Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (7): 1532-1544.doi: 10.16420/j.issn.0513-353x.2021-0475
• Research Papers • Previous Articles Next Articles
ZUO Xin1, LI Mingming1, LI Xinrong1, MIAO Chunyan1, LI Yanfang1, YANG Xu1, ZHANG Zhongyi2, WANG Fengqing1,*()
Received:
2021-11-15
Revised:
2022-03-15
Online:
2022-07-25
Published:
2022-07-29
Contact:
WANG Fengqing
E-mail:heauzycxw@126.com
CLC Number:
ZUO Xin, LI Mingming, LI Xinrong, MIAO Chunyan, LI Yanfang, YANG Xu, ZHANG Zhongyi, WANG Fengqing. CRISPR/Cas9 Technology for RcPDS1 Gene Editing in Rehmannia chingii[J]. Acta Horticulturae Sinica, 2022, 49(7): 1532-1544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0475
用途 Aim | 产物长度/bp Product size | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|---|
RcPDS1扩增 Amplification of RcPDS1 | 6 781(DNA) 1 882(cDNA) | RcPDS1_F | CAGTTGCCTGAGCTGTTGAA |
RcPDS1_R | GCTTCCCTATCTTCTGTCTTCC | ||
RcPDS1 qRT-PCR | 103 | RcPDS1_qF | TATCATTTGCAGTTAGTG |
RcPDS1_qR | ACAACTTTCAAAGGGATTGC | ||
靶序列的合成 Construction of target site | 19 | sgRcPDS1_F | AAGCAAGGGATGTGCTGGG |
sgRcPDS1_R | CCCAGCACATCCCTTGCTT | ||
转基因鉴定 Identification of the transformation | 474 | Cas9_F | TCAACGGCATTCGGGACAAG |
Cas9_R | CCACATACATATCGCGGCCA | ||
281 | pKSE401_F | TGTCCCAGGATTAGAATGATTAGGC | |
sgRcPDS1_R | CCCAGCACATCCCTTGCTT | ||
靶位点序列扩增 Amplification of target region | 1 387 | RcPDS1_TF | CTTCTCCTCGTCCAAACAAG |
RcPDS1_TR | AGCTCTCCAAACAGGTTCTG | ||
Gap序列扩增 Amplification of the gap sequence | 828 | PDSgap1_F | CAGCGAAAACAAGCTGAATCTG |
PDSgap1_R | GATTTCCTCCAAACTAACCGTG | ||
PDSgap2_F | TCGGACATGTTTCTGCTATCAA | ||
2 091 | PDSgap2_R | TCCTTCCATTGCAACCGATC | |
1 012 | PDSgap3_F | ACAAACCAGGAGAGTTCAGC | |
PDSgap3_R | GCTTCAACATAAGACTGACCG | ||
278 | PDSgap4_F | CCTGGTACCGAACCTTGTC | |
RcPDS1_R | GCTTCCCTATCTTCTGTCTTCC |
Table 1 Primer names and sequences
用途 Aim | 产物长度/bp Product size | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence |
---|---|---|---|
RcPDS1扩增 Amplification of RcPDS1 | 6 781(DNA) 1 882(cDNA) | RcPDS1_F | CAGTTGCCTGAGCTGTTGAA |
RcPDS1_R | GCTTCCCTATCTTCTGTCTTCC | ||
RcPDS1 qRT-PCR | 103 | RcPDS1_qF | TATCATTTGCAGTTAGTG |
RcPDS1_qR | ACAACTTTCAAAGGGATTGC | ||
靶序列的合成 Construction of target site | 19 | sgRcPDS1_F | AAGCAAGGGATGTGCTGGG |
sgRcPDS1_R | CCCAGCACATCCCTTGCTT | ||
转基因鉴定 Identification of the transformation | 474 | Cas9_F | TCAACGGCATTCGGGACAAG |
Cas9_R | CCACATACATATCGCGGCCA | ||
281 | pKSE401_F | TGTCCCAGGATTAGAATGATTAGGC | |
sgRcPDS1_R | CCCAGCACATCCCTTGCTT | ||
靶位点序列扩增 Amplification of target region | 1 387 | RcPDS1_TF | CTTCTCCTCGTCCAAACAAG |
RcPDS1_TR | AGCTCTCCAAACAGGTTCTG | ||
Gap序列扩增 Amplification of the gap sequence | 828 | PDSgap1_F | CAGCGAAAACAAGCTGAATCTG |
PDSgap1_R | GATTTCCTCCAAACTAACCGTG | ||
PDSgap2_F | TCGGACATGTTTCTGCTATCAA | ||
2 091 | PDSgap2_R | TCCTTCCATTGCAACCGATC | |
1 012 | PDSgap3_F | ACAAACCAGGAGAGTTCAGC | |
PDSgap3_R | GCTTCAACATAAGACTGACCG | ||
278 | PDSgap4_F | CCTGGTACCGAACCTTGTC | |
RcPDS1_R | GCTTCCCTATCTTCTGTCTTCC |
Fig. 5 CRISPR/Cas9 target site selection and recombinant plasmid constructionA:Schematic diagram showing RcPDS1 gene structure;B:Result of transformation detection by PCR;C:Schematic of the CRISPR/Cas9 binary vector pKSE401.
Fig. 6 Genetic transformation of Rehmannia chingii and albino phenotype mutantsA:Embryogenic calluses were cultured on the medium with kanamycine;B:Positive albino callus;C:Positive albino shoot;D:Positive albino shoot and green shoot regenerated from the same callus;E:Positive albino shoot cultured under light;F:Browning albino shoots;G:Fully albino shoot;H:Chimeric albino shoot.
Fig. 9 RcPDS1 target mutations in transgenic plants of Rehmannia chingiiGreen letters are insertions,pink letters are substitutions,dashes are deletions,and the number at the right-hand side represent types of base mutation.
[1] |
Alagoz Y, Gurkok T, Zhang B, Unver T. 2016. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Scientific Reports, 6 (1):30910.
doi: 10.1038/srep30910 URL |
[2] |
Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C F. 2016. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. Plant Biotechnology Journal, 14 (1):195-205.
doi: 10.1111/pbi.12373 URL |
[3] |
Beying N, Schmidt C, Pacher M, 2020.CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants, 6 (6):638-645.
doi: 10.1038/s41477-020-0663-x URL |
[4] |
Cai Y P, Wang L W, Chen L, Wu T T, Liu L P, Sun S, Wu C X, Yao W W, Jiang B J, Yuan S, Han T F, Hou W S. 2020. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas 9 contributes for expanding the regional adaptability of soybean. Plant Biotechnology Journal, 18 (1):298-309.
doi: 10.1111/pbi.13199 URL |
[5] |
Cazzonelli C I, Pogson B J. 2010. Source to sink:regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15 (5):266-274.
doi: 10.1016/j.tplants.2010.02.003 URL |
[6] | Chen Duanfen, Peng Zhenhua, Gao Zhimin. 2008. Cloning and expression analysis of PDS gene in Narcissus tazetta var.chinensis. Molecular Plant Breeding, 6 (3):574-578. (in Chinese) |
陈段芬, 彭镇华, 高志民. 2008. 中国水仙八氢番茄红素脱氢酶基因(PDS)的克隆及表达分析. 分子植物育种, 6 (3):574-578. | |
[7] |
Chen K L, Wang Y P, Zhang R, Zhang H W, Gao C X. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70 (1):667-697.
doi: 10.1146/annurev-arplant-050718-100049 URL |
[8] |
Chen Y T, Mao W W, Liu T, Feng Q Q, Li L, Li B B. 2020. Genome editing as a versatile tool to improve horticultural crop qualities. Horticultural Plant Journal, 6 (6):372-384.
doi: 10.1016/j.hpj.2020.11.004 URL |
[9] |
Deng C P, Shi M, Fu R, Zhang Y, Wang Q, Zhou Y, Wang Y, Ma X Y, Kai G Y. 2020. An ABA-responsive SmbZIP 1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. Journal of Experimental Botany, 71 (19):5948-5962.
doi: 10.1093/jxb/eraa295 URL |
[10] |
Deng C Y, Zhang F, Wang J Y, Li Y F, Huang H, Dai S L. 2021. Tobacco rattle virus-induced phytoene desaturase(PDS)silencing in Centaurea cyanus. Horticultural Plant Journal, 7 (2):159-166.
doi: 10.1016/j.hpj.2020.08.002 URL |
[11] |
Feng Z Y, Zhang B T, Ding W N, Liu X D, Yang D L, Wei P L, Gao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23 (10):1229-1232.
doi: 10.1038/cr.2013.114 URL |
[12] | Kui L, Chen H T, Zhang W X, He S M, Xiong Z J, Zhang Y S, Yan L, Zhong C F, He F M, Chen J W, Zeng P, Zhang G H, Yang S C, Dong Y, Wang W, Cai J. 2017. Building a genetic manipulation tool box for orchid biology:identification of constitutive promoters and application of CRISPR/Cas9 in the orchid,Dendrobium officinale. Frontiers in Plant Science, 7 (30):2036. |
[13] | Kumagai M H, Donson J, Della C G, Harvey D, Hanley K, Grill L K. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the United States of America, 92:1679-1683. |
[14] |
Li J F, Norville J E, Aach J, McCormack M, Zhang D D, Bush J, Church G M, Sheen J. 2013. Multiplex and homologous recombination mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31 (8):688-691.
doi: 10.1038/nbt.2654 URL |
[15] |
Li T D, Yang X P, Yu Y, Si X M, Zhai X W, Zhang H W, Dong W X, Gao C X, Xu C. 2018. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 36:1160-1163.
doi: 10.1038/nbt.4273 URL |
[16] | Liu Yanfei, Shi Guoru, Wang Xin, Zhang Chunlei, Wang Yan, Chen Ruoyun, Yu Dequan. 2016. Chemical constituents from whole plants of Rehmannia chingii. Chinese Traditional and Herbal Drugs, 47 (11):1830-1833. (in Chinese) |
刘彦飞, 史国茹, 王欣, 张春磊, 王艳, 陈若芸, 于德泉. 2016. 天目地黄化学成分研究. 中草药, 47 (11):1830-1833. | |
[17] |
Ma C F, Liu M C, Li Q F, Si J, Ren X S, Song H Y. 2019. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Horticultural Plant Journal, 5 (4):164-169.
doi: 10.1016/j.hpj.2019.04.001 URL |
[18] | Ma Dandan, Xia Guohua, Jin Feifei, Li Genyou. 2010. Study on regeneration system from callus of Rehmannia chingii f. albiflora. Guihaia, 30 (5):686-690. (in Chinese) |
马丹丹, 夏国华, 金翡翡, 李根有. 2010. 白花天目地黄的愈伤组织再生体系研究. 广西植物, 30 (5):686-690. | |
[19] |
Matsumura H, Shiomi K, Yamamoto A, Taketani Y, Fukayama H. 2020. Hybrid rubisco with complete replacement of rice rubisco small subunits by sorghum counterparts confers C4 plant-like high catalytic activity. Molecular Plant, 13 (11):1570-1581.
doi: 10.1016/j.molp.2020.08.012 URL |
[20] |
McQuinn R P, Wong B, Giovannoni J J. 2018. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content. Plant Biotechnology Journal, 16 (2):482-494.
doi: 10.1111/pbi.12789 pmid: 28703352 |
[21] | Meng Xiongyu. 2015. Studies on chemistry composition、standard of quality and anti-senescence activites of Rehmannia chingii Li.[M. D. Dissertation]. Yinchuan: Ningxia Medical University. (in Chinese) |
蒙雄裕. 2015. 天目地黄化学成分、质量标准及其抗衰老活性研究[硕士论文]. 银川: 宁夏医科大学. | |
[22] |
Mussolino C, Cathomen T. 2013. RNA guides genome engineering. Nature Biotechnology, 31 (3):208-209.
doi: 10.1038/nbt.2527 pmid: 23471067 |
[23] |
Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, Water-house P, Dale J. 2018. Gene editing the phytoene de-saturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 27 (5):451-460.
doi: 10.1007/s11248-018-0083-0 URL |
[24] |
Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6 (1):31481.
doi: 10.1038/srep31481 URL |
[25] |
Osakabe Y, Liang Z C, Ren C, Nishitani C, Osakabe K, Wada Masato, Komori S, Malnoy M, Velasco R, Poli M, Jung M, Koo O, Viiola R, Kanchiswamy C N. 2018. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nature Protocols, 13 (12):2844-2863.
doi: 10.1038/s41596-018-0067-9 pmid: 30390050 |
[26] |
Schachtsiek J, Stehle F. 2019. Dataset on nicotine-free,nontransgenic tobacco(Nicotiana tabacum L)edited by CRISPR-Cas9. Data in Brief, 26:104395.
doi: 10.1016/j.dib.2019.104395 URL |
[27] |
Shen J S, Si W J, Wu Y T, Xu Y, Wang J, Cheng T R, Zhang Q X, Pan H T. 2021. Establishment and verification of an efficient virus-induced gene silencing system in Forsythia. Horticultural Plant Journal, 7 (1):81-88.
doi: 10.1016/j.hpj.2020.09.001 URL |
[28] |
Tian L. 2015. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development. Frontiers in Plant Science, 6:790.
doi: 10.3389/fpls.2015.00790 pmid: 26442092 |
[29] | Wang Dan, Wang Mi, Liu Jun, Zhou Xiaohui, Liu Songyu, Yang Yan, Zhuang Yong. 2022. Cloning of U 6 promoters and establishment of CRISPR/Cas9 mediated gene editing system in eggplant. Acta Horticulturae Sinica, 49 (4):791-800. (in Chinese) |
王丹, 王谧, 刘军, 周晓慧, 刘松瑜, 杨艳, 庄勇. 2022. 茄子U6启动子克隆及CRISPR/Cas9介导的基因编辑体系建立. 园艺学报, 49 (4):791-800. | |
[30] |
Wang H, Wu Y, Zhang Y, Yang J, Fan W, Zhang H, Zhao S, Yuan L, Zhang P. 2019. CRISPR/Cas9-Based Mutagenesis of starch biosynthetic genes in sweet potato(Ipomoea batatas)for the improvement of starch quality. International Journal of Molecular Sciences, 20 (19):4702.
doi: 10.3390/ijms20194702 URL |
[31] | Wu Wen, Zhao Nan, Li Hongqing, Qu Weijing. 2006. Distribution and accumulation trends of catalpol in resource species of Rehmannia. Journal of East China Normal University(Natural Science),(4):91-96. (in Chinese) |
武雯, 赵楠, 李宏庆, 瞿伟菁. 2006. 地黄属资源植物中梓醇的分布及积累动态. 华东师范大学学报(自然科学版),(4):91-96. | |
[32] |
Xing H L, Dong L, Wang Z P, Han C Y, Liu B, Wang X C, Chen Q J. 2014. A CRISPR/Cas 9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 14 (1):327.
doi: 10.1186/s12870-014-0327-y URL |
[33] | Yang Feng, Yang Qinsong, Gao Yuhao, Ma Yunjing, Xu ying, Teng Yuanwen, Bai songling. 2021. Establishment of dual-cut CRISPR/Cas 9 gene editing system in pear calli. Acta Horticulturae Sinica, 48 (5):873-882. (in Chinese) |
杨锋, 杨钦淞, 高雨豪, 马云晶, 许英, 滕元文, 白松龄. 2021. 梨愈伤组织双靶点CRISPR/Cas9基因编辑系统的建立. 园艺学报, 48 (5):873-882. | |
[34] | Yang Lushan, Guo Ye, Hu Yang, Wen Yingqiang. 2020. CRISPR/Cas9-mediated mutagenesis of VviEDR2 results in enhanced resistance to powdery mildew in Grapevine(Vitis vinifera). Acta Horticulturae Sinica, 47 (4):623-634. (in Chinese) |
杨禄山, 郭晔, 胡洋, 文颖强. 2020. 利用CRISPR/Cas9系统敲除葡萄中VviEDR2提高对白粉病的抗性. 园艺学报, 47 (4):623-634. | |
[35] |
Zhang R X, Li M X, Jia Z P. 2008. Rehmannia glutinosa:review of botany,chemistry and pharmacology. Journal of Ethnopharmacology, 117 (2):199-214.
doi: 10.1016/j.jep.2008.02.018 URL |
[36] | Zhao Le, Zhu Yunhao, Wang Min, Han Yongguang, Ma Lili, Feng Weisheng, Zheng Xiaoke. 2021. Estimation of Rehmannia glutinosa genome size based on flow cytometry and genome survey analysis. Chinese Traditional and Herbal Drugs, 52 (3):821-826. (in Chinese) |
赵乐, 朱畇昊, 王敏, 韩永光, 马利利, 冯卫生, 郑晓珂. 2021. 基于流式细胞术和基因组survey分析的地黄基因组研究. 中草药, 52 (3):821-826. | |
[37] |
Zheng C J, Wu Y, Zhu J Y, Qin L P. 2014. Chemical constituents of the aerial parts of Rehmannia chingii. Chemistry of Natural Compounds, 50 (3):560-561.
doi: 10.1007/s10600-014-1017-6 URL |
[38] |
Zhou P, Peng J Y, Zeng M J, Wu L X, Fan Y X, Zeng L H. 2021. Virus-induced gene silencing(VIGS)in Chinese narcissus and its use in functional analysis of NtMYB3. Horticultural Plant Journal, 7 (6):565-572.
doi: 10.1016/j.hpj.2021.04.009 URL |
[39] |
Zhou Z, Tan H, Li Q, Chen J, Gao S, Wang Y, Chen W, Zhang L. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry, 148:63-70.
doi: 10.1016/j.phytochem.2018.01.015 URL |
[40] |
Zhu H C, Li C, Gao C. 2020. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21 (12):661-677.
doi: 10.1038/s41580-020-00288-9 URL |
[41] |
Zuo X, Wang F Q, Li X R, Li M M. 2020. Transcriptome-based screening and the optimal reference genes for real-time quantitative PCR in Rehmannia chingii and R. henryi. Biologia Plantarum, 64:798-806.
doi: 10.32615/bp.2020.154 URL |
[1] | WANG Dan, WANG Mi, LIU Jun, ZHOU Xiaohui, LIU Songyu, YANG Yan, ZHUANG Yong. Cloning of U6 Promoters and Establishment of CRISPR/Cas9 Mediated Gene Editing System in Eggplant [J]. Acta Horticulturae Sinica, 2022, 49(4): 791-800. |
[2] | YANG Feng, YANG Qinsong, GAO Yuhao, MA Yunjing, XU Ying, TENG Yuanwen, BAI Songling. Establishment of Dual-cut CRISPR/Cas9 Gene Editing System in Pear Calli [J]. Acta Horticulturae Sinica, 2021, 48(5): 873-882. |
[3] | YAO Lixiao,HE Yongrui,and CHEN Shanchun*. Research Advances of Citrus microRNAs in Plant Development and Stress Resistance [J]. ACTA HORTICULTURAE SINICA, 2020, 47(5): 995-1008. |
[4] | YANG Lushan,GUO Ye,HU Yang,and WEN Yingqiang*. CRISPR/Cas9-mediated Mutagenesis of VviEDR2 Results in Enhanced Resistance to Powdery Mildew in Grapevine(Vitis vinifera) [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 623-634. |
[5] | FENG Shuangshuang1,2,LUO Jiayi1,2,ZHU Xijian2,4,JIANG Jibin2,4,HUANG Sanwen1,3,*,and ZHANG Jinzhe2,*. Homozygous Mutant Construction and Function Analysis of TCP Transcription Factor StBRC1a in Diploid Potato [J]. ACTA HORTICULTURAE SINICA, 2020, 47(1): 63-72. |
[6] | GUO Ye,WAN Dongyan,CHAI Zhuangzhuang,WANG Yuejin,and WEN Yingqiang*. Knock-out Analysis of VviPDS1 Gene Using CRISPR/Cas9 in Grapevine [J]. ACTA HORTICULTURAE SINICA, 2019, 46(4): 623-634. |
[7] | ZOU Xiuping1,FAN Di2,PENG Aihong1,HE Yongrui1,XU Lanzhen1,LEI Tiangang1,YAO Lixiao1,LI Qiang1,LUO Keming2,*,and CHEN Shanchun1,*. CRISPR/Cas9-mediated Editing of Multiple Sites in the Citrus CsLOB1 Promoter [J]. ACTA HORTICULTURAE SINICA, 2019, 46(2): 337-344. |
[8] | SHI Songmei1,3,*,GAO Qiguo1,*,ZUO Tonghong2,PU Quanming4,LIU Yudong1,Liu Guixi1,ZHU Liquan2,**,and HE Xinhua3. Cloning and Functional Analysis of BoMLPKn1’s Orthologs Gene AtAPK1b in Arabidopsis [J]. ACTA HORTICULTURAE SINICA, 2019, 46(11): 2164-2175. |
[9] | ZHENG Aihong*,ZHANG Fen*,JIANG Min,YUAN Qiao,JIANG Leiyu,CHEN Qing,TANG Haoru,and SUN Bo**. Targeted Editing of BoaZDS by CRISPR/Ca9 Technology in Chinese Kale [J]. ACTA HORTICULTURAE SINICA, 2019, 46(1): 57-64. |
[10] | YANG Xuedong*,TIAN Shoubo*,ZHU Weimin,LU Panling,WANG Hong,WANG Ying,ZHANG Hui**,and ZHU Longying**. Tomato Double Mutant of Histone Variant Gene was Obtained and its Function Research [J]. ACTA HORTICULTURAE SINICA, 2018, 45(6): 1081-1088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd