Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (6): 1351-1362.doi: 10.16420/j.issn.0513-353x.2021-0767
• Research Notes • Previous Articles Next Articles
QIU Keli1,2, WANG Yumin3, HE Jinling2, YU Hong1,4, PAN Haifa1, SHENG Yu1, XIE Qingmei1, CHEN Hongli1, ZHOU Hui1,**(), ZHANG Jinyun1,**()
Received:
2021-10-29
Revised:
2021-12-14
Online:
2022-06-25
Published:
2022-07-05
Contact:
ZHOU Hui,ZHANG Jinyun
E-mail:huichou1987@126.com;zjy600@aaas.org.cn
CLC Number:
QIU Keli, WANG Yumin, HE Jinling, YU Hong, PAN Haifa, SHENG Yu, XIE Qingmei, CHEN Hongli, ZHOU Hui, ZHANG Jinyun. Identification of Peach Laccase Family Genes and Function Analysis of PpLAC21[J]. Acta Horticulturae Sinica, 2022, 49(6): 1351-1362.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0767
基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
TEF2 | F:GGTGTGACGATGAAGAGTGATG:R:TGAAGGAGAGGGAAGGTGAAAG |
PpLAC7 | F:AGGGCAGATAACCCAGGCA:R:AGGTGGTCGCAGAGTCTCATT |
PpLAC15 | F:CCTAAAACTATCGACAAGCGAGTT:R:TGACAAGGAGGGACGGACAA |
PpLAC19 | F:GGGCTGATAATCCAGGAGTTTG:R:CCTTTGCCATTGTCCACCA |
PpLAC20 | F:GGGTGGCTATCCGATTTCTG:R:AGCTTCCCATCCTGGACTACC |
PpLAC21 | F:CGACCCTGTTGAAAGAAATACC:R:CCATACACCGGGATTATCTGCT |
PpLAC22 | F:GCCCAAATGTCTCTGATGCTTA:R:CTCATCATTCAGTGCTGCGTT |
PpLAC24 | F:CACCAAACTCCTCGGATGC:R:TCCCTTGCTCAGCCTCCAT |
PpLAC27 | F:GCTGGCGGTTGGATTGC:R:GATCCACGCCATCCTTAGC |
PpLAC28 | F:CCACCCACTTCACCTCCAT:R:CGCCAACGGTGTTCCTCT |
PpLAC30 | F:GCTATCCGATTTCAAGCAGATAA:R:TTGATTCATTCGGTCCTTTCC |
PpLAC33 | F:TGGCACCAAACACCTCTGAC:R:CCCTTGCTCAACCTCCATAACA |
PpLAC43 | F:GCACTACTCACTGCCAACCTT:R:TGAAGTTCCCAGTTCCATCCA |
PpLAC44 | F:TCTCATCCCTTCCACCTTCAT:R:ATACTTTGCCGGGTCCTGTT |
PpLAC45 | F:GCTGCAAGACACCAATCTTCTC:R:GGCAACCCAACCACCTGTA |
Table 1 Primer sequence used for qRT-PCR
基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
TEF2 | F:GGTGTGACGATGAAGAGTGATG:R:TGAAGGAGAGGGAAGGTGAAAG |
PpLAC7 | F:AGGGCAGATAACCCAGGCA:R:AGGTGGTCGCAGAGTCTCATT |
PpLAC15 | F:CCTAAAACTATCGACAAGCGAGTT:R:TGACAAGGAGGGACGGACAA |
PpLAC19 | F:GGGCTGATAATCCAGGAGTTTG:R:CCTTTGCCATTGTCCACCA |
PpLAC20 | F:GGGTGGCTATCCGATTTCTG:R:AGCTTCCCATCCTGGACTACC |
PpLAC21 | F:CGACCCTGTTGAAAGAAATACC:R:CCATACACCGGGATTATCTGCT |
PpLAC22 | F:GCCCAAATGTCTCTGATGCTTA:R:CTCATCATTCAGTGCTGCGTT |
PpLAC24 | F:CACCAAACTCCTCGGATGC:R:TCCCTTGCTCAGCCTCCAT |
PpLAC27 | F:GCTGGCGGTTGGATTGC:R:GATCCACGCCATCCTTAGC |
PpLAC28 | F:CCACCCACTTCACCTCCAT:R:CGCCAACGGTGTTCCTCT |
PpLAC30 | F:GCTATCCGATTTCAAGCAGATAA:R:TTGATTCATTCGGTCCTTTCC |
PpLAC33 | F:TGGCACCAAACACCTCTGAC:R:CCCTTGCTCAACCTCCATAACA |
PpLAC43 | F:GCACTACTCACTGCCAACCTT:R:TGAAGTTCCCAGTTCCATCCA |
PpLAC44 | F:TCTCATCCCTTCCACCTTCAT:R:ATACTTTGCCGGGTCCTGTT |
PpLAC45 | F:GCTGCAAGACACCAATCTTCTC:R:GGCAACCCAACCACCTGTA |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpLAC1 | Prupe.1G323200 | 578 | 9.18 | 65 744.34 | 过氧化物酶体 Peroxisome |
PpLAC2 | Prupe.1G357100 | 544 | 9.18 | 60 477.29 | 细胞外基质 Extracellular matrix |
PpLAC3 | Prupe.1G559300 | 568 | 8.98 | 64 123.39 | 溶酶体 Lysosome |
PpLAC4 | Prupe.2G191900 | 574 | 8.38 | 63 604.68 | 细胞外基质 Extracellular matrix |
PpLAC5 | Prupe.2G205500 | 584 | 5.40 | 64 495.92 | 溶酶体 Lysosome |
PpLAC6 | Prupe.2G205600 | 609 | 6.74 | 67 760.86 | 溶酶体 Lysosome |
PpLAC7 | Prupe.2G245800 | 558 | 9.02 | 61 240.19 | 细胞外基质 Extracellular matrix |
PpLAC8 | Prupe.2G257400 | 583 | 8.53 | 64 070.85 | 细胞外基质 Extracellular matrix |
PpLAC9 | Prupe.2G278000 | 592 | 6.54 | 66 358.74 | 细胞外基质 Extracellular matrix |
PpLAC10 | Prupe.2G325200 | 567 | 6.82 | 62 943.79 | 溶酶体 Lysosome |
PpLAC11 | Prupe.3G216000 | 542 | 8.39 | 60 174.81 | 细胞外基质 Extracellular matrix |
PpLAC12 | Prupe.4G018800 | 543 | 9.72 | 61 649.96 | 细胞外基质 Extracellular matrix |
PpLAC13 | Prupe.4G131900 | 597 | 7.99 | 67 085.54 | 细胞外基质 Extracellular matrix |
PpLAC14 | Prupe.5G075700 | 591 | 8.40 | 65 813.66 | 质膜 Plasma membrane |
PpLAC15 | Prupe.5G231100 | 582 | 7.06 | 65 497.57 | 溶酶体 Lysosome |
PpLAC16 | Prupe.6G000400 | 552 | 9.01 | 61 928.85 | 细胞外基质 Extracellular matrix |
PpLAC17 | Prupe.6G000500 | 554 | 8.84 | 62 137.61 | 细胞外基质 Extracellular matrix |
PpLAC18 | Prupe.6G048400 | 1 559 | 6.47 | 175 147.62 | 质膜 Plasma membrane |
PpLAC19 | Prupe.6G061300 | 558 | 9.43 | 61 628.12 | 细胞外基质 Extracellular matrix |
PpLAC20 | Prupe.6G072100 | 587 | 9.77 | 64 558.17 | 细胞外基质 Extracellular matrix |
PpLAC21 | Prupe.6G089100 | 583 | 9.33 | 64 487.37 | 溶酶体 Lysosome |
PpLAC22 | Prupe.6G089300 | 581 | 9.30 | 64 283.15 | 细胞外基质 Extracellular matrix |
PpLAC23 | Prupe.6G155100 | 577 | 6.81 | 64 268.78 | 细胞外基质 Extracellular matrix |
PpLAC24 | Prupe.6G177700 | 564 | 8.41 | 62 267.07 | 溶酶体 Lysosome |
PpLAC25 | Prupe.6G179500 | 580 | 7.09 | 65 306.02 | 细胞外基质 Extracellular matrix |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
PpLAC26 | Prupe.6G242000 | 567 | 6.64 | 63 053.79 | 溶酶体 Lysosome |
PpLAC27 | Prupe.6G257700 | 585 | 9.02 | 64 453.73 | 质膜 Plasma membrane |
PpLAC28 | Prupe.6G258000 | 586 | 9.85 | 64 986.03 | 细胞外基质 Extracellular matrix |
PpLAC29 | Prupe.6G267700 | 563 | 5.95 | 61 867.26 | 细胞外基质 Extracellular matrix |
PpLAC30 | Prupe.6G271500 | 559 | 9.31 | 60 774.70 | 细胞外基质 Extracellular matrix |
PpLAC31 | Prupe.7G140500 | 539 | 9.29 | 60 306.38 | 细胞外基质 Extracellular matrix |
PpLAC32 | Prupe.7G140600 | 537 | 9.46 | 59 617.38 | 溶酶体 Lysosome |
PpLAC33 | Prupe.7G156500 | 587 | 8.65 | 65 072.51 | 细胞外基质 Extracellular matrix |
PpLAC34 | Prupe.8G046800 | 568 | 6.76 | 64 097.74 | 细胞外基质 Extracellular matrix |
PpLAC35 | Prupe.8G046900 | 578 | 9.08 | 65 169.63 | 细胞外基质 Extracellular matrix |
PpLAC36 | Prupe.8G047000 | 584 | 4.95 | 65 244.50 | 细胞外基质 Extracellular matrix |
PpLAC37 | Prupe.8G047100 | 570 | 5.52 | 62 952.86 | 质膜 Plasma membrane |
PpLAC38 | Prupe.8G047200 | 569 | 5.29 | 62 540.13 | 质膜 Plasma membrane |
PpLAC39 | Prupe.8G047300 | 569 | 5.11 | 62 344.97 | 质膜 Plasma membrane |
PpLAC40 | Prupe.8G047500 | 558 | 5.52 | 61 255.84 | 质膜 Plasma membrane |
PpLAC41 | Prupe.8G047900 | 564 | 5.58 | 62 057.08 | 质膜 Plasma membrane |
PpLAC42 | Prupe.8G048100 | 564 | 5.93 | 62 274.45 | 细胞外基质 Extracellular matrix |
PpLAC43 | Prupe.8G094800 | 367 | 9.69 | 40 256.36 | 质膜 Plasma membrane |
PpLAC44 | Prupe.8G095000 | 514 | 8.63 | 57 389.05 | 溶酶体 Lysosome |
PpLAC45 | Prupe.8G095400 | 563 | 8.78 | 62 198.39 | 溶酶体 Lysosome |
PpLAC46 | Prupe.8G097000 | 563 | 8.78 | 62 158.28 | 溶酶体 Lysosome |
PpLAC47 | Prupe.8G172900 | 536 | 9.26 | 59 889.78 | 细胞外基质 Extracellular matrix |
PpLAC48 | Prupe.8G189700 | 588 | 5.94 | 65 150.69 | 溶酶体 Lysosome |
Table 2 Physicochemical properties and subcellular localization prediction of peach laccase protein
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
PpLAC1 | Prupe.1G323200 | 578 | 9.18 | 65 744.34 | 过氧化物酶体 Peroxisome |
PpLAC2 | Prupe.1G357100 | 544 | 9.18 | 60 477.29 | 细胞外基质 Extracellular matrix |
PpLAC3 | Prupe.1G559300 | 568 | 8.98 | 64 123.39 | 溶酶体 Lysosome |
PpLAC4 | Prupe.2G191900 | 574 | 8.38 | 63 604.68 | 细胞外基质 Extracellular matrix |
PpLAC5 | Prupe.2G205500 | 584 | 5.40 | 64 495.92 | 溶酶体 Lysosome |
PpLAC6 | Prupe.2G205600 | 609 | 6.74 | 67 760.86 | 溶酶体 Lysosome |
PpLAC7 | Prupe.2G245800 | 558 | 9.02 | 61 240.19 | 细胞外基质 Extracellular matrix |
PpLAC8 | Prupe.2G257400 | 583 | 8.53 | 64 070.85 | 细胞外基质 Extracellular matrix |
PpLAC9 | Prupe.2G278000 | 592 | 6.54 | 66 358.74 | 细胞外基质 Extracellular matrix |
PpLAC10 | Prupe.2G325200 | 567 | 6.82 | 62 943.79 | 溶酶体 Lysosome |
PpLAC11 | Prupe.3G216000 | 542 | 8.39 | 60 174.81 | 细胞外基质 Extracellular matrix |
PpLAC12 | Prupe.4G018800 | 543 | 9.72 | 61 649.96 | 细胞外基质 Extracellular matrix |
PpLAC13 | Prupe.4G131900 | 597 | 7.99 | 67 085.54 | 细胞外基质 Extracellular matrix |
PpLAC14 | Prupe.5G075700 | 591 | 8.40 | 65 813.66 | 质膜 Plasma membrane |
PpLAC15 | Prupe.5G231100 | 582 | 7.06 | 65 497.57 | 溶酶体 Lysosome |
PpLAC16 | Prupe.6G000400 | 552 | 9.01 | 61 928.85 | 细胞外基质 Extracellular matrix |
PpLAC17 | Prupe.6G000500 | 554 | 8.84 | 62 137.61 | 细胞外基质 Extracellular matrix |
PpLAC18 | Prupe.6G048400 | 1 559 | 6.47 | 175 147.62 | 质膜 Plasma membrane |
PpLAC19 | Prupe.6G061300 | 558 | 9.43 | 61 628.12 | 细胞外基质 Extracellular matrix |
PpLAC20 | Prupe.6G072100 | 587 | 9.77 | 64 558.17 | 细胞外基质 Extracellular matrix |
PpLAC21 | Prupe.6G089100 | 583 | 9.33 | 64 487.37 | 溶酶体 Lysosome |
PpLAC22 | Prupe.6G089300 | 581 | 9.30 | 64 283.15 | 细胞外基质 Extracellular matrix |
PpLAC23 | Prupe.6G155100 | 577 | 6.81 | 64 268.78 | 细胞外基质 Extracellular matrix |
PpLAC24 | Prupe.6G177700 | 564 | 8.41 | 62 267.07 | 溶酶体 Lysosome |
PpLAC25 | Prupe.6G179500 | 580 | 7.09 | 65 306.02 | 细胞外基质 Extracellular matrix |
基因 Gene | ID | 蛋白质长度/aa Protein length | 等电点 pI | 分子量/D Relative molecular mass | 亚细胞定位 Subcellular localization |
PpLAC26 | Prupe.6G242000 | 567 | 6.64 | 63 053.79 | 溶酶体 Lysosome |
PpLAC27 | Prupe.6G257700 | 585 | 9.02 | 64 453.73 | 质膜 Plasma membrane |
PpLAC28 | Prupe.6G258000 | 586 | 9.85 | 64 986.03 | 细胞外基质 Extracellular matrix |
PpLAC29 | Prupe.6G267700 | 563 | 5.95 | 61 867.26 | 细胞外基质 Extracellular matrix |
PpLAC30 | Prupe.6G271500 | 559 | 9.31 | 60 774.70 | 细胞外基质 Extracellular matrix |
PpLAC31 | Prupe.7G140500 | 539 | 9.29 | 60 306.38 | 细胞外基质 Extracellular matrix |
PpLAC32 | Prupe.7G140600 | 537 | 9.46 | 59 617.38 | 溶酶体 Lysosome |
PpLAC33 | Prupe.7G156500 | 587 | 8.65 | 65 072.51 | 细胞外基质 Extracellular matrix |
PpLAC34 | Prupe.8G046800 | 568 | 6.76 | 64 097.74 | 细胞外基质 Extracellular matrix |
PpLAC35 | Prupe.8G046900 | 578 | 9.08 | 65 169.63 | 细胞外基质 Extracellular matrix |
PpLAC36 | Prupe.8G047000 | 584 | 4.95 | 65 244.50 | 细胞外基质 Extracellular matrix |
PpLAC37 | Prupe.8G047100 | 570 | 5.52 | 62 952.86 | 质膜 Plasma membrane |
PpLAC38 | Prupe.8G047200 | 569 | 5.29 | 62 540.13 | 质膜 Plasma membrane |
PpLAC39 | Prupe.8G047300 | 569 | 5.11 | 62 344.97 | 质膜 Plasma membrane |
PpLAC40 | Prupe.8G047500 | 558 | 5.52 | 61 255.84 | 质膜 Plasma membrane |
PpLAC41 | Prupe.8G047900 | 564 | 5.58 | 62 057.08 | 质膜 Plasma membrane |
PpLAC42 | Prupe.8G048100 | 564 | 5.93 | 62 274.45 | 细胞外基质 Extracellular matrix |
PpLAC43 | Prupe.8G094800 | 367 | 9.69 | 40 256.36 | 质膜 Plasma membrane |
PpLAC44 | Prupe.8G095000 | 514 | 8.63 | 57 389.05 | 溶酶体 Lysosome |
PpLAC45 | Prupe.8G095400 | 563 | 8.78 | 62 198.39 | 溶酶体 Lysosome |
PpLAC46 | Prupe.8G097000 | 563 | 8.78 | 62 158.28 | 溶酶体 Lysosome |
PpLAC47 | Prupe.8G172900 | 536 | 9.26 | 59 889.78 | 细胞外基质 Extracellular matrix |
PpLAC48 | Prupe.8G189700 | 588 | 5.94 | 65 150.69 | 溶酶体 Lysosome |
[1] |
Arcuri Mariana L C, Larissa C Fialho, Alessandra Vasconcellos Nunes-Laitz, Maria Cecília P Fuchs-Ferraz, Ivan Rodrigo Wolf, Guilherme Targino Valente, Celso L Marino, Ivan G Maia. 2020. Genome-wide identification of multifunctional laccase gene family in Eucalyptus grandis: potential targets for lignin engineering and stress tolerance. Trees, 34:745-758.
doi: 10.1007/s00468-020-01954-3 URL |
[2] |
Berkman S J, Roscoe E M, Bourret J C. 2019. Comparing self-directed methods for training staff to create graphs using Graphpad Prism. J Appl Behav Anal, 52 (1):188-204.
doi: 10.1002/jaba.522 pmid: 30382580 |
[3] |
Cai X Z, Xu Q F, Wang C C, Zheng Z. 2006. Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis. Plant Mol Biol, 62:223-232.
doi: 10.1007/s11103-006-9016-z URL |
[4] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools:an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13:1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[5] |
Cheng X, Li G, Ma C, Abdullah M, Zhang J, Zhao H, Jin Q, Cai Y, Lin Y. 2020. Correction:comprehensive genome-wide analysis of the pear(Pyrus bretschneideri)laccase gene(PbLAC)family and functional identification of PbLAC 1 involved in lignin biosynthesis. PLoS ONE, 15:e0228183.
doi: 10.1371/journal.pone.0228183 URL |
[6] | Ding Rong, Liang Jing, Zhao Hewen, Zhang Kezhong. 2018. Application and optimization of VIGS experimental technology system in Rosa hybrida. Chinese Agricultural Science Bulletin, 34:87-92. (in Chinese) |
丁榕, 梁晶, 赵和文, 张克中. 2018. VIGS实验技术体系在月季中的应用及优化. 中国农学通报, 34:87-92. | |
[7] |
Faivre-Rampant, Gilroy E M, Hrubikova K, Hein I, Millam S, Loake G J, Birch P, Taylor M, Lacomme C. 2004. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol, 134:1308-1316.
pmid: 15084725 |
[8] | Gao X, Britt R C, Shan L, He P. 2011. Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp,e2938. |
[9] |
Godge M R, Purkayastha A, Dasgupta I, Kumar P P. 2009. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep, 28:335.
doi: 10.1007/s00299-008-0660-4 URL |
[10] |
Kim J, Park M, Jeong E S, Lee J M, Choi D. 2017. Harnessing anthocyanin-rich fruit:a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods, 13:3.
doi: 10.1186/s13007-016-0151-5 URL |
[11] |
Li K B. 2003. ClustalW-MPI:ClustalW analysis using distributed and parallel computing. Bioinformatics, 19 (12):1585-1586.
doi: 10.1093/bioinformatics/btg192 URL |
[12] |
Liu Q, Luo L, Wang X, Shen Z, Zheng L. 2017. Comprehensive analysis of rice laccase gene(OsLAC)family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci, 18:16.
doi: 10.3390/ijms18010016 URL |
[13] | Liu Yanying, Ni Shanshan, Xiang Leilei, Chen Yukun. 2020. Genome-wide identification of the laccase gene family and its expression analysis under low temperature stress in Musa accuminata. Acta Horticulturae Sinica, 47 (5):837-852. (in Chinese) |
刘彦英, 倪珊珊, 项蕾蕾, 陈裕坤. 2020. 香蕉漆酶基因家族鉴定及低温胁迫下的表达分析, 园艺学报, 47 (5):837-852. | |
[14] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method. Methods, 25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[15] | Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. 2015. CDD:NCBI’s conserved domain database. Nucleic Acids Res, 43:D222-226. |
[16] |
Martinez-Alvarez O, Montero P, Gomez-Guillen C. 2008. Evidence of an active laccase-like enzyme in deepwater pink shrimp(Parapenaeus longirostris). Food Chem, 108:624-632.
doi: 10.1016/j.foodchem.2007.11.029 URL |
[17] |
Nikki K, Barnes W J, Richard T L, Anderson C T. 2015. Imaging with the fluorogenic dye basic fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon. Journal of Experimental Botany, 66:4295-4304.
doi: 10.1093/jxb/erv158 pmid: 25922482 |
[18] |
Schuetz M, Benske A, Smith R A, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels A L. 2014. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol, 166:798-807.
doi: 10.1104/pp.114.245597 URL |
[19] |
Senthil-Kumar M, Mysore K S. 2014. Tobacoo rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc, 9 (7):1549-1562.
doi: 10.1038/nprot.2014.092 pmid: 24901739 |
[20] |
Shulaev V, Korban S S, Sosinski B, Abbott A G, Aldwinckle H S, Folta K M, Iezzoni A, Main D, Arus P, Dandekar A M, Lewers K, Brown S K, Davis T M, Gardiner S E, Potter D, Veilleux R E. 2008. Multiple models for Rosaceae genomics. Plant Physiol, 147:985-1003.
doi: 10.1104/pp.107.115618 URL |
[21] | Shu Qingyan, Zhu jin, Men Siqi. 2018. Establishing Virus Induced Gene Silencing(VIGS)system in tree peony using PsUFGT genes. Acta Horticulturae Sinica, 45 (1):168-176. (in Chinese) |
舒庆艳, 朱瑾, 门思琦. 2018. 基于牡丹类黄酮糖基转移酶基因建立VIGS技术体系. 园艺学报, 45 (1):168-176. | |
[22] |
Singh V K, Mangalam A K, Dwivedi S, Naik S. 1998. Primer premier:program for design of degenerate primers from a protein sequence. Biotechniques, 24 (2):318-319.
pmid: 9494736 |
[23] |
Soni N, Hegde N, Dhariwal A, Kushalappa A C. 2020. Role of laccase gene in wheat NILs differing at QTL-Fhb 1 for resistance against Fusarium head blight. Plant Sci, 298:110574.
doi: 10.1016/j.plantsci.2020.110574 URL |
[24] |
Tang Yi, Li Lingfei, Wang Xiaoqing. 2017. Establishment of transient gene expression and virus-induced gene silencing(VIGS)system in Gerbera hybrida petals. Plant Physiology Journal, 53:505-512. (in Chinese)
doi: 10.1111/j.1399-3054.1981.tb02741.x URL |
唐宜, 李凌飞, 王小菁. 2017. 非洲菊花瓣瞬时表达和病毒诱导的基因沉默(VIGS)系统的建立. 植物生理学报, 53:505-512. | |
[25] | Wang Q, Li G, Zheng K, Zhu X, Ma J, Wang D, Tang K, Feng X, Leng J, Yu H, Yang S, Feng X. 2019. The soybean laccase gene family: evolution and possible roles in plant defense and stem strength selection. Genes(Basel), 10:19. |
[26] |
Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legee F, Cezard L, Lapierre C, Sibout R. 2015. LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol, 168:192-204.
doi: 10.1104/pp.114.255489 pmid: 25755252 |
[27] |
Yi Chou E, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels A L. 2018. Distribution,mobility,and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot, 69:1849-1859.
doi: 10.1093/jxb/ery067 pmid: 29481639 |
[28] |
Yoshida, Hikorokuro. 1883. LXIII.—Chemistry of lacquer(Urushi). Part I. Communication from the Chemical Society of Tokio. Journal of the Chemical Society,Transactions, 43:472.
doi: 10.1039/CT8834300472 URL |
[29] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z Y, Dixon R A. 2013. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 25:3976-3987.
doi: 10.1105/tpc.113.117770 URL |
[30] |
Zhou P, Peng J Y, Zeng M J, Wu L X, Fan Y X, Zeng L H. 2021. Virus-induced gene silencing(VIGS)in Chinese narcissus and its use in functional analysis of NtMYB3. Horticultural Plant Journal, 7 (6):565-572.
doi: 10.1016/j.hpj.2021.04.009 URL |
[1] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[2] | XING Zhudong, LÜ Futang, GUO Shangjing, ZHANG Yanyi. A New Peach Cultivar‘Liaoda Hongjin’ [J]. Acta Horticulturae Sinica, 2023, 50(1): 225-226. |
[3] | YANG Xingwang, WANG Haibo, WANG Yingying, WANG Xiaolong, WANG Zhiqiang, LIU Peipei, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening and Cold Resistant Peach Cultivar‘Zhongnong Ganshuang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 15-16. |
[4] | YANG Xingwang, WANG Haibo, WANG Yingying, ZHANG Yican, WANG Baoliang, Liu Peipei, SHI Xiangbin, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening Cold Resistant Peach Cultivar‘Zhongnong Baigan’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 17-18. |
[5] | YANG Xingwang, LIU Fengzhi, WANG Haibo, WANG Yingying, WANG Zhiqiang, SHI Xiangbin, JI Xiaohao, LIU Wanchun, and WANG Xiaodi. A New Mid-ripening Cold Resistant Peach Cultivar‘Zhongnong Hanshuimi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 19-20. |
[6] | YANG Xingwang, LIU Fengzhi, WANG Haibo, WANG Yingying, ZHANG Yican, LI Peng, WANG Xiaolong, LIU Wanchun, and WANG Xiaodi. A New Late-ripening Cold Resistant Peach Cultivar‘Zhongnong Qiuxiang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 21-22. |
[7] | WANG Yingying, LIU Lichang, LIU Zhiwu, YANG Xingwang, LIU Wanchun, and WANG Xiaodi, . A New Extremely Late-ripening Peach Cultivar‘Zhongnong Dongmi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 23-24. |
[8] | WANG Yingying, ZHENG Xiaocui, WANG Haibo, SHI Xiangbin, JI Xiaohao, LIU Peipei, LIU Wanchun, and WANG Xiaodi. A New Cold Resistent Peach Cultivar‘Zhongtao Fenyu’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 13-14. |
[9] | WANG Yingying, WANG Haibo, LIU Peipei, WANG Baoliang, ZHANG Yican, LI Peng, LIU Wanchun, and WANG Xiaodi. A New Cold Resistant Peach Cultivar‘Zhongnong Xiutian’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 15-16. |
[10] | WANG Yingying, WANG Haibo, LI Peng, WANG Baoliang, SHI Xiangbin, LIU Wanchun, and WANG Xiaodi. A New Cold Resistant Peach Cultivar‘Zhongnong Zhihou’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 17-18. |
[11] | WANG Yingying, WANG Haibo, SHI Xiangbin, and WANG Xiaodi. A New Early-ripening Peach Cultivar‘Zhongnong Hanmi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 19-20. |
[12] | WANG Yuehui, BAI Ruixia, JIA Yunyun, MA Zhisheng, and LI Jianming. A New Mid-ripening Peach Cultivar‘Meilin’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 21-22. |
[13] | SHU Nan, FAN Shutian, WANG Yue, XU Peilei, LI Jiaqi, LIU Tao, WANG Xinhua, JIN Yuning, and LU Wenpeng. A New Cold Resistant Peach Cultivar‘Jimei’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 23-24. |
[14] | JIANG Yajun, CHEN Jiajia, TAN Bin, ZHENG Xianbo, WANG Wei, ZHANG Langlang, CHENG Jun, FENG Jiancan. Function Exploration of PpIDD11 in Regulating Peach Flower Development [J]. Acta Horticulturae Sinica, 2022, 49(9): 1841-1852. |
[15] | ZHANG Wanqing, ZHANG Hongxiao, LIAN Xiaofang, LI Yuying, GUO Lili, HOU Xiaogai. Analysis of DNA Methylation Related to Callus Differentiation and Rooting Induction of Paeonia ostii‘Fengdan’ [J]. Acta Horticulturae Sinica, 2022, 49(8): 1735-1746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd