Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (7): 1429-1440.doi: 10.16420/j.issn.0513-353x.2021-0445
• Research Papers • Previous Articles Next Articles
TAO Xin1, ZHU Rongxiang1, GONG Xin1, WU Lei1, ZHANG Shaoling1, ZHAO Jianrong2,*(), ZHANG Huping1,*()
Received:
2022-03-10
Revised:
2022-04-20
Online:
2022-07-25
Published:
2022-07-29
Contact:
ZHAO Jianrong,ZHANG Huping
E-mail:zjr0105@163.com;hpzhang@njau.edu.cn
CLC Number:
TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit[J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0445
用途 Use | 名称 Name | 序列(5′-3′) Sequence |
---|---|---|
实时荧光定量PCR | PpyFRK5-F | TTCGTTGGCAAGGTTGGAG |
Quantitative real-time PCR | PpyFRK5-R | TCACCGTCGTTCTTCAAGGTC |
Tubulin-F | TGGGCTTTGCTCCTCTTAC | |
Tubulin-R | CCTTCGTGCTCATCTTACC | |
基因克隆、超表达和亚细胞定位 Cloning,overexpression,and subcellular localization | 35S:PpyFRK5-GFP-F | GAGAACACGGGGGACTCTAGAATGGCGAATTCAGAGAGTCCAC |
35S:PpyFRK5-GFP-R | GCCCTTGCTCACCATGGATCCTTTGGCTTTGGACTTGGAAATG | |
病毒诱导的基因沉默 | pTRV2-PpyFRK5-F | GAAGGCCTCCATGGGGATCCTGTGGTTCTGTCCCTGTGG |
Virus induced gene silencing | pTRV2-PpyFRK5-R | GCCTCGAGACGCGTGAGCTCCATCAGACTGGGTTGGAAGA |
启动子扩增 Promoter amplification | PpyFRK5-pro-F | GTCGACGGTATCGATAAGCTTCCTTATATTTGTCGACTGTAGGTCGA |
PpyFRK5-pro-R | CGCTCTAGAACTAGTGGATCCTCTCTCTTAACTCTTGCGATTGAGA |
Table 1 Primer sequences used in this study
用途 Use | 名称 Name | 序列(5′-3′) Sequence |
---|---|---|
实时荧光定量PCR | PpyFRK5-F | TTCGTTGGCAAGGTTGGAG |
Quantitative real-time PCR | PpyFRK5-R | TCACCGTCGTTCTTCAAGGTC |
Tubulin-F | TGGGCTTTGCTCCTCTTAC | |
Tubulin-R | CCTTCGTGCTCATCTTACC | |
基因克隆、超表达和亚细胞定位 Cloning,overexpression,and subcellular localization | 35S:PpyFRK5-GFP-F | GAGAACACGGGGGACTCTAGAATGGCGAATTCAGAGAGTCCAC |
35S:PpyFRK5-GFP-R | GCCCTTGCTCACCATGGATCCTTTGGCTTTGGACTTGGAAATG | |
病毒诱导的基因沉默 | pTRV2-PpyFRK5-F | GAAGGCCTCCATGGGGATCCTGTGGTTCTGTCCCTGTGG |
Virus induced gene silencing | pTRV2-PpyFRK5-R | GCCTCGAGACGCGTGAGCTCCATCAGACTGGGTTGGAAGA |
启动子扩增 Promoter amplification | PpyFRK5-pro-F | GTCGACGGTATCGATAAGCTTCCTTATATTTGTCGACTGTAGGTCGA |
PpyFRK5-pro-R | CGCTCTAGAACTAGTGGATCCTCTCTCTTAACTCTTGCGATTGAGA |
Fig. 2 Gene structure analysis of PpyFRK5The white boxes indicate the 5′ and 3′ ends;the yellow boxes indicate exons and the gray boxes indicate introns.
Fig. 3 Amino acid sequence analysis of PpyFRK5A:A schematic diagram of the position of PpyFRK5 on the chromosome and the position of conserved domains in PpyFRK5;B:Amino acid sequence alignment of PpyFRK5;(a1),(a2)and(a3)are the landmark structures of the pfkB family and(b)is the characteristic bac_FRK domains of the fructokinase family;α represents the sugar binding site,and β represents the ATP binding site;Ppy:Pyrus pyrifolia; Pbr:Pyrus bretschneideri;Md:Malus × domestica;Pp:Prunus persica;Rc:Rosa chinensis; Fv:Fragaria vesca;Sl:Solanum lycopersicum;At:Arabidopsis thaliana.
Fig. 8 Relative expression level of PpyFRK5 and soluble sugar content in pear fruits with overexpression(A)and silencing(B)of PpyFRK5* α = 0.05,** α = 0.01.
顺式作用元件 cis-element | 序列 Sequence | 功能 Probable function |
---|---|---|
ABRE | ACGTG | 脱落酸响应元件Involved in the abscisic acid response |
ARE | AAACCA | 厌氧诱导响应元件Essential for the anaerobic induction |
AE-Box | ACAAACAA | 光响应元件Part of a module for light response |
CGTCA-motif | CGTCA | MeJA响应元件Involved in the MeJA response |
Box-4 | ATTAAT | 光响应元件Involved in light response |
CAAT-Box | CCAAT;CAAT | 启动子和增强子区域元件Element in the promoter and enhancer regions |
G-Box | CACGTT | 光响应元件Involved in light response |
LTR | CCGAAA | 低温响应元件Involved in low-temperature response |
MBS | CAACTG | MYB结合位点MYB binding site |
TATA-Box | TATA;TATAAA | 转录起始位点Approximately -30 from the transcription start |
RY-element | CATGCATG | 种子特异性调控响应元件Involved in seed-specific regulation |
TC-rich repeats | ATTCTCTAAC | 防御和胁迫响应元件Involved in defense and stress response |
TCT-motif | TCTTAC | 光响应元件Part of a light responsive element |
TGACG-motif | TGACG | MeJA响应元件Involved in the MeJA response |
as-1 | TGACG | 转录结合位点Transcription factor-binding site |
circadian | CAAAGATATC | 昼夜节律控制响应元件Involved in circadian control |
Table 2 Analysis of the main cis-elements in promoter region of PpyFRK5
顺式作用元件 cis-element | 序列 Sequence | 功能 Probable function |
---|---|---|
ABRE | ACGTG | 脱落酸响应元件Involved in the abscisic acid response |
ARE | AAACCA | 厌氧诱导响应元件Essential for the anaerobic induction |
AE-Box | ACAAACAA | 光响应元件Part of a module for light response |
CGTCA-motif | CGTCA | MeJA响应元件Involved in the MeJA response |
Box-4 | ATTAAT | 光响应元件Involved in light response |
CAAT-Box | CCAAT;CAAT | 启动子和增强子区域元件Element in the promoter and enhancer regions |
G-Box | CACGTT | 光响应元件Involved in light response |
LTR | CCGAAA | 低温响应元件Involved in low-temperature response |
MBS | CAACTG | MYB结合位点MYB binding site |
TATA-Box | TATA;TATAAA | 转录起始位点Approximately -30 from the transcription start |
RY-element | CATGCATG | 种子特异性调控响应元件Involved in seed-specific regulation |
TC-rich repeats | ATTCTCTAAC | 防御和胁迫响应元件Involved in defense and stress response |
TCT-motif | TCTTAC | 光响应元件Part of a light responsive element |
TGACG-motif | TGACG | MeJA响应元件Involved in the MeJA response |
as-1 | TGACG | 转录结合位点Transcription factor-binding site |
circadian | CAAAGATATC | 昼夜节律控制响应元件Involved in circadian control |
[1] |
Damari-Weissler H, Kandel-Kfir M, Gidoni D, Mett A, Belausov E, Granot D. 2006. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants. Planta, 224:1495-1502.
pmid: 16977457 |
[2] |
Damari-Weissler H, Rachamilevitch S, Aloni R, German M A, Cohen S, Zwieniecki M A, Holbrook N M, Granot D. 2009. LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Planta, 230:795-805.
doi: 10.1007/s00425-009-0985-4 pmid: 19633866 |
[3] |
Davies H V, Shepherd L V, Burrell M M, Carrari F, Urbanczyk-Wochniak E, Leisse A, Hancock R D, Taylor M, Viola R, Ross H, McRae D, Willmitzer L, Fernie A R. 2005. Modulation of fructokinase activity of potato(Solanum tuberosum)results in substantial shifts in tuber metabolism. Plant Cell Physiol, 46:1103-1115.
doi: 10.1093/pcp/pci123 URL |
[4] | Dennis D, Blakeley S D. 2000. Carbohydrate metabolism//Buchanan B,Gruissem W,Jones R. Biochemistry and molecular biology of plants. American Society of Plant Physiologists, 46:630-675. |
[5] |
Fennington G J, Hughes T A. 1996. The fructokinase from Rhizobium leguminosarum biovar trifolii belongs to group I fructokinase enzymes and is encoded separately from other carbohydrate metabolism enzymes. Microbiology, 142:321-330.
doi: 10.1099/13500872-142-2-321 URL |
[6] |
Fulda S, Mikkat S, Stegmann H, Horn R. 2011. Physiology and proteomics of drought stress acclimation in sunflower(Helianthus annuus L.). Plant Biol, 13:632-642.
doi: 10.1111/j.1438-8677.2010.00426.x URL |
[7] | Geng Yan-qiu, Dong Xiao-chang, Zhang Chun-mei. 2021. Recent progress of sugar transporter in horticultural crops. Acta Horticulturae Sinica, 48 (4):676-687. |
耿艳秋, 董肖昌, 张春梅. 2021. 园艺作物糖转运蛋白研究进展. 园艺学报, 48 (4):676-687. | |
[8] |
German M A, Asher I, Petreikov M, Dai N, Schaffer A A, Granot D. 2004. Cloning,expression and characterization of LeFRK3,the fourth tomato (Lycopersicon esculentum Mill.)gene encoding fructokinase. Plant Sci, 166:285-291.
doi: 10.1016/j.plantsci.2003.09.017 URL |
[9] |
German M A, Dai N, Chmelnitsky I, Sobolev I, Salts Y, Barg R, Schaffer A A, Granot D. 2002. LeFRK4,a novel tomato(Lycopersicon esculentum Mill.)fructokinase specifically expressed in stamens. Plant Sci, 163:607-613.
doi: 10.1016/S0168-9452(02)00170-X URL |
[10] |
German M A, Dai N, Matsevitz T, Hanael R, Petreikov M, Bernstein N, Loffe M, Shahak Y, Schaffer A A, Granot D. 2003. Suppression of fructokinase encoded by LeFRK2 in tomato stem inhibits growth and causes wilting of young leaves. Plant J, 34:837-846.
doi: 10.1046/j.1365-313X.2003.01765.x URL |
[11] |
Granot D, David-Schwartz R, Kelly G. 2013. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci, 4:44.
doi: 10.3389/fpls.2013.00044 pmid: 23487525 |
[12] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[13] |
Lü J H, Tao X, Yao G H, Zhang S L, Zhang H P. 2020. Transcriptome analysis of low-and high-sucrose pear cultivars identifies key regulators of sucrose biosynthesis in fruits. Plant Cell Physiol, 61:1493-1506.
doi: 10.1093/pcp/pcaa068 URL |
[14] | Lü Jia-hong, Wang Ying-zhen, Cheng Rui, Wang Guo-ming, Zhang Shao-ling, Wu Jun, Zhang Hu-ping. 2018. Genome-wide identification and expression analysis of sucrose synthase(SUS)and sucrose phosphate synthase(SPS)gene families in pear. Acta Horticulturae Sinica, 45 (3):421-435. |
吕佳红, 王英珍, 程瑞, 王国明, 张绍铃, 吴俊, 张虎平. 2018. 梨蔗糖合成相关酶SUS和SPS基因家族的鉴定与表达分析. 园艺学报, 45 (3):421-435. | |
[15] |
Martinez-Barajas E, Krohn B M, Stark D M, Randall D D. 1997. Purification and characterization of recombinant tomato fruit(Lycopersicon esculentum Mill.)fructokinase expressed in Escherichia coli. Protein Expres Purif, 11 (1):41-46.
doi: 10.1006/prep.1997.0762 URL |
[16] | Moriguchi T, Abe K, Sanada T, Yamaki S. 1992. Levels and role of sucrose synthase,sucrose-phosphate synthase,and acid invertase in sucrose accumulation in fruit of Asian pear. J Am Soc Hortic Sci, 117 (2):274-278. |
[17] |
Mukherjee T, Ivanova M, Dagda M, Kanayama Y, Granot D, Holaday A S. 2015. Constitutively overexpressing a tomato fructokinase gene(LeFRK1)in cotton(Gossypium hirsutum L. cv. Coker 312)positively affects plant vegetative growth,boll number and seed cotton yield. Funct Plant Biol, 42:899-908.
doi: 10.1071/FP15035 pmid: 32480732 |
[18] |
Odanaka S, Bennett A B, Kanayama Y. 2002. Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Physiol, 129:1119-1126.
pmid: 12114566 |
[19] |
Pego J V, Smeekens S C. 2000. Plant fructokinases:a sweet family get-together. Trends Plant Sci, 5:531-536.
pmid: 11120475 |
[20] |
Riggs J W, Cavales P C, Chapiro S M, Callis J. 2017. Identification and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana. BMC Plant Biol, 17:83-100.
doi: 10.1186/s12870-017-1031-5 pmid: 28441933 |
[21] | Stein O, Avin-Wittenberg T, Krahnert I, Zemach H, Bogol V, Daron O, Aloni R, Fernie A R, Granot D. 2017. Arabidopsis fructokinases are important for seed oil accumulation and vascular development. Front Plant Sci, 7:2047-2062. |
[22] |
Stein O, Damari-Weissler H, Secchi F, Rachmilevitch S, German M A, Yeselson Y, Amir R, Schaffer A, Holbrook N M, Aloni R, Zwieniecki M A, Granot D. 2016. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development. New Phytol, 209:1484-1495.
doi: 10.1111/nph.13705 pmid: 26467542 |
[23] |
Stein O, Granot D. 2018. Plant fructokinases:evolutionary,developmental,and metabolic aspects in sink tissues. Front Plant Sci, 9:339-350.
doi: 10.3389/fpls.2018.00339 pmid: 29616058 |
[24] |
Tanase K, Yamaki S. 2000. Sucrose synthase isozymes related to sucrose accumulation during fruit development of Japanese pear(Pyrus pyrifolia Nakai). J Jpn Soc Hortic Sci, 69:671-676.
doi: 10.2503/jjshs.69.671 URL |
[25] |
Taylor M A, Ross H A, Gardner A, Davies H A. 1995. Characterisation of a cDNA encoding fructokinase from potato(Solanum tuberosum L.). J Plant Physiol, 145 (3):253-256.
doi: 10.1016/S0176-1617(11)81885-7 URL |
[26] |
Yang J J, Zhu L C, Cui W F, Zhang C, Li D X, Ma B C, Cheng L L, Ruan Y L, Ma F W, Li M J. 2018. Increased activity of MdFRK2,a high-affinity fructokinase,leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves. Hortic Res, 5:71-82.
doi: 10.1038/s41438-018-0099-x URL |
[27] | Yao Gai-fang, Zhang Shao-ling, Cao Yu-fen, Liu Jun, Wu Jun, Yuan Jiang, Zhang Hu-ping, Xiao Chang-cheng. 2010. Characteristics of components and contents of soluble sugars in pear fruits from different species. Scientia Agricultura Sinica, 43 (20):4229-4237. (in Chinese) |
姚改芳, 张绍铃, 曹玉芬, 刘军, 吴俊, 袁江, 张虎平, 肖长城. 2010. 不同栽培种梨果实中可溶性糖组分及含量特征. 中国农业科学, 43 (20):4229-4237. | |
[28] |
Yao Y, Geng M T, Wu X H, Sun C, Wang Y L, Chen X, Shang L, Lu X H, Li Z, Li R M, Fu S P, Duan R J, Liu J, Hu X W, Guo J C. 2017. Identification,expression,and functional analysis of the fructokinase gene family in Cassava. Int J Mol Sci, 18 (11):2398-2424.
doi: 10.3390/ijms18112398 URL |
[29] |
Zhang H P, Su Y, Yu Q, Qin G H. 2021. Quantitative proteomic analysis of the pear(Pyrus pyrifolia cv.‘Hosui’)flesh provides novel insights about development and quality characteristics of fruit. Planta, 253:69.
doi: 10.1007/s00425-021-03585-5 pmid: 33599839 |
[30] |
Zhang H P, Wu J Y, Qin G H, Yao G F, Qi K J, Wang L F, Zhang S L. 2014a. The role of sucrose-metabolizing enzymes in pear fruit that differ in sucrose accumulation. Acta Physiol Plant, 36:71-77.
doi: 10.1007/s11738-013-1387-6 URL |
[31] |
Zhang H P, Wu J Y, Tao S T, Wu T, Qi K J, Zhang S J, Wang J Z, Huang W J, Wu J, Zhang S L. 2014b. Evidence for apoplasmic phloem unloading in pear fruit. Plant Mol Biol Rep, 32:931-939.
doi: 10.1007/s11105-013-0696-7 URL |
[1] | SONG Jiankun, YANG Yingjie, LI Dingli, MA Chunhui, WANG Caihong, and WANG Ran. A New Pear Cultivar‘Luxiu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 3-4. |
[2] | DONG Xingguang, CAO Yufen, ZHANG Ying, TIAN Luming, HUO Hongliang, QI Dan, XU Jiayu, LIU Chao, and WANG Lidong. A New Cold-resistant Crispy Pear Cultivar‘Yucuixiang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 5-6. |
[3] | OU Chunqing, JIANG Shuling, WANG Fei, MA Li, ZHANG Yanjie, and LIU Zhenjie. A New Early-ripening Pear Cultivar‘Xingli Mishui’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 7-8. |
[4] | ZHANG Yanjie, WANG Fei, OU Chunqing, MA Li, JIANG Shuling, and LIU Zhenjie. A New Pear Cultivar‘Zhongli Yucui 3’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 9-10. |
[5] | WANG Suke, LI Xiugen, YANG Jian, WANG Long, SU Yanli, ZHANG Xiangzhan, and XUE Huabai. A New Red Pear Cultivar‘Danxiahong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 13-14. |
[6] | WANG Fei, OU Chunqing, ZHANG Yanjie, MA Li, and JIANG Shuling. A New Late Ripening Pear Cultivar‘Huaqiu’with Long Storage Period [J]. Acta Horticulturae Sinica, 2022, 49(S1): 9-10. |
[7] | SONG Jiankun, LI Dingli, YANG Yingjie, MA Chunhui, WANG Caihong, and WANG Ran. A New Pear Cultivar‘Qindaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 11-12. |
[8] | HUANG Ling, HU Xianmei, LIANG Zehui, WANG Yanping, CHAN Zhulong, XIANG Lin. Cloning and Function Identification of Anthocyanidin Synthase Gene TgANS in Tulipa gesneriana [J]. Acta Horticulturae Sinica, 2022, 49(9): 1935-1944. |
[9] | GUO Weizhen, ZHAO Jingxian, LI Ying. A New Mid-early Ripening Pear Cultivar‘Meiyu’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2051-2052. |
[10] | LIU Jinming, GUO Caihua, YUAN Xing, KANG Chao, QUAN Shaowen, NIU Jianxin. Genome-wide Identification of Dof Family Genes and Expression Analysis Sepal Persistent and Abscission in Pear [J]. Acta Horticulturae Sinica, 2022, 49(8): 1637-1649. |
[11] | YANG Yuyan, DUAN Xinyuan, HE Zhilin, BING Qihao, CHEN Suoying, LIU Xiaoman, ZENG Ming, LIU Xiaogang. Cloning and Function Characterization of UDP-L-rhamnose Synthase from Fortunella crassifolia [J]. Acta Horticulturae Sinica, 2022, 49(8): 1663-1672. |
[12] | MA Mingying, HAO Chenxing, ZHANG Kai, XIAO Guihua, SU Hanying, WEN Kang, DENG Ziniu, MA Xianfeng. CsSWEET2a Promotes the Infection of Xanthomonas citri subsp. citri [J]. Acta Horticulturae Sinica, 2022, 49(6): 1247-1260. |
[13] | LIANG Qin, ZHANG Yanhui, KANG Kaiquan, LIU Jinhang, LI Liang, FENG Yu, WANG Chao, YANG Chao, LI Yongyu. Molecular Evolution of MiR168 Family and Their Expression Profiling During Dormancy of Pyrus pyrifolia [J]. Acta Horticulturae Sinica, 2022, 49(5): 958-972. |
[14] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[15] | SU Yanli, GAO Xiaoming, YANG Jian, WANG Long, WANG Suke, ZHANG Xiangzhan, XUE Huabai. Dynamic Changes of Browning Degree,Phenolics Contents and Related Enzyme Activities During Pear Fruit Development [J]. Acta Horticulturae Sinica, 2022, 49(11): 2304-2312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd