Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (6): 1275-1289.doi: 10.16420/j.issn.0513-353x.2021-0306
• Research Papers • Previous Articles Next Articles
MENG Xianmin1,2, CUI Qingqing1, DUAN Yundan1, ZHUANG Tuanjie1, PU Dan1, DONG Chunjuan1, YANG Wencai2, SHANG Qingmao1,*()
Received:
2021-11-30
Revised:
2022-02-18
Online:
2022-06-25
Published:
2022-07-04
Contact:
SHANG Qingmao
E-mail:shangqingmao@caas.cn
CLC Number:
MENG Xianmin, CUI Qingqing, DUAN Yundan, ZHUANG Tuanjie, PU Dan, DONG Chunjuan, YANG Wencai, SHANG Qingmao. Promoting Effects of Uniconazole on Grafting Formation of Tomato Seedlings and Underlying Mechanisms[J]. Acta Horticulturae Sinica, 2022, 49(6): 1275-1289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0306
基因名称 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
GA20ox1 | F:TGGACGATGAATGGCGTTCC;R:TACCGCTCTGTGTAGGCAAC |
IAA1 | F:TGGATGGTGCCCCTTATCTA;R:ACAAGAAGACATAAACATTTCCCAA |
ARABIDOPSIS RESPONSE REGULATOR17,ARR17 | F:TGGACGATGAATGGCGTTCC;R:TACCGCTCTGTGTAGGCAAC |
WOUND INDUCED DEDIFFERENTIATION1,WIND1 | F:AACTGGTACTGCCAACTCCG;R:AGTCCAAGCGTGAACCCAAG |
TARGET of MONOPTEROS6,TMO6 | F:AAGACGTGTAGGAGGTACTGGA;R:GATAAATTCGGTATCTGCGGCG |
WUSCHEL-RELATED HOMEOBOX4,WOX4 | F:GTGGAATCACACCCAGGAGG;R:TATTTGTTGCGCGTTGGGTG |
Cyclin B1;2 | F:GGAAAGCCGCTTCCTCAAGT;R:GCTCCGTTAGCAACAATCGG |
VASCULAR-RELATED NAC-DOMAIN7,VND7 | F:TAGGACCAACCGAGCCACT;R:TCCGCATTCCGATGACACT |
NAC DOMAIN-CONTAINING PROTEIN20,NAC020 | F:TGGACGATGAATGGCGTTCC;R:TACCGCTCTGTGTAGGCAAC |
Actin | F:AACAACGCCTCTTTCTTCTCTCT;R:AAAGAGATCCACAACCACTGTCT |
Table 1 Primer sequences
基因名称 Gene | 引物序列(5′-3′) Primer sequence |
---|---|
GA20ox1 | F:TGGACGATGAATGGCGTTCC;R:TACCGCTCTGTGTAGGCAAC |
IAA1 | F:TGGATGGTGCCCCTTATCTA;R:ACAAGAAGACATAAACATTTCCCAA |
ARABIDOPSIS RESPONSE REGULATOR17,ARR17 | F:TGGACGATGAATGGCGTTCC;R:TACCGCTCTGTGTAGGCAAC |
WOUND INDUCED DEDIFFERENTIATION1,WIND1 | F:AACTGGTACTGCCAACTCCG;R:AGTCCAAGCGTGAACCCAAG |
TARGET of MONOPTEROS6,TMO6 | F:AAGACGTGTAGGAGGTACTGGA;R:GATAAATTCGGTATCTGCGGCG |
WUSCHEL-RELATED HOMEOBOX4,WOX4 | F:GTGGAATCACACCCAGGAGG;R:TATTTGTTGCGCGTTGGGTG |
Cyclin B1;2 | F:GGAAAGCCGCTTCCTCAAGT;R:GCTCCGTTAGCAACAATCGG |
VASCULAR-RELATED NAC-DOMAIN7,VND7 | F:TAGGACCAACCGAGCCACT;R:TCCGCATTCCGATGACACT |
NAC DOMAIN-CONTAINING PROTEIN20,NAC020 | F:TGGACGATGAATGGCGTTCC;R:TACCGCTCTGTGTAGGCAAC |
Actin | F:AACAACGCCTCTTTCTTCTCTCT;R:AAAGAGATCCACAACCACTGTCT |
Fig. 1 Exogenous uniconazole inhibited the growth of tomato scion and stock seedlings * indicates the significance of 0.05 level difference,IBM SPSS Statistics 20.0 software was used for independent-sample T-test. The same below.
Fig. 2 Exogenous uniconazole promoted graft formation process of tomato graft union Sc:Scion;St:Stock;pc:Parenchyma cell;co:Cortex;vb:Vascular bundle;ph:Phloem;x:Xylem;vc:Vascular bundle connection;The middle area of two red dashes is graft union.
Fig. 3 Exogenous uniconazole promoted xylem and phloem connection of tomato graft union A indicates xylem reconnection,which shows the hand-cut transverse section of 1 cm above the graft union(scion),and observed the absorption content of acid fuchsin under stereomicroscope. B indicates phloem reconnection,the hand-cut transverse section of 1 cm below the graft union(stock),and observed the fluorescence intensity under the fluorescence imaging microscope.
Fig. 4 Exogenous uniconazole promoted xylem and phloem connection of tomato graft union A indicates xylem reconnection,and observed the absorption content of acid fuchsin under stereomicroscope. B indicates phloem reconnection,the hand-cut transverse section of 1 cm below the graft union(stock),and observed the fluorescence intensity under the fluorescence imaging microscope. * P < 0.05.
Fig. 5 Dynamic changes in hormone contents of tomato graft union GA15,GA8,GA3 and GA5 were gibberellin A15,gibberellin A8,gibberellin A3 and gibberellin A5,some GA8 data are not detected because the levels of the hormones in the samples were below the detection limit of the instrument;IAA,MEIAA,ICAld and TRP were indole-3-acetic acid,methyl indole-3-acetate,indole-3-carboxaldehyde and L-tryptophan;iP7G,cZR,tZOG were N6-Isopentenyl-adenine-7-glucoside,cis-Zeatin riboside,trans-zeatin-O-glucoside and trans-zeatin riboside,respectively.
[1] | Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S. 2011. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108 (38):16128-16132. |
[2] |
Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S. 2002. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiology, 129:201-210.
doi: 10.1104/pp.010886 URL |
[3] |
Ahmad I, Kamran M, Meng X P, Ali S, Ahmad S, Gao Z Q, Liu T N, Han Q F. 2021. Hormonal changes with uniconazole trigger canopy apparent photosynthesis and grain filling in wheat crop in a semi-arid climate. Protoplasma, 258:139-150.
doi: 10.1007/s00709-020-01559-0 URL |
[4] | Bai Longqiang, Liu Yumei, Mu Ying, He Chaoxing, Xie Bingyan, Yu Xianchang, Li Yansu. 2018. Effects of gibberellin on nitrogen metabolism and uptake of cucumber under suboptimal root-zone temperature. Acta Horticulturae Sinica, 45 (10):1917-1928. (in Chinese) |
白龙强, 刘玉梅, 慕英, 贺超兴, 闫妍, 谢丙炎, 于贤昌, 李衍素. 2018. 赤霉素对根区亚低温下黄瓜幼苗氮代谢与吸收的影响. 园艺学报, 45 (10):1917-1928. | |
[5] | Biemelt S, Tschiersch H, Sonnewald U. 2004. Impact of altered gibberellin metabolism on biomass accumulation,lignin biosynthesis,and photosynthesis in transgenic tobacco plants. Plant Physioloy, 135:254-265. |
[6] |
Cantero-Navarro E, Romero-Aranda R, Fernández-Muñoz R, Martínez-Andújar C, Pérez-Alfocea F, Albacete A. 2016. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Science, 251:90-100.
doi: S0168-9452(16)30032-2 pmid: 27593467 |
[7] |
Chapman E J, Greenham K, Castillejo C, Sartor R, Bialy A, Sun T P, Estelle M. 2012. Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS ONE, 7 (5):e36210.
doi: 10.1371/journal.pone.0036210 URL |
[8] |
Cui Q Q, Xie L L, Dong C J, Gao L H, Shang Q M. 2021. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Science, 304:110803.
doi: 10.1016/j.plantsci.2020.110803 URL |
[9] |
Dayan J, Voronin N, Gong F, Sun T P, Hedden P, Fromm H, Aloni R. 2012. Leaf-induced gibberellin signaling is essential for internode elongation,cambial activity,and fiber differentiation in tobacco stems. The Plant Cell, 24 (1):66-79.
doi: 10.1105/tpc.111.093096 URL |
[10] |
del Pozo J C, Lopez-Matas M A, Ramirez-Parra E, Gutierrez C. 2005. Hormonal control of the plant cell cycle. Physiologia Plantarum, 123 (2):173-183.
doi: 10.1111/j.1399-3054.2004.00420.x URL |
[11] |
Estañ M T, Martinez-Rodriguez M M, Perez-Alfocea F, Flowers T J, Bolarin M C. 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of Experimental Botany, 56 (412):703-712.
doi: 10.1093/jxb/eri027 URL |
[12] | Fletcher R A, Hofstra G, Gao J G. 1986. Comparative fungitoxic and plant growth regulating properties of triazole derivatives. Plant Cell Physiology, 27 (2):367-371. |
[13] |
Frigerio M, Alabadí D, Pérez-Gómez J, García-Cárcel L, Phillips A L, Hedden P, Blázquez M A. 2006. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiology, 142 (2):553-563.
doi: 10.1104/pp.106.084871 pmid: 16905669 |
[14] | Goldschmidt E E. 2014. Plant grafting:new mechanisms,evolutionary implications. Frontiers in Plant Science, 5 (727):727. |
[15] | Han Min, Cao Bili, Liu Shusen, Xu Kun. 2018. Effects of rootstock and scion interaction on chilling tolerance of grafted tomato seedlings. Acta Horticulturae Sinica, 45 (2):279-288. (in Chinese) |
韩敏, 曹逼力, 刘树森, 徐坤. 2018. 番茄嫁接苗根穗互作对其耐冷性的影响. 园艺学报, 45 (2):279-288. | |
[16] |
Hedden P. 2020. The current status of research on gibberellin biosynthesis. Plant Cell Physiology, 61 (11):1832-1849.
doi: 10.1093/pcp/pcaa092 URL |
[17] |
Inzé D, de Veylder L. 2006. Cell cycle regulation in plant development. Annual Review of Genetics, 40:77-105.
doi: 10.1146/annurev.genet.40.110405.090431 URL |
[18] | Iwase A, Mitsuda N, Ikeuchi M, Ohnuma M, Koizuka C, Kawamoto K, Imamura J, Ezura H, Sugimoto K. 2013. Arabidopsis WIND 1 induces callus formation in rapeseed,tomato,and tobacco. Plant Signaling & Behavior, 8 (12):e27432. |
[19] |
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M. 2011. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 21:508-514.
doi: 10.1016/j.cub.2011.02.020 URL |
[20] | Izumi K, Nakagawa S, Kobayashi M, Oshio H, Sakurai A, Takahashi N. 1988. Levels of IAA,cytokinins,ABA and ethylene in rice plants as affected by a gibberellin biosynthesis inhibitor,uniconazole-P. Plant and Cell Physiology, 29 (1):97-104. |
[21] | Kieber J J, Schaller G E. 2018. Cytokinin signaling in plant development. Development, 145 (4):dev149344. |
[22] |
Kunwar S, Paret M L, Olson S M, Ritchie L, Rich J R, Freeman J, McAvoy T. 2015. Grafting using rootstocks with resistance to Ralstonia solanacearum against Meloidogyne incognita in tomato production. Plant Disease, 99:119-124.
doi: 10.1094/PDIS-09-13-0936-RE pmid: 30699747 |
[23] |
Lee J M, Kubota C, Tsao S J, Bie Z L, Echevarria P H, Morra L, Oda M. 2010. Current status of vegetable grafting:diffusion,grafting techniques,automation. Scientia Horticulturae, 127 (2):93-105.
doi: 10.1016/j.scienta.2010.08.003 URL |
[24] | Lee J M, Oda M. 2003. Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28:61-124. |
[25] |
Lee K M, Lim C S, Muneer S, Jeong B R. 2016. Functional vascular connections and light quality effects on tomato grafted unions. Scientia Horticulturae, 201:306-317.
doi: 10.1016/j.scienta.2016.02.013 URL |
[26] |
León J, Rojo E, Sánchez-Serrano J J. 2001. Wound signalling in plants. Journal of Experimental Botany, 52 (354):1-9.
pmid: 11181708 |
[27] | Li Maofu, Yang Yuan, Wang Hua, Liu Jiashen, Jin Wanmei. 2019. Effects of gibberellin on growth and development of rose‘Carola’. Acta Horticulturae Sinica, 46 (4):749-760. (in Chinese) |
李茂福, 杨媛, 王华, 刘佳棽, 金万梅. 2019. 赤霉素对露地栽培月季‘卡罗拉’生长发育的影响. 园艺学报, 46 (4):749-760. | |
[28] |
Lin C H, Hsu S T, Tzeng K C, Wang J F. 2008. Application of a preliminary screen to select locally adapted resistant rootstock and soil amendment for integrated management of tomato bacterial wilt in Taiwan. Plant Disease, 92:909-916.
doi: 10.1094/PDIS-92-6-0909 URL |
[29] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 25 (4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[30] |
Lu S F, Song Y R. 1999. Relation between phytohormone level and vascular bridge differentiation in graft union of explanted internode autografting. Chinese Science Bulletin, 44 (20):1874-1878.
doi: 10.1007/BF02886344 URL |
[31] | Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S. 2013. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proceedings of the National Academy of Sciences of the United States of America, 110 (5):1947-1952. |
[32] |
Martínez-Andújar C, Ruiz-Lozano J M, Dodd I C, Albacete A, Pérez-Alfocea F. 2017. Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Frontiers in Plant Science, 8:533.
doi: 10.3389/fpls.2017.00533 pmid: 28443121 |
[33] | Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T. 2008. Cytokinins are central regulators of cambial activity. Proceedings of the National Academy of Sciences of the United States of America, 105 (50):20027-20031. |
[34] |
Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao-Morita M, Satoh S, Asahina M. 2016. Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiology, 57 (12):2620-2631.
doi: 10.1093/pcp/pcw177 URL |
[35] | Melnyk C W, Gabel A, Hardcastle T J, Robinson S, Miyashima S, Grosse I, Meyerowitz E M. 2018. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proceedings of the National Academy of Sciences of the United States of America, 115 (10):E2447-E2456. |
[36] |
Melnyk C W, Schuster C, Leyser O, Meyerowitz E M. 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology, 25 (10):1306-1318.
doi: 10.1016/j.cub.2015.03.032 URL |
[37] |
Moreno M M, Villena J, González-Mora S, Moreno C. 2019. Response of healthy local tomato(Solanum lycopersicum L.)populations to grafting in organic farming. Scientific Reports, 9 (1):4592.
doi: 10.1038/s41598-019-41018-2 pmid: 30872790 |
[38] |
Mun B, Jang Y, Goto E, Ishigami Y, Chun C. 2011. Measurement system of whole-canopy carbon dioxide exchange rates in grafted cucumber transplants in which scions were exposed to different water regimes using a semi-open multi-chamber. Scientia Horticulturae, 130 (3):607-614.
doi: 10.1016/j.scienta.2011.08.017 URL |
[39] |
Nomura T, Magome H, Hanada A, Takeda-Kamiya N, Mander L N, Kamiya Y, Yamaguchi S. 2013. Functional analysis of Arabidopsis CYP714A1 and CYP714A 2 reveals that they are distinct gibberellin modification enzymes. Plant Cell Physiology, 54 (11):1837-1851.
doi: 10.1093/pcp/pct125 URL |
[40] |
Notaguchi M, Kurotani K, Sato Y, Tabata R, Kawakatsu Y, Okayasu K, Sawai Y, Okada R, Asahina M, Ichihashi Y, Shirasu K, Suzuki T, Niwa M, Higashiyama T. 2020. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science, 369:698-702.
doi: 10.1126/science.abc3710 URL |
[41] |
Ntatsi G, Savvas D, Papasotiropoulos V, Katsileros A, Zrenner R M, Hincha D K, Zuther E, Schwarz D. 2017. Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants. Frontiers in Plant Science, 8:911.
doi: 10.3389/fpls.2017.00911 URL |
[42] |
Oda M, Maruyama M, Mori G. 2005. Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. Journal of the Japanese Society for Horticultural Science, 74 (6):458-463.
doi: 10.2503/jjshs.74.458 URL |
[43] | Ozturk A, Serdar U, Balci G. 2009. The influence of different nursery conditions on graft success and plant survival using the inverted radicle grafting method on the chestnut. Acta Horticulturae, 815:193-198. |
[44] | Pang Shichan, Guo Shuang, Ren Kuiyu, Wang Shuaishuai, Yang Shangdong. 2020. Impact of grafting on soil microbial properties and bacterial community structure in tomato rhizosphere. Acta Horticulturae Sinica, 47 (2):253-263. (in Chinese) |
庞师婵, 郭霜, 任奎瑜, 王帅帅, 杨尚东. 2020. 番茄/茄子嫁接对其根际土壤生物学性状及细菌群落结构的影响. 园艺学报, 47 (2):253-263. | |
[45] |
Pitaksaringkarn W, Ishiguro S, Asahina M, Satoh S. 2014. ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems. Plant Biotechnology, 31 (1):49-53.
doi: 10.5511/plantbiotechnology.13.1028b URL |
[46] |
Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke C S. 2011. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. The Plant Cell, 23:1322-1336.
doi: 10.1105/tpc.111.084020 URL |
[47] |
Riga P, Benedicto L, García-Flores L, Villaño D, Medina S, Gil-Izquierdo Á. 2016. Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition and Analysis, 46:50-59.
doi: 10.1016/j.jfca.2015.11.003 URL |
[48] |
Rivero R M, Ruiz J M, Sánchez E, Romero L. 2003. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiologia Plantarum, 117:44-50.
doi: 10.1034/j.1399-3054.2003.1170105.x URL |
[49] |
Sánchez-Rodríguez E, Ruiz J M, Ferreres F, Moreno D A. 2011. Phenolic metabolism in grafted versus nongrafted cherry tomatoes under the influence of water stress. Journal of Agricultural and Food Chemistry, 59 (16):8839-8846.
doi: 10.1021/jf201754t pmid: 21732696 |
[50] |
Sasaki E, Ogura T, Takei K, Kojima M, Kitahata N, Sakakibara H, Asami T, Shimada Y. 2013. Uniconazole,a cytochrome P450 inhibitor,inhibits trans-zeatin biosynthesis in Arabidopsis. Phytochemistry, 87:30-38.
doi: 10.1016/j.phytochem.2012.11.023 pmid: 23280040 |
[51] |
Shibuya T, Itagaki K, Wang Y, Endo R. 2015. Grafting transiently suppresses development of powdery mildew colonies,probably through a quantitative change in water relations of the host cucumber scions during graft healing. Scientia Horticulturae, 192:197-199.
doi: 10.1016/j.scienta.2015.06.010 URL |
[52] | Vu N T, Xu Z H, Kim Y S, Kang H M, Kim I S. 2014. Effect of nursery environmental condition and different cultivars on survival rate of grafted tomato seedling. Acta Horticulturae, 1037:765-770. |
[53] |
Wei Y Z, Dong C, Zhang H N, Zheng X W, Shu B, Shi S Y, Li W C. 2017. Transcriptional changes in litchi(Litchi chinensis Sonn.)inflorescences treated with uniconazole. PLoS ONE, 12 (4):e0176053.
doi: 10.1371/journal.pone.0176053 URL |
[54] |
Xie L L, Dong C J, Shang Q M. 2019. Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC Plant Biology, 19 (1):373.
doi: 10.1186/s12870-019-1976-7 URL |
[55] |
Yin H, Yan B, Sun J, Jia P F, Zhang Z J, Yan X S, Chai J, Ren Z Z, Zheng G C, Liu H. 2012. Graft-union development:a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany, 63 (11):4219-4232.
doi: 10.1093/jxb/ers109 URL |
[56] |
Zhai L M, Wang X M, Tang D, Qi Q, Yer H, Jiang X N, Han Z H, McAvoy R, Li W, Li Y. 2021. Molecular and physiological characterization of the effects of auxin-enriched rootstock on grafting. Horticulture Research, 8:74.
doi: 10.1038/s41438-021-00509-y URL |
[57] |
Zhang K, Letham D S, John P C L. 1996. Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H 1 histone kinase. Planta, 200 (1):2-12.
pmid: 8987615 |
[58] |
Zhang M C, Duan L S, Tian X L, He Z P, Li J M, Wang B M, Li Z H. 2007. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis,hormones and antioxidant system. Journal of Plant Physiology, 164 (6):709-717.
doi: 10.1016/j.jplph.2006.04.008 URL |
[59] |
Zhang Z H, Cao B L, Gao S, Xu K. 2019. Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256:1013-1024.
doi: 10.1007/s00709-019-01357-3 URL |
[1] | SHI Hongli, LI La, GUO Cuimei, YU Tingting, JIAN Wei, YANG Xingyong. Isolation,Identification and Analysis of Biocontrol Ability of Biocontrol Strain TL1 Against Tomato Botrytis cinerea [J]. Acta Horticulturae Sinica, 2023, 50(1): 79-90. |
[2] | HU Jingyu, QUE Kaijuan, MIAO Tianli, WU Shaozheng, WANG Tiantian, ZHANG Lei, DONG Xian, JI Pengzhang, DONG Jiahong. Identification of Tomato Spotted Wilt Orthotospovirus Infecting Iris tectorum [J]. Acta Horticulturae Sinica, 2023, 50(1): 170-176. |
[3] | ZHENG Jirong, WANG Tonglin, and HU Songshen. A New Tomato Cultivar‘Hangza 603’with High Quality [J]. Acta Horticulturae Sinica, 2022, 49(S2): 103-104. |
[4] | ZHENG Jirong and WANG Tonglin. A New Tomato Cultivar‘Hangza 601’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 105-106. |
[5] | ZHENG Jirong and WANG Tonglin. A New Cherry Tomato Cultivar‘Hangza 503’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 107-108. |
[6] | HUANG Tingting, LIU Shuqin, ZHANG Yongzhi, LI Ping, ZHANG Zhihuan, and SONG Libo. A New Cherry Tomato Cultivar‘Yingshahong 4’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 109-110. |
[7] | ZHANG Qianrong, LI Dazhong, QIU Boyin, LIN Hui, MA Huifei, YE Xinru, LIU Jianting, ZHU Haisheng, and WEN Qingfang. A New Tomato Cultivar‘Minnongke 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 73-74. |
[8] | HAN Shuai, WU Jie, ZHANG Heqing, XI Yadong. Identification and Sequence Analysis of Tomato Spotted Wilt Orthotospovirus Infecting Lettuce in Sichuan [J]. Acta Horticulturae Sinica, 2022, 49(9): 2007-2016. |
[9] | CHEN Lilang, YANG Tianzhang, CAI Ruping, LIN Xiaoman, DENG Nankang, CHE Haiyan, LIN Yating, KONG Xiangyi. Molecular Detection and Identification of Viruses from Passiflora edulis in Hainan [J]. Acta Horticulturae Sinica, 2022, 49(8): 1785-1794. |
[10] | LU Tao, YU Hongjun, LI Qiang, JIANG Weijie. Effects of Leaf and Fruit Quantity Regulation on Growth,Fruit Quality and Yield of Tomato [J]. Acta Horticulturae Sinica, 2022, 49(6): 1261-1274. |
[11] | CUI Dongyu, LI Changqing, SUN Yanxin, WANG Jiqing, ZOU Guoyuan, YANG Jungang. Effects of Dwarf Close Planting on Growth and Yield of Tomato Under East-West Cultivation in Greenhouse [J]. Acta Horticulturae Sinica, 2022, 49(4): 875-884. |
[12] | CHEN Tongqiang, ZHANG Tianzhu, WANG Xiaozhuo. Research Progress of The Regulation of Light on Lycopene Biosynthesis in Tomato Fruit [J]. Acta Horticulturae Sinica, 2022, 49(4): 907-923. |
[13] | PENG Yi, LI Yuanhui, YANG Rui, ZHANG Ziyi, LI Yanan, HAN Yunhao, ZHAO Wenchao, WANG Shaohui. The Jasmonic Acid Synthesis Gene LoxD Participates in the Regulation of Tomato Drought Resistance [J]. Acta Horticulturae Sinica, 2022, 49(2): 319-331. |
[14] | WANG Jin, WANG Xinyu, SHEN Yuanbo, ZHANG Qinghua, Lou Qianqi, ZHANG Shijie, ZHAO Pan, LIANG Yan. Regulation of Chloroplast Development in Tomato Fruit and Its Application [J]. Acta Horticulturae Sinica, 2022, 49(12): 2669-2682. |
[15] | MENG Zhen, ZHANG Weiping, WANG Ying, LI Long, JI Xiaoxue, DONG Bei, QIAO Kang. Establishment and Application of Real-Time PCR for Quantitative Detection of Fusarium oxysporum f. sp. lycopersici [J]. Acta Horticulturae Sinica, 2022, 49(11): 2479-2488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd