 357 | 38.71 | 8.93 | 10.36 | 4.76 | 71.43 | 13.45 |
PbDof43 | XM_009362338.2 | Scaffold80.0.1 | Scaff31 | 539 | 58.63 | 6.66 | 13.17 | 1.67 | 78.11 | 7.05 |
PbDof44 | XM_009362339.2 | Scaffold80.0.1 | Scaff31 | 521 | 56.57 | 6.22 | 13.05 | 2.30 | 77.93 | 6.72 |
PbDof45 | XM_009363055.2 | Scaffold87.0.1 | Scaff32 | 316 | 34.47 | 8.16 | 9.18 | 4.43 | 74.05 | 12.34 |
PbDof46 | XM_009365959.2 | Scaffold116.0.1 | Scaff33 | 428 | 45.70 | 9.03 | 16.12 | 2.57 | 72.43 | 8.88 |
PbDof47 | XM_009366523.2 | Scaffold122.0.1 | Scaff34 | 384 | 40.83 | 8.75 | 15.10 | 2.08 | 73.96 | 8.85 |
PbDof48 | XM_009367372.2 | Scaffold131.0.1 | Scaff35 | 253 | 26.84 | 6.15 | 14.62 | 7.51 | 55.34 | 22.53 |
PbDof49 | XM_009369256.2 | Scaffold155.0.1 | Scaff36 | 221 | 23.59 | 8.13 | 10.86 | 2.71 | 76.02 | 10.41 |
PbDof50 | XM_009376412.2 | Scaffold262.0.1 | Scaff37 | 376 | 40.32 | 9.64 | 13.83 | 3.99 | 74.20 | 7.98 |
PbDof51 | XM_009378209.2 | Scaffold294.0.1 | Scaff38 | 247 | 25.39 | 8.18 | 9.31 | 5.67 | 67.61 | 17.41 |
Fig. 1 The phylogenetic relationship of the Dof gene family of Arabidopsis,apple and pear Pb:Pyrus × bretschneideri;Md:Malus domestica;At:Arabidopsis thaliana.
Fig. 5 The relative expression levels of the PbDofs in ovary(A)and sepal(B) Multiple comparison using Duncan’s;different lowercase letters at the same time indicate significant differences at the level of P < 0.05 between treatments.
[1] | Cai M, Lin J, Li Z, Lin Z, Ming R. 2020. Allele specific expression of Dof genes responding to hormones and abiotic stresses in sugarcane. PLoS ONE, 15 (1):e0227716. |
[2] |
Cai X, Zhang Y, Zhang C, Zhang T, Hu T, Ye J, Zhang J, Wang T, Li H, Ye Z. 2013. Genome-wide analysis of plant-specific Dof transcription factor family in tomato. Journal of Integrative Plant Biology, 55 (6):552-566.
doi: 10.1111/jipb.12043 URL |
[3] |
Chen P, Yan M, Li L, He J, Zhou S, Li Z, Niu C, Bao C, Zhi F, Ma F, Guan Q. 2020. The apple DNA-binding one zinc-finger protein MdDof 54 promotes drought resistance. Hortic Res, 7 (1):195.
doi: 10.1038/s41438-020-00419-5 URL |
[4] |
Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht N C, Singh V K, Yadav D. 2015. Insights into structural and functional diversity of Dof(DNA binding with one finger)transcription factor. Planta, 241 (3):549-562.
doi: 10.1007/s00425-014-2239-3 pmid: 25564353 |
[5] | He Zishun, Niu Jianxin, Wu Zhonghua, Qin Weiming, Zhao Jianshe. 2007. A study on development law of calyx of Korla Fragrant Pear(Pyrus brestschneideri Rehd). Xinjiang Agricultural Sciences, 44 (3):377-381. (in Chinese) |
何子顺, 牛建新, 吴忠华, 覃伟铭, 赵建设. 2007. 库尔勒香梨花萼发育规律研究. 新疆农业科学, 44 (3):377-381. | |
[6] | Iwamoto M, Higo K, Takano M. 2009. Circadian clock- and phytochrome-regulated Dof-like gene,Rdd1,is associated with grain size in rice. Plant,Cell & Environment, 32 (1):592-603. |
[7] | Jia Bing, Guo Guoling, Wang Youyu, Wei Pengfei, Yu Tao, Chang Xiao, Heng Wei. 2021. Relationship between morphogenesis and carbohydrate synthesis of the calyx-persistence fruit and calyx-shedding fruit in differentiation stage of‘Dangshan Suli’pear. Acta Horticulturae Sinica, 48 (3):421-438. (in Chinese) |
贾兵, 郭国凌, 王友煜, 魏鹏飞, 余桃, 常笑, 衡伟. 2021. ‘砀山酥梨’宿萼和脱萼分化期形态建成与碳水化合物的关系. 园艺学报, 48 (3):421-438. | |
[8] | Jiang Yanchen. 2011. Research of differences of endogenous hormones and quality in calyx persistent or fall off fruits[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
姜彦辰. 2011. 梨萼片脱落与宿存果实内源激素及品质的差异研究[博士论文]. 南京: 南京农业大学. | |
[9] |
Kushwaha H, Gupta S, Singh V K, Rastogi S, Yadav D. 2011. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Molecular Biology Reports, 38 (8):5037-5053.
doi: 10.1007/s11033-010-0650-9 pmid: 21161392 |
[10] |
Lee Y, Yoon T H, Lee J, Jeon S Y, Lee J H, Lee M K, Chen H, Yun J, Oh S Y, Wen X, Cho H K, Mang H, Kwak J M. 2018. A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell, 173 (6):1468-1480.
doi: 10.1016/j.cell.2018.03.060 |
[11] | Li Changjiang, Li Peng, Jing Chunzhi, Tian Jia, Zhang Yuan, Li Jiang. 2017. The relationship between endogenous hormones distribution in fruitlets and calyx shedding of‘Korla Fragrant Pear’. Acta Agriculturae Boreali-Occidentalis Sinica, 26 (11):1631-1638. (in Chinese) |
李长江, 李鹏, 井春芝, 田嘉, 张渊, 李疆. 2017. ‘库尔勒香梨’幼果内源激素分布差异与果实萼片脱落的关系. 西北农业学报, 26 (11):1631-1638. | |
[12] |
Lijavetzky D, Carbonero P, Vicente-Carbajosa J. 2003. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evolutionary Biology, 3 (1):17.
doi: 10.1186/1471-2148-3-17 URL |
[13] |
Liu J, Cheng Z, Xie L, Li X, Gao J. 2019. Multifaceted role of PheDof12- 1 in the regulation of flowering time and abiotic stress responses in moso bamboo(Phyllostachys edulis). International Journal of Molecular Sciences, 20 (2):424. doi: 10.3390/ijms20020424.
doi: 10.3390/ijms20020424 |
[14] | Liu Ni, Tao Shutian, Li Leiyan, Huang Wenjiang, Zhang Shaoling. 2013. Changes in endogenous hormones levels of young fruit of‘Dangshan Suli’(Pyrus bretschneideri Rehd.)pear during calyx abscission processes. Journal of Nanjing Agricultural University, 36 (6):147-150. (in Chinese) |
刘妮, 陶书田, 李雷廷, 黄文江, 张绍玲. 2013. ‘砀山酥梨’幼果萼片脱落期内源激素含量变化. 南京农业大学学报, 36 (6):147-150. | |
[15] |
Ma J, Li M Y, Wang F, Tang J, Xiong A S. 2015. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics, 16 (1):33.
doi: 10.1186/s12864-015-1242-9 URL |
[16] | Ma Li, Zhou Li, Xu Hang, Quan Shaowen, Yang Jieping, Niu Jianxin. 2019. Evolutionary characteristics and the expression patterns of miR159 gene family in‘Kuerlexiangli’pear. Journal of Fruit Science, 36 (1):1-10. (in Chinese) |
马丽, 周丽, 徐航, 全绍文, 杨洁萍, 牛建新. 2019. ‘库尔勒香梨’miR159家族成员进化特性及表达分析. 果树学报, 36 (1):1-10. | |
[17] |
Moreno-Risueno M A, Día I, Carrillo L, Fuentes R, Carbonero P. 2007. The HvDof 19 transcription factor mediates the abscisic acid-dependent repression of hydrolase genes in germinating barley aleurone. The Plant Journal:for Cell and Molecular Biology, 51 (3):352-365.
doi: 10.1111/j.1365-313X.2007.03146.x URL |
[18] | Noguero M, Atif R M, Ochatt S, Thompson R D. 2013. The role of the DNA-binding one zinc finger(Dof)transcription factor family in plants. Plant Science:an International Journal of Experimental Plant Biology, 209:32-45. |
[19] |
Pei M, Niu J, Li C, Cao F, Quan S. 2016. Identification and expression analysis of genes related to calyx persistence in Korla fragrant pear. BMC Genomics, 17:132.
doi: 10.1186/s12864-016-2470-3 URL |
[20] | Qi Xiaoxiao. 2014. Investigation of genes expression of calyx survival and shedding of pear by digital gene expression and functional analysis of PsIDA and PsJOINTLESS[Ph. D. Dissertation]. Nanjing: Nanjing Agricultural University. (in Chinese) |
齐笑笑. 2014. 梨果实萼片宿存与脱落过程基因表达谱分析及PsIDA、PsJOINTLESS基因功能的初步研究[博士论文]. 南京: 南京农业大学. | |
[21] | Qiao Yonggang, Wang Yongfei, Cao Yaping, He Jiaxin, Jia Mengjun, Li Zheng, Zhang Xinrui, Song Yun. 2020. Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale. Acta Horticulturae Sinica, 47 (6):1153-1164. (in Chinese) |
乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 2020. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析. 园艺学报, 47 (6):1153-1164. | |
[22] |
Rojas-Gracia P, Roque E, Medina M, López-Martín M J, Cañas L A, Beltrán J P, Gómez-Mena C. 2019. The Dof transcription factor SlDof 10 regulates vascular tissue formation during ovary development in tomato. Frontiers in Plant Science, 10:216. doi: 10.3389/fpls.2019.00216.
doi: 10.3389/fpls.2019.00216 |
[23] | Su J, Jia B, Jia S, Ye Z F, Heng W, Zhu L W. 2015. Effect of plant growth regulators on calyx abscission,fruit quality,and auxin-repressed protein (ARP)gene expression in fruitlets of‘Dangshan Suli’pear(Pyrus bretschneideri Rehd.). Journal of Horticultural Science & Biotechnology, 90 (2):135-142. |
[24] |
Umemura Y, Ishiduka T, Yamamoto R, Esaka M. 2004. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants,truly functions as a Cys2/Cys 2 Zn finger domain. The Plant Journal:for Cell and Molecular Biology, 37 (5):741-749.
doi: 10.1111/j.1365-313X.2003.01997.x URL |
[25] |
Washio K. 2001. Identification of Dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains. Biochimica et Biophysica Acta, 1520 (1):54-62.
pmid: 11470159 |
[26] |
Washio K. 2003. Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiology, 133 (2):850-863.
pmid: 14500792 |
[27] |
Wei P C, Tan F, Gao X Q, Zhang X Q, Wang G Q, Xu H, Li L J, Chen J, Wang X C. 2010. Overexpression of AtDOF4.7,an Arabidopsis DOF family transcription factor,induces floral organ abscission deficiency in Arabidopsis. Plant Physiol, 153 (3):1031-1045.
doi: 10.1104/pp.110.153247 URL |
[28] |
Wei Q, Wang W, Hu T, Hu H, Mao W, Zhu Q, Bao C. 2018. Genome-wide identification and characterization of Dof transcription factors in eggplant (Solanum melongena L.). Peer J, 6:e4481.
doi: 10.7717/peerj.4481 URL |
[29] |
Wen C L, Cheng Q, Zhao L, Mao A, Yang J, Yu S, Weng Y, Xu Y. 2016. Identification and characterisation of Dof transcription factors in the cucumber genome. Scientific Reports, 6:23072.
doi: 10.1038/srep23072 URL |
[30] |
Wu Z, Cheng J, Cui J, Xu X, Liang G, Luo X, Chen X, Tang X, Hu K, Qin C. 2016. Genome-wide identification and expression profile of Dof transcription factor gene family in pepper(Capsicum annuum L.). Frontiers in Plant Science, 7:574.doi: 10.3389/fpls.2016.00574.
doi: 10.3389/fpls.2016.00574 |
[31] | Xu P, Chen H, Cai W. 2020. Transcription factor CDF 4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep, 21 (7):e48967. |
[32] |
Yanagisawa S. 1995. A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acids Research, 23 (17):3403-3410.
pmid: 7567449 |
[33] |
Yanagisawa S. 2000. Dof1 and Dof 2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal:for Cell and Molecular Biology, 21 (3):281-288.
doi: 10.1046/j.1365-313x.2000.00685.x URL |
[34] |
Yanagisawa S, Izui K. 1993. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. The Journal of Biological Chemistry, 268 (21):16028-16036.
doi: 10.1016/S0021-9258(18)82353-5 URL |
[35] |
Yanagisawa S, Schmidt R J. 2010. Diversity and similarity among recognition sequences of Dof transcription factors. Plant Journal, 17 (2):209-214.
doi: 10.1046/j.1365-313X.1999.00363.x URL |
[36] | Zhang Huanxin, Li Guoquan, Yang Huidong, Cao Na, Zhu Fanghong. 2019. Genome-wide identification and expression of Dof family in melon(Cucumis melo). Acta Horticulturae Sinica, 46 (11):2176-2187. (in Chinese) |
张焕欣, 李国权, 杨惠栋, 曹娜, 朱方红. 2019. 甜瓜Dof家族全基因组鉴定与表达分析. 园艺学报, 46 (11):2176-2187. | |
[37] | Zhang Shaoling, Xie Zhihua. 2019. Current status,trends,main problems and the suggestions on development of pear industry in China. Journal of Fruit Science, 36 (8):1067-1072. (in Chinese) |
张绍铃, 谢智华. 2019. 我国梨产业发展现状、趋势、存在问题与对策建议. 果树学报, 36 (8):1067-1072. | |
[38] |
Zhuo M, Sakuraba Y, Yanagisawa S A. 2020. Jasmonate-activated MYC2-Dof2.1-MYC 2 transcriptional loop promotes leaf senescence in Arabidopsis. Plant Cell., 32 (1):242-262.
doi: 10.1105/tpc.19.00297 URL |
[1] | SONG Jiankun, YANG Yingjie, LI Dingli, MA Chunhui, WANG Caihong, and WANG Ran. A New Pear Cultivar‘Luxiu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 3-4. |
[2] | DONG Xingguang, CAO Yufen, ZHANG Ying, TIAN Luming, HUO Hongliang, QI Dan, XU Jiayu, LIU Chao, and WANG Lidong. A New Cold-resistant Crispy Pear Cultivar‘Yucuixiang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 5-6. |
[3] | OU Chunqing, JIANG Shuling, WANG Fei, MA Li, ZHANG Yanjie, and LIU Zhenjie. A New Early-ripening Pear Cultivar‘Xingli Mishui’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 7-8. |
[4] | ZHANG Yanjie, WANG Fei, OU Chunqing, MA Li, JIANG Shuling, and LIU Zhenjie. A New Pear Cultivar‘Zhongli Yucui 3’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 9-10. |
[5] | WANG Suke, LI Xiugen, YANG Jian, WANG Long, SU Yanli, ZHANG Xiangzhan, and XUE Huabai. A New Red Pear Cultivar‘Danxiahong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 13-14. |
[6] | WANG Fei, OU Chunqing, ZHANG Yanjie, MA Li, and JIANG Shuling. A New Late Ripening Pear Cultivar‘Huaqiu’with Long Storage Period [J]. Acta Horticulturae Sinica, 2022, 49(S1): 9-10. |
[7] | SONG Jiankun, LI Dingli, YANG Yingjie, MA Chunhui, WANG Caihong, and WANG Ran. A New Pear Cultivar‘Qindaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 11-12. |
[8] | GUO Weizhen, ZHAO Jingxian, LI Ying. A New Mid-early Ripening Pear Cultivar‘Meiyu’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2051-2052. |
[9] | TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit [J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440. |
[10] | LIANG Qin, ZHANG Yanhui, KANG Kaiquan, LIU Jinhang, LI Liang, FENG Yu, WANG Chao, YANG Chao, LI Yongyu. Molecular Evolution of MiR168 Family and Their Expression Profiling During Dormancy of Pyrus pyrifolia [J]. Acta Horticulturae Sinica, 2022, 49(5): 958-972. |
[11] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[12] | SU Yanli, GAO Xiaoming, YANG Jian, WANG Long, WANG Suke, ZHANG Xiangzhan, XUE Huabai. Dynamic Changes of Browning Degree,Phenolics Contents and Related Enzyme Activities During Pear Fruit Development [J]. Acta Horticulturae Sinica, 2022, 49(11): 2304-2312. |
[13] | YANG Bo, WEI Jia, LI Kunfeng, WANG Chengliang, NI Junbei, TENG Yuanwen, and BAI Songling. PpyERF060-PpyABF3-PpyMADS71 Regulates Ethylene Signaling Pathway- Mediated Pear Bud Dormancy Process [J]. Acta Horticulturae Sinica, 2022, 49(10): 2249-2262. |
[14] | WANG Yaru, LI Yong, WANG Jin, WANG Yingtao, LI Xiao, and WANG Yongbo. A New Mid-ripening Pear Cultivar‘Jijin’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2771-2772. |
[15] | JIA Bing, YE Zhenfeng, LIU Pu, LIU Li, ZHU Liwu, HENG Wei. A New Pear Cultivar‘Dangshan Jinsu’ [J]. Acta Horticulturae Sinica, 2021, 48(8): 1635-1636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd