Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (6): 1247-1260.doi: 10.16420/j.issn.0513-353x.2021-0323
• Research Papers • Previous Articles Next Articles
MA Mingying1,2, HAO Chenxing1,2, ZHANG Kai1,2, XIAO Guihua1,2, SU Hanying1,2, WEN Kang1, DENG Ziniu1,2, MA Xianfeng1,2,*()
Received:
2021-12-10
Revised:
2022-02-28
Online:
2022-06-25
Published:
2022-07-04
Contact:
MA Xianfeng
E-mail:maxf8006@126.com
CLC Number:
MA Mingying, HAO Chenxing, ZHANG Kai, XIAO Guihua, SU Hanying, WEN Kang, DENG Ziniu, MA Xianfeng. CsSWEET2a Promotes the Infection of Xanthomonas citri subsp. citri[J]. Acta Horticulturae Sinica, 2022, 49(6): 1247-1260.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0323
基因 Gene | 引物名称 Primer ID | 引物序列(5′-3′) Primer sequence | 退火温度/℃ Tm | 产物大小/ bp Size |
---|---|---|---|---|
SWEET17d | orange1.1t04897-qPCR-F1 | AATTTCATTTTTGGGCTTCTAGGCA | 58 | 105 |
orange1.1t04897-qPCR-R1 | AAATTCCTCCGTTGATCTACGCTGT | |||
SWEET12b | orange1.1t02627-qPCR-F1 | CACGTCTTCGTCTTCTCGGA | 58 | 89 |
orange1.1t02627-qPCR-R1 | GCGTACGACCAGCCTCATAA | |||
SWEET2a | Cs2g04140-qPCR-F1 | TCGCTACAGTGAATTCAGTTGGAGC | 60 | 174 |
Cs2g04140-qPCR-R1 | GCCGCCCATTGGAGTCAA | |||
EF1a | GTAACCAAGTCTGCTGCCAAG | |||
GACCCAAACACCCAACACATT | ||||
SWEET2a | Cs2g04140-KpnⅠ-F | GGGGTACCATGTCTTCAGTTGGGATTTC | 60 | 1 771 |
Cs2g04140- KpnⅠ-R | CCGGTACCTGCAAATGAATCGATCAG | |||
Cs2g04140-F | TCTGGAACTCAAGCATTCCGACTTT | 55 | 581 | |
p1300-eYFP-R | CCGGACACGCTGAACTTGT |
Table 1 The List of Primers
基因 Gene | 引物名称 Primer ID | 引物序列(5′-3′) Primer sequence | 退火温度/℃ Tm | 产物大小/ bp Size |
---|---|---|---|---|
SWEET17d | orange1.1t04897-qPCR-F1 | AATTTCATTTTTGGGCTTCTAGGCA | 58 | 105 |
orange1.1t04897-qPCR-R1 | AAATTCCTCCGTTGATCTACGCTGT | |||
SWEET12b | orange1.1t02627-qPCR-F1 | CACGTCTTCGTCTTCTCGGA | 58 | 89 |
orange1.1t02627-qPCR-R1 | GCGTACGACCAGCCTCATAA | |||
SWEET2a | Cs2g04140-qPCR-F1 | TCGCTACAGTGAATTCAGTTGGAGC | 60 | 174 |
Cs2g04140-qPCR-R1 | GCCGCCCATTGGAGTCAA | |||
EF1a | GTAACCAAGTCTGCTGCCAAG | |||
GACCCAAACACCCAACACATT | ||||
SWEET2a | Cs2g04140-KpnⅠ-F | GGGGTACCATGTCTTCAGTTGGGATTTC | 60 | 1 771 |
Cs2g04140- KpnⅠ-R | CCGGTACCTGCAAATGAATCGATCAG | |||
Cs2g04140-F | TCTGGAACTCAAGCATTCCGACTTT | 55 | 581 | |
p1300-eYFP-R | CCGGACACGCTGAACTTGT |
Fig. 4 Sequence difference alignment of amino acids encoded by SWEET2a BTC:‘Bingtang’ Sweet Orange;JY C-05:Citron C-5;CGXY:Changguo Citron;Cg:Citrus Grandis;SJG:Fortunella Hindsii;PTJY:Common Citron.
Fig. 5 Sequence difference alignment of amino acids encoded by SWEET2a in different Citron medica JY C-05:Citron C-5;AGXY:Aiguo Citron;PTJY:Common Citron;YXY:Round Citron;CGXY:Changguo Citron;DNXY:Danna Citron;MGJY:American Citron;NCXY:Nanchuan Citron;YSXY:Wild Citron;XXY:Small Citron.
顺式元件 cis-Element | 功能预测 Function prediction | 序列 Sequence | 起始位/bp Start position | |
---|---|---|---|---|
冰糖橙 ‘Bingtang’Sweet Orange | 枸橼C-05 Citron C-05 | |||
ARE | 厌氧诱导Anaerobic induction | AAACCA | + 212 | -905 |
+ 1 046 | -933 | |||
+ 1 489 | ||||
TCA-element | 水杨酸响应Salicylic acid responsiveness | TCAGAAGAGG | + 1 924 | |
MBS | MYB结合位点参与干旱诱导 | CAACTG | -1 626 | + 181 |
MYB binding site involved in drought-inducibility | -611 | |||
-1 422 | ||||
LTR | 低温诱导Low-temperature responsiveness | CCGAAA | -649 | -623 |
CAT-box | 分生组织表达Meristem expression | GCCACT | + 198 | + 1 571 |
-1 155 | ||||
+ 1 768 | ||||
TC-rich repeats | 防御和应激反应Defense and stress responsiveness | GTTTTCTTAC | + 1 478 | |
ABRE | 脱落酸响应Abscisic acid responsiveness | ACGTG | + 185 | |
+ 186 | ||||
-681 | ||||
+ 855 | ||||
-1 122 | ||||
-1 124 | ||||
+ 1 125 | ||||
-1 221 | ||||
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | CAACGG | -1 500 | -1 067 |
O2-site | Zein新陈代谢调节Zein metabolism regulation | GATGATGTGG | -356 | |
+ 399 | ||||
GCN4_motif | 胚乳表达Endosperm expression | TGAGTCA | + 44 | |
TGACG-motif | 茉莉酸甲酯响应MeJA-responsiveness | TGACG | -1 419 | |
TATC-box | 赤霉素响应Gibberellin responsiveness | TATCCCA | -341 |
Table 2 The Cis-acting regulatory elements in promoter of SWEET2a
顺式元件 cis-Element | 功能预测 Function prediction | 序列 Sequence | 起始位/bp Start position | |
---|---|---|---|---|
冰糖橙 ‘Bingtang’Sweet Orange | 枸橼C-05 Citron C-05 | |||
ARE | 厌氧诱导Anaerobic induction | AAACCA | + 212 | -905 |
+ 1 046 | -933 | |||
+ 1 489 | ||||
TCA-element | 水杨酸响应Salicylic acid responsiveness | TCAGAAGAGG | + 1 924 | |
MBS | MYB结合位点参与干旱诱导 | CAACTG | -1 626 | + 181 |
MYB binding site involved in drought-inducibility | -611 | |||
-1 422 | ||||
LTR | 低温诱导Low-temperature responsiveness | CCGAAA | -649 | -623 |
CAT-box | 分生组织表达Meristem expression | GCCACT | + 198 | + 1 571 |
-1 155 | ||||
+ 1 768 | ||||
TC-rich repeats | 防御和应激反应Defense and stress responsiveness | GTTTTCTTAC | + 1 478 | |
ABRE | 脱落酸响应Abscisic acid responsiveness | ACGTG | + 185 | |
+ 186 | ||||
-681 | ||||
+ 855 | ||||
-1 122 | ||||
-1 124 | ||||
+ 1 125 | ||||
-1 221 | ||||
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | CAACGG | -1 500 | -1 067 |
O2-site | Zein新陈代谢调节Zein metabolism regulation | GATGATGTGG | -356 | |
+ 399 | ||||
GCN4_motif | 胚乳表达Endosperm expression | TGAGTCA | + 44 | |
TGACG-motif | 茉莉酸甲酯响应MeJA-responsiveness | TGACG | -1 419 | |
TATC-box | 赤霉素响应Gibberellin responsiveness | TATCCCA | -341 |
Fig. 6 The expression patten of SWEET2a in Nicotiana benthamiana A:The Nicotiana benthamiana leaf containing 35S::SWEET2a:eYFP was injected;B:After injection of 35S::SWEET2a:eYFP and cytoplasmic membrane localization gene PM-RB,the plasma wall of Nicotiana benthamiana leaf was isolated. The yellow arrow indicates the fluorescence expression of SWEET2a;The blue arrow indicates the location of the cell wall;The white arrow indicates the fluorescence expression of PM-RB;The red arrows indicate merge expression of the two.
Fig. 7 The symptom of Xcc in leaves of‘Bingtang’Sweet Orange and Citron C-05 after transient overexpression of SWEET2a at 15 d(A)and the growth of Xcc at 0-4 d(B) A:The symptoms of transient overexpression of SWEET2a in‘Bingtang’Sweet Orange leaves in 15 d;B:The growth of Xcc in‘Bingtang’ Sweet Orange after transient overexpression. Two-tailed Student’s t-test(* P < 0.05).
Fig. 9 Symptoms(A)and pathogen content(B)of OE-SWEET2a at 3 days after inoculation with Pst.DC3000 A:Symptoms of Pst. DC3000 in 3 d;B:Pst. DC3000 content per unit leaf area;WT:Wild Type. Two-tailed Student’s t-test(* P < 0.05).
[1] |
Behlau F, Belasque J J, Bergamin F A, Graham J H, Leite J R P, Gottwald T R. 2008. Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protection, 27 (3-5):807-813.
doi: 10.1016/j.cropro.2007.11.008 URL |
[2] | Rhonda C M, Steinfath M, Lisec J, Becher M, Witucka-Wall H, TorjéK O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy, 104 (11):4759-4764. |
[3] |
Chandran D. 2015. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. Iubmb Life, 67 (7):461-471.
doi: 10.1002/iub.1394 pmid: 26179993 |
[4] |
Chardon F, Bedu M, Calenge F, Klemens P A W, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus H E, Daniel-Vedele F, Krapp A. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17. Current Biology, 23 (8):697-702.
doi: 10.1016/j.cub.2013.03.021 pmid: 23583552 |
[5] |
Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. 2015. The Arabidopsis vacuolar sugar transporter SWEET 2 limits carbon sequestration from roots and restricts pythium infection. The Plant Journal, 83 (6):1046-1058.
doi: 10.1111/tpj.12948 URL |
[6] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W, Kim J, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468 (7323):527-532.
doi: 10.1038/nature09606 URL |
[7] |
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio W S, Fernie A R, Frommer W B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335:207-211.
doi: 10.1126/science.1213351 URL |
[8] |
Chen L Q. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist, 201 (4):1150-1155.
doi: 10.1111/nph.12445 URL |
[9] |
Chong J L, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. 2014. The SWEET family of sugar transporters in grapevine:VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany, 65:6589-6601.
doi: 10.1093/jxb/eru375 URL |
[10] |
Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. 2006. Targeting xa13,a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics, 112:455-461.
doi: 10.1007/s00122-005-0145-6 URL |
[11] |
Cohn Megan, Morbitzer Robert, Bart Rebecca S, Hou B H, Shybut M, Frommer W B, Dahlbeck D, Lahaye T, Gomez M, Staskawicz B J. 2014. Xanthomonas axonopodis Virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in Cassava. Molecular Plant-Microbe Interactions, 27 (11):1186-1198.
doi: 10.1094/MPMI-06-14-0161-R pmid: 25083909 |
[12] |
Cox K L, Meng F H, Wilkins K E, Li F J, Wang P, Booher N J, Carpenter C D, Chen L Q, Zheng H, Gao X Q, Zheng Y, Fei Z J, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L B. 2017. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications, 8:15588.
doi: 10.1038/ncomms15588 URL |
[13] | Das A K. 2003. Citrus canker-a review. J Appl Hort, 5 (1):52-60. |
[14] |
Ference C M, Baldwin E A, Manthey J A, Jones J B. 2020. Inhibitory extracts of calamondin leaves associated with precipitous decline of Xanthomonas citri subsp. citri populations. European Journal of Plant Pathology, 156 (2):451-461.
doi: 10.1007/s10658-019-01894-w URL |
[15] |
Frank B R, Kristen A L, David M B. 2012. SWEET as sugar:new sucrose effluxers in plants. Molecular Plant, 5 (4):766-768.
doi: 10.1093/mp/sss054 pmid: 22815540 |
[16] |
Gao Y, Wang Z, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Ji B L, Xuan Y H. 2018. Genome-wide identification of the SWEET gene family in wheat. Gene, 642:284-292.
doi: 10.1016/j.gene.2017.11.044 URL |
[17] | Geng Yanqiu, Dong Xiaochang, Zhang Chunmei. 2021. Recent progress of sugar transporter in horticultural crops. Acta Horticulturae Sinica, 48 (4):676-688. (in Chinese) |
耿艳秋, 董肖昌, 张春梅. 2021. 园艺作物糖转运蛋白研究进展. 园艺学报, 48 (4):676-688. | |
[18] |
Gottwald T R, Graham J H, Civerolo E L, Barrett H C, Hearn C J. 1993. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptiblity. Plant Disease, 77 (10):1004-1009.
doi: 10.1094/PD-77-1004 URL |
[19] |
Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. 2014. SWEET17,a facilitative transporter,mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164 (2):777-789.
doi: 10.1104/pp.113.232751 URL |
[20] | Hu Y, Zhang J L, Jia H G, Sosso D, Li T, Frommer W B, Yang B, White F F, Wang N, Jones J B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci USA, 111(4):E521-529. |
[21] |
Jean C R T, Stroock A D. 2017. Phloem loading through plasmodesmata a biophysical analysis. Plant Physiology, 175:904-915.
doi: 10.1104/pp.16.01041 URL |
[22] |
Joan D, Emily G, Christina K, Francoise S P, Casieri L, Wipf D. 2012. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science, 17 (7):413-422.
doi: 10.1016/j.tplants.2012.03.009 URL |
[23] |
Lalonde S, Wipf D, Frommer W B. 2004. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 55:341-372.
pmid: 15377224 |
[24] | Li Qiang, Qi Jingjing, Dou Wanfu, Qin Xiujuan, He Yongrui, Chen Shanchun. 2020. Overexpression of CsNBS-LRR in citrus confers bacterial canker resistance by regulating SA signaling pathway. Acta Horticulturae Sinica, 47 (5):817-826. (in Chinese) |
李强, 祁静静, 窦万福, 秦秀娟, 何永睿, 陈善春. 2020. 柑橘超量表达CsNBS-LRR 通过SA 信号途径增强对溃疡病抗性. 园艺学报, 47 (5):817-826. | |
[25] | Liu Q S, Meng Y, Zhou Y, Li X H, Xiao J H, Wang S P. 2011. A paralog of the MtN3/saliva family recessively confersrace-specific resistance to Xanthomonas oryzae in rice. Plantcell Environ, 34:1958-1969. |
[26] |
Liu X Z, Zhang Y, Yang C, Tian Z H, Li J X. 2016. AtSWEET4,a hexose facilitator,mediates sugar transport to axial sinks and affects plant development. Scientific Reports, 6:1-12.
doi: 10.1038/s41598-016-0001-8 URL |
[27] | Ma Zhimin, Duan Yu, Xu Jianjian, Bin Yu, Zhou Changyong, Song Zhen. 2021. The rapid detection of Xanthomonas citri ssp. citri(Xcc)based on recombinase polymerase amplification(RPA)assay. Acta Horticulturae Sinica, 48 (3):590-599. (in Chinese) |
马志敏, 段玉, 许建建, 宾羽, 周常勇, 宋震. 2021. 基于重组酶聚合酶扩增技术(RPA)的柑橘溃疡病菌检测方法. 园艺学报, 48 (3):590-599. | |
[28] | Qi Jingjing, Dou Wanfu, Zhang Qingwen, Hu Anhua, Chen Shanchun, Lei Tiangang, Peng Aihong, Xu Lanzhen, Yao Lixiao, He Yongrui, Li Qiang. 2020. Interacting protein screening and analysis of CsAP2-09—a citrus bacterial canker related transcription factor. Acta Horticulturae Sinica, 47 (3):432-444. (in Chinese) |
祁静静, 窦万福, 张庆雯, 胡安华, 陈善春, 雷天刚, 彭爱红, 许兰珍, 姚利晓, 何永睿, 李强. 2020 柑橘抗溃疡病转录因子CsAP2-09互作蛋白筛选与分析. 园艺学报, 47 (3):432-444. | |
[29] | Qi Jingjing, Qin Xiujuan, Xie Yu, Chen Shanchun, He Yongrui, Li Qiang. 2021. Correlation analysis of citrus catalase gene CsKat01and citrus canker disease. Acta Horticulturae Sinica, 48 (1):26-36. (in Chinese) |
祁静静, 秦秀娟, 谢宇, 陈善春, 何永睿, 李强. 2021. 过氧化氢酶基因CsKat01与柑橘溃疡病相关性分析. 园艺学报, 48 (1):26-36. | |
[30] |
Schaad N W, Postnikova E, Lacy G, Sechler A, Agarkova I, Stromberg P E, Stromberg V K, Vidaver A K. 2006. Emended classification of xanthomonad pathogens on citrus. Syst Appl Microbiol, 29 (8):690-695.
doi: 10.1016/j.syapm.2006.08.001 URL |
[31] | Schubert T S, Rizvi S A, Sun X A, Gottwald T R, Graham J H, Dixon W N. 2001. Meeting the challenge of eradicating citrus canker in Florida-Again. Plant Disease, 85 (4):340-356. |
[32] |
Slewinski T L. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants:a physiological perspective. Molecular Plant, 4 (4):641-662.
doi: 10.1093/mp/ssr051 pmid: 21746702 |
[33] |
Smeekens S, Ma J K, Hanson J, Rolland F. 2010. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 13 (3):274-279.
doi: 10.1016/j.pbi.2009.12.002 pmid: 20056477 |
[34] |
Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist, 200 (3):808-819.
doi: 10.1111/nph.12411 pmid: 23879865 |
[35] |
Swarup S, Yinong Y, Kingsley M T, Gabriel D W. 1992. An Xanthomonas citri pathogenicity gene,pthA,pleiotropically encodes gratuitous avirulence on Nonhosts. Molecular Plant-Microbe Interactions, 5 (3):204-213.
pmid: 1421509 |
[36] |
Tang D J, He Y Q, Feng J X, He B R, Jiang B L, Lu G T, Chen B S, Tang J L. 2005. Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. Journal of bacteriology, 187 (17):6231-6237.
doi: 10.1128/JB.187.17.6231-6237.2005 URL |
[37] |
Yang B, Sugio A, White F F. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci, 103 (27):10503-10508.
doi: 10.1073/pnas.0604088103 URL |
[38] |
Zhou J H, Peng Z, Long J Y, Sosso D, Liu B, Eom J S, Huang S, Liu S Z, Cruz C V, Frommer W B, White F F, Yang B. 2015. Gene targeting by the TAL effector pthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant Journal, 82:632-643.
doi: 10.1111/tpj.12838 URL |
[39] | Zhu Zhi-mei, Tan Li-mei, Xu Jing, Fu Hong-yan, Hu Zhe, Gong Lei, Yang Gui-bing, Wang Ping, Ma Xian-feng, Deng Zi-niu. 2021. Evaluation of citron genotypes for the resistance to citrus canker. China Fruits,(1):43-49. (in Chinese) |
朱志媚, 谭李梅, 徐静, 符红艳, 胡哲, 龚蕾, 杨贵兵, 王萍, 马先锋, 邓子牛. 2021. 枸橼种质对柑橘溃疡病的抗性鉴定. 中国果树,(1):43-49. |
[1] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, and ZHAO Xiaochun, . Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[2] | JIANG Jingdong, WEI Zhuangmin, WANG Nan, ZHU Chenqiao, YE Junli, XIE Zongzhou, DENG Xiuxin, CHAI Lijun. Exploitation and Identification of Tetraploid Resources of Hongkong Kumquat(Fortunella hindsii) [J]. Acta Horticulturae Sinica, 2023, 50(1): 27-35. |
[3] | DU Yuling, YANG Fan, ZHAO Juan, LIU Shuqi, LONG Chaoan. Antifungal Mechanisms of Sodium New Houttuyfonate Against Penicillium digitatum [J]. Acta Horticulturae Sinica, 2023, 50(1): 145-152. |
[4] | LI Zhenxi, PAN Ruixuan, XU Meirong, ZHENG Zheng, DENG Xiaoling. Development of Duplex Real-time PCR Assay of‘Candidatus Liberibacter asiatics’ [J]. Acta Horticulturae Sinica, 2023, 50(1): 188-196. |
[5] | ZHU Kaijie, ZHANG Zhehui, CAO Lixin, XIANG Shunde, YE Junli, XIE Zongzhou, CHAI Lijun, and DENG Xiuxin, . A New Brown Late-ripening Navel Orange Cultivar‘Zongcheng’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 41-42. |
[6] | ZHU Shiping, WEN Rongzhong, WANG Yuanyuan, and ZENG Yang. A New Very Late Ripening Citrus Variety‘Jinlegan’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 43-44. |
[7] | HUANG Ling, HU Xianmei, LIANG Zehui, WANG Yanping, CHAN Zhulong, XIANG Lin. Cloning and Function Identification of Anthocyanidin Synthase Gene TgANS in Tulipa gesneriana [J]. Acta Horticulturae Sinica, 2022, 49(9): 1935-1944. |
[8] | YANG Yuyan, DUAN Xinyuan, HE Zhilin, BING Qihao, CHEN Suoying, LIU Xiaoman, ZENG Ming, LIU Xiaogang. Cloning and Function Characterization of UDP-L-rhamnose Synthase from Fortunella crassifolia [J]. Acta Horticulturae Sinica, 2022, 49(8): 1663-1672. |
[9] | TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit [J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440. |
[10] | ZHENG Lin, WANG Shuai, LIU Yunuo, DU Meixia, PENG Aihong, HE Yongrui, CHEN Shanchun, ZOU Xiuping. Gene Cloning and Expression Analysis of NAC Gene in Citrus in Response to Huanglongbing [J]. Acta Horticulturae Sinica, 2022, 49(7): 1441-1457. |
[11] | YANG Haijian, ZHANG Yungui, ZHOU Xinzhi. A New Citrus Cultivar‘Yungui Cui Cheng’ [J]. Acta Horticulturae Sinica, 2022, 49(7): 1611-1612. |
[12] | ZHANG Kai, MA Mingying, WANG Ping, LI Yi, JIN Yan, SHENG Ling, DENG Ziniu, MA Xianfeng. Identification of HSP20 Family Genes in Citrus and Their Expression in Pathogen Infection Responses Citrus Canker [J]. Acta Horticulturae Sinica, 2022, 49(6): 1213-1232. |
[13] | LI Wenting, LI Cuixiao, LIN Xiaoqing, ZHENG Yongqin, ZHENG Zheng, DENG Xiaoling. Population Genetic Structure of Xanthomonas citri pv. citri in Guangdong Province Based on the STR Locus [J]. Acta Horticulturae Sinica, 2022, 49(6): 1233-1246. |
[14] | JIA Yamin, XU Hao, HU Wenlang, WANG Yuwen, YE Xin, CHEN Lisong, LI Yan, GUO Jiuxin. Magnesium Deficiency Altered in Iron Absorption,Subcellular Distribution,and Chemical Forms in Citrus Seedlings [J]. Acta Horticulturae Sinica, 2022, 49(5): 973-983. |
[15] | WEI Zhuangmin, WEI Sijia, CHEN Peng, HU Jianbing, TANG Yuqing, YE Junli, LI Xianxin, DENG Xiuxin, CHAI Lijun. Identification of S-genotypes of 63 Pummelo Germplasm Resources [J]. Acta Horticulturae Sinica, 2022, 49(5): 1111-1120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd