Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (5): 1145-1161.doi: 10.16420/j.issn.0513-353x.2021-0380
• Reviews • Previous Articles Next Articles
ZHANG Qianwen1, YANG Xihang1, LI Feng1, DENG Yingtian1,2,*()
Received:
2021-12-17
Revised:
2022-03-07
Online:
2022-05-25
Published:
2022-05-25
Contact:
DENG Yingtian
E-mail:dengyt@mail.hzau.edu.cn
CLC Number:
ZHANG Qianwen, YANG Xihang, LI Feng, DENG Yingtian. Advances in miRNA-mediated Growth and Development Regulation in Horticultural Crops[J]. Acta Horticulturae Sinica, 2022, 49(5): 1145-1161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0380
植物器官 Organ | 植物种类 Plants species | miRNA | 靶基因 Target | 农艺性状 Agronomic trait | 参考文献 Reference |
---|---|---|---|---|---|
根Root | 番茄Solanum lycopersicum | sly-miR156 | SBP | 茎气生根的生成 Generation of stem aerial roots | Zhang et al., |
马铃薯Solanum tuberosum | stu-miR156 | SPL9 | 侧根生长发育Lateral root growth | 罗红玉 等, | |
小金海棠Malus xiaojinensis | mxi-miR156 | MxSPL26 | 生根率Rooting rate | Xu et al., | |
叶Leaf | 番茄Solanum lycopersicum | sly-miR160 | SlARF10A/17 | 叶片形状与大小 Leaf shape and size | 刘欣 等, Damodharan et al., |
观赏海棠Malus spectabilis | mcp-miR160a | ARF18 | 叶色Leaf color | 罗容丽 等, | |
番茄Solanum lycopersicum | sly-miR319 | La | 叶片发育Leaf development | Ori et al., | |
白菜Brassica rapa | brp-miR319 | BrpTCP4 | 叶球形状Leaf head shape | Mao et al., | |
番茄Solanum lycopersicum | sly-miR171 | HAM | 复叶形态Compound leaf morphology | Hendelman et al., | |
番茄Solanum lycopersicum | sly-miR156 | SBP | 叶片数Number of leaves | Zhang et al., | |
白菜Brassica rapa | brp-miR166 | REV1/2 | 叶片弯曲和叶球大小 Leaf curvature and leaf head size | Ren et al., | |
森林草莓Fragaria vesca | fve-miR164 | FveCUC2a | 叶片发育Leaf development | Zheng et al., | |
花Flower | 番茄Solanum lycopersicum | sly-miR172 | SlAP2a | 开花时间和花器官发育Flowering time and flower organ development | Chung et al., |
马铃薯Solanum tuberosum | stu-miR172 | RAP1 | 开花时间Flowering time | Martin et al., | |
番茄Solanum lycopersicum | slymiR156 | SlSBP3/15 | 开花时间Flowering time | Silva et al., | |
苹果Malus × domestica | mdm-miR156 | SPL | 童期长度和花器官发育Childhood length and floral organ development | Sun et al., | |
番茄Solanum lycopersicum | miR164 | NAM | 花器官发育Flower organ development | 杨春文, | |
森林草莓Fragaria vesca | fve-miR164 | FveCUC2a | 花器官发育Flower organ development | Zheng et al., | |
大岩桐Sinningia speciosa | ssp-miR159 | SsGAMYB | 开花时间、花器官发育Flowering time and flower organ development | Li et al., | |
番茄Solanum lycopersicum | sly-miR403 | SlAGO2 | 开花时间Flowering time | Zhang et al., | |
黄瓜Cucumis sativus | csa-miR171 | HAM | 开花时间Flowering time | 朱早兵 等, | |
番茄Solanum lycopersicum | sly-miR160 | SlARF10A | 花器官发育Flower organ development | Damodharan et al., | |
白菜Brassica rapa | brp-miR158 | bra027656 | 花粉发育Pollen development | Ma et al., | |
果实Fruit | 番茄Solanum lycopersicum | sly-miR172 | SlAP2a | 果实成熟Fruit riping | Chung et al., |
苹果Malus × domestica | mdm-miR172 | AP2 | 果实大小Fruit size | Yao et al., | |
番茄Solanum lycopersicum | sly-miR156 | SlySBP3 | 果实发育Fruit development | Zhang et al, | |
番茄Solanum lycopersicum | sly-miR160 | SlARF10A/10B/17 | 早期果实发育Early fruit development | Hendelman et al., Damodharan et al., | |
甜瓜Cucumis melo | cme-miR393 | CmAFB2 | 果实发育Fruit development | Bai et al., | |
森林草莓Fragaria vesca | fve-miR399 | FvPHO2 | 果实品质Fruit quality | Wang et al., | |
番茄Solanum lycopersicum | sly-miR164 | NAM | 果实发育Fruit development | 杨春文, | |
块茎Tuber | 马铃薯Solanum tuberosum | stu-miR172 | APETALA2- like | 块茎发育Tuber development | Martin et al., |
马铃薯Solanum tuberosum | stu-miR156 | StSPLs | 块茎发育Tuber development | Bhogale et al., | |
体细胞胚 Somatic embryo | 甜橙Citrus sinensis | csi-miR156 | CsSPL3/15 | 体细胞胚发生Somatic embryogenesis | Long et al., |
Table 1 Main miRNAs and their targets involving in the development of organs in horticultural crops
植物器官 Organ | 植物种类 Plants species | miRNA | 靶基因 Target | 农艺性状 Agronomic trait | 参考文献 Reference |
---|---|---|---|---|---|
根Root | 番茄Solanum lycopersicum | sly-miR156 | SBP | 茎气生根的生成 Generation of stem aerial roots | Zhang et al., |
马铃薯Solanum tuberosum | stu-miR156 | SPL9 | 侧根生长发育Lateral root growth | 罗红玉 等, | |
小金海棠Malus xiaojinensis | mxi-miR156 | MxSPL26 | 生根率Rooting rate | Xu et al., | |
叶Leaf | 番茄Solanum lycopersicum | sly-miR160 | SlARF10A/17 | 叶片形状与大小 Leaf shape and size | 刘欣 等, Damodharan et al., |
观赏海棠Malus spectabilis | mcp-miR160a | ARF18 | 叶色Leaf color | 罗容丽 等, | |
番茄Solanum lycopersicum | sly-miR319 | La | 叶片发育Leaf development | Ori et al., | |
白菜Brassica rapa | brp-miR319 | BrpTCP4 | 叶球形状Leaf head shape | Mao et al., | |
番茄Solanum lycopersicum | sly-miR171 | HAM | 复叶形态Compound leaf morphology | Hendelman et al., | |
番茄Solanum lycopersicum | sly-miR156 | SBP | 叶片数Number of leaves | Zhang et al., | |
白菜Brassica rapa | brp-miR166 | REV1/2 | 叶片弯曲和叶球大小 Leaf curvature and leaf head size | Ren et al., | |
森林草莓Fragaria vesca | fve-miR164 | FveCUC2a | 叶片发育Leaf development | Zheng et al., | |
花Flower | 番茄Solanum lycopersicum | sly-miR172 | SlAP2a | 开花时间和花器官发育Flowering time and flower organ development | Chung et al., |
马铃薯Solanum tuberosum | stu-miR172 | RAP1 | 开花时间Flowering time | Martin et al., | |
番茄Solanum lycopersicum | slymiR156 | SlSBP3/15 | 开花时间Flowering time | Silva et al., | |
苹果Malus × domestica | mdm-miR156 | SPL | 童期长度和花器官发育Childhood length and floral organ development | Sun et al., | |
番茄Solanum lycopersicum | miR164 | NAM | 花器官发育Flower organ development | 杨春文, | |
森林草莓Fragaria vesca | fve-miR164 | FveCUC2a | 花器官发育Flower organ development | Zheng et al., | |
大岩桐Sinningia speciosa | ssp-miR159 | SsGAMYB | 开花时间、花器官发育Flowering time and flower organ development | Li et al., | |
番茄Solanum lycopersicum | sly-miR403 | SlAGO2 | 开花时间Flowering time | Zhang et al., | |
黄瓜Cucumis sativus | csa-miR171 | HAM | 开花时间Flowering time | 朱早兵 等, | |
番茄Solanum lycopersicum | sly-miR160 | SlARF10A | 花器官发育Flower organ development | Damodharan et al., | |
白菜Brassica rapa | brp-miR158 | bra027656 | 花粉发育Pollen development | Ma et al., | |
果实Fruit | 番茄Solanum lycopersicum | sly-miR172 | SlAP2a | 果实成熟Fruit riping | Chung et al., |
苹果Malus × domestica | mdm-miR172 | AP2 | 果实大小Fruit size | Yao et al., | |
番茄Solanum lycopersicum | sly-miR156 | SlySBP3 | 果实发育Fruit development | Zhang et al, | |
番茄Solanum lycopersicum | sly-miR160 | SlARF10A/10B/17 | 早期果实发育Early fruit development | Hendelman et al., Damodharan et al., | |
甜瓜Cucumis melo | cme-miR393 | CmAFB2 | 果实发育Fruit development | Bai et al., | |
森林草莓Fragaria vesca | fve-miR399 | FvPHO2 | 果实品质Fruit quality | Wang et al., | |
番茄Solanum lycopersicum | sly-miR164 | NAM | 果实发育Fruit development | 杨春文, | |
块茎Tuber | 马铃薯Solanum tuberosum | stu-miR172 | APETALA2- like | 块茎发育Tuber development | Martin et al., |
马铃薯Solanum tuberosum | stu-miR156 | StSPLs | 块茎发育Tuber development | Bhogale et al., | |
体细胞胚 Somatic embryo | 甜橙Citrus sinensis | csi-miR156 | CsSPL3/15 | 体细胞胚发生Somatic embryogenesis | Long et al., |
[1] |
Bai S, Tian Y, Tan C, Bai S, Hao J, Hasi A. 2020. Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon(Cucumis melo). Horticulture Research, 7 (1):13.
doi: 10.1038/s41438-019-0236-1 URL |
[2] | Bai Yun-he, Wang Wen-ran, Dong Tian-yu, Guan Le, Su Zi-wen, Jia Hai-feng, Fang Jing-gui, Wang Chen. 2020. vvi-miR160s in mediating VvARF 18 response to gibberellin regulation of grape seed development. Scientia Agricultura Sinica, 53 (9):1890-1903. (in Chinese) |
白云赫, 王文然, 董天宇, 管乐, 宿子文, 贾海锋, 房经贵, 王晨. 2020. vvi-miR160s介导VvARF18应答赤霉素调控葡萄种子的发育. 中国农业科学, 53 (9):1890-1903. | |
[3] |
Bartel D P. 2004. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell, 116 (2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[4] |
Bhogale S, Mahajan A S, Natarajan B, Rajabhoj M, Thulasiram H V, Banerjee A K. 2014. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology, 164 (2):1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688 |
[5] |
Buhtz A, Springer F, Chappell L, Baulcombe D C, Kehr J. 2008. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant Journal, 53:739-749.
doi: 10.1111/j.1365-313X.2007.03368.x URL |
[6] |
Carrington J C. 2003. Role of micrornas in plant and animal development. Science, 301 (5631):336-338.
pmid: 12869753 |
[7] |
Chen G, Li J, Liu Y, Zhang Q, Gao Y, Fang K, Cao Q, Qin L, Xing Y. 2019. Roles of the GA-mediated SPL gene family and miR156 in the floral development of Chinese chestnut(Castanea mollissima). International Journal of Molecular Sciences, 20 (7):1577.
doi: 10.3390/ijms20071577 URL |
[8] | Chen X. 2012. Small RNAs in development-insights from plants. Current Opinion in Genetics & Development, 22 (4):361-367. |
[9] |
Chung M, Nath U K, Vrebalov J, Gapper N, Lee J M, Lee D, Kim C K, Giovannoni J. 2020. Ectopic expression of miRNA 172 in tomato(Solanum lycopersicum)reveals novel function in fruit development through regulation of an AP2 transcription factor. BMC Plant Biology, 20 (1). DOI: 10.1186/s12870-020-02489-y.
doi: 10.1186/s12870-020-02489-y |
[10] | Damodharan S, Zhao D, Arazi T. 2016. A common miRNA160-based mechanism regulates ovary patterning,floral organ abscission and lamina outgrowth in tomato. The Plant Journal, 86 (6):458-471. |
[11] |
Gattolin S, Cirilli M, Pacheco I, Ciacciulli A, Da Silva Linge C, Mauroux J, Lambert P, Cammarata E, Bassi D, Pascal T, Rossini L. 2018. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae. The Plant Journal:For Cell and Molecular Biology, 96 (2):358-371.
doi: 10.1111/tpj.14036 URL |
[12] |
Gu C, Xu H, Zhou Y, Yao J, Zhang S. 2020. Multiomics analyses unveil the involvement of microRNAs in pear fruit senescence under high- or low-temperature conditions. Horticulture Research, 7 (1):12.
doi: 10.1038/s41438-019-0234-3 URL |
[13] |
Guo Z, Kuang Z, Wang Y, Zhao Y, Tao Y, Cheng C, Yang J, Lu X, Hao C, Wang T, Cao X, Wei J, Li L, Yang X. 2019. PmiREN:a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Research, 48 (D1):D1114-D1121.
doi: 10.1093/nar/gkz894 URL |
[14] |
Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Laufs D P. 2011. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell, 23 (1):54-68.
doi: 10.1105/tpc.110.081448 URL |
[15] |
Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T. 2012. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10(SlARF10)derepression. Plant Molecular Biology, 78 (6):561-576.
doi: 10.1007/s11103-012-9883-4 pmid: 22287097 |
[16] |
Hendelman A, Kravchik M, Stav R, Frank W, Arazi T. 2016. Tomato HAIRY MERISTEM genes are involved in meristem maintenance and compound leaf morphogenesis. Journal of Experimental Botany, 67 (21):6187-6200.
pmid: 27811085 |
[17] | Hou Yan-ming. 2018. Identification of blueberry fruit ripening-related miRNAs and their targets and genetic transformation of VcMIR156 gene [Ph. D. Dissertation]. Changchun: Jilin University. (in Chinese) |
侯艳明. 2018. 蓝莓果实成熟相关miRNA及其靶标的鉴定与VcMIR156基因的遗传转化[博士论文]. 长春: 吉林大学. | |
[18] |
Huang J, Lin X, Zhang L, Wang X, Fan G, Chen L. 2019. MicroRNA sequencing revealed citrus adaptation to long-term boron toxicity through modulation of root development by miR319 and miR171. International Journal of Molecular Sciences, 20 (6):1422.
doi: 10.3390/ijms20061422 URL |
[19] |
Jiang J, Lv M, Liang Y, Ma Z, Cao J. 2014. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics, 15 (1):146.
doi: 10.1186/1471-2164-15-146 URL |
[20] | Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase:from microRNA sequences to function. Nucleic Acids Research, 47 (D1):D155-D162. |
[21] |
Kumar A, Kondhare K R, Vetal P V, Banerjee A K. 2020. PcG proteins MSI1 and BMI 1 function upstream of miR156 to regulate aerial tuber formation in potato. Plant Physiology, 182 (1):185-203.
doi: 10.1104/pp.19.00416 pmid: 31427464 |
[22] |
Lakhotia N, Joshi G, Bhardwaj A R, Katiyar-Agarwal S, Agarwal M, Jagannath A, Goel S, Kumar A. 2014. Identification and characterization of miRNAome in root,stem,leaf and tuber developmental stages of potato(Solanum tuberosum L.)by high-throughput sequencing. BMC Plant Biology, 14 (1):6.
doi: 10.1186/1471-2229-14-6 URL |
[23] |
Lee R C, Feinbaum R L, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5):843-854.
doi: 10.1016/0092-8674(93)90529-y pmid: 8252621 |
[24] |
Li D, Mou W, Luo Z, Li L, Limwachiranon J, Mao L, Ying T. 2016. Developmental and stress regulation on expression of a novel miRNA,fan-miR73 and its target ABI 5 in strawberry. Scientific Reports, 6 (1):28385.
doi: 10.1038/srep28385 URL |
[25] | Li D, Mou W, Xia R, Li L, Zawora C, Ying T, Mao L, Liu Z, Luo Z. 2019a. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. Horticulture Research, 6 (1). https://doi.org/10.1038/s41438-018-0100-8. |
[26] | Li H, Wang Y, Wu M, Li L, Jin C, Zhang Q, Chen C, Song W, Wang C. 2017. Small RNA sequencing reveals differential miRNA expression in the early development of broccoli(Brassica oleracea var. italica)pollen. Frontiers in Plant Science, 8:404. |
[27] | Li He, Yin Dong-shen, Wang Zhi-gang, Huang F, Chang L, Zhang Z. 2009. Study on the difference of microRNA expression in different organs of strawberry. Journal of Fruit Science, 26 (5):632-637. (in Chinese) |
李贺, 印东升, 王志刚, 黄飞飞, 常琳琳, 张志宏. 2009. 草莓不同器官中microRNA表达差异研究. 果树学报, 26 (5):632-637. | |
[28] | Li J, Ding Q, Wang F, Zhang Y, Li H, Gao J. 2015. Integrative analysis of mRNA and miRNA expression profiles of the tuberous root development at seedling stages in turnips. PLoS ONE, 10 (9):e137983. |
[29] |
Li J, Lai T, Song H, Xu X. 2017. MiR164 is involved in delaying senescence of strawberry(Fragaria ananassa)fruit by negatively regulating NAC transcription factor genes under low temperature. Russian Journal of Plant Physiology, 64 (2):251-259.
doi: 10.1134/S102144371702008X URL |
[30] | Li Wen-jing, Wang Xing-ru, Liu Tao, Chen Bing-xing, Lai Zhong-xiong, Guo Rong-fang. 2018. Evolutionary characteristics and analysis of miR172 family members in Chinese kale. Acta Botanica Boreali-Occidentalia Sinica, 38 (8):1443-1450. (in Chinese) |
李文静, 王杏茹, 刘涛, 陈冰星, 赖钟雄, 郭容芳. 2018. 芥蓝miR172家族成员进化特性比较及时空表达分析. 西北植物学报, 38 (8):1443-1450. | |
[31] |
Li X, Bian H, Song D, Ma S, Han N, Wang J, Zhu M. 2013. Flowering time control in ornamental gloxinia(Sinningia speciosa)by manipulation of miR159 expression. Annals of Botany, 111 (5):791-799.
doi: 10.1093/aob/mct034 URL |
[32] |
Li X, Guo F, Ma S, Zhu M, Pan W, Bian H. 2019b. Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia(Sinningia speciosa). Journal of Zhejiang University-science b, 20 (4):322-331.
doi: 10.1631/jzus.B1800003 URL |
[33] | Li Y, Cui W, Wang R, Lin M, Zhong Y, Sun L, Qi X, Fang J. 2019c. MicroRNA858-mediated regulation of anthocyanin biosynthesis in kiwifruit(Actinidia arguta)based on small RNA sequencing. PLoS ONE, 14 (5):e217480. |
[34] |
Lian H, Wang L, Ma N, Zhou C M, Han L, Zhang T Q, Wang J W. 2021. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biology, 19 (2):e3001044.
doi: 10.1371/journal.pbio.3001044 URL |
[35] | Liao Zhi-qin, Cheng Hua, Li Lin-lin, Cheng Shui-yuan. 2013. Research on molecular biology of flower development in higher plants. Journal of Huanggang Normal University, 33 (3):44-48. (in Chinese) |
廖志琴, 程华, 李琳玲, 程水源. 2013. 高等植物花发育的分子生物学研究. 黄冈师范学院学报, 33 (3):44-48. | |
[36] |
Lin W, Gupta S K, Arazi T, Spitzer-Rimon B. 2021. MIR172d is required for floral organ identity and number in tomato. International Journal of Molecular Sciences, 22 (9):4659.
doi: 10.3390/ijms22094659 URL |
[37] |
Liu P P, Montgomery T A, Fahlgren N, Kasschau K D, Nonogaki H, Carrington J C. 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA 160 is critical for seed germination and post-germination stages. The Plant Journal, 52 (1):133-146.
doi: 10.1111/j.1365-313X.2007.03218.x URL |
[38] | Liu Xin, Dong Xiu-fen, Wang Rong, Xu Tao, Li Tian-lai. 2016. Effects of overexpression of microRNA 160 on tomato leaf morphology. Journal of Shenyang Agricultural University, 47 (2):135-140. (in Chinese) |
刘欣, 董秀芬, 王荣, 许涛, 李天来. 2016. 超表达microRNA160对番茄叶片形态的影响. 沈阳农业大学学报, 47 (2):135-140. | |
[39] |
Liu Y, Wang L, Chen D, Wu X, Huang D, Cheng L, Li L, Deng X, Xu Q. 2014. Genome-wide comparison of microRNAs and their targeted transcripts among leaf,flower and fruit of sweet orange. BMC Genomics, 15 (1):1-15.
doi: 10.1186/1471-2164-15-1 URL |
[40] |
Liu Z, Zhang Y, Ou L, Kang L, Liu Y, Lv J, Wei G, Yang B, Yang S, Chen W, Dai X, Li X, Zhou S, Zhang Z, Ma Y, Zou X. 2017. Identification and characterization of novel microRNAs for fruit development and quality in hot pepper(Capsicum annuum L.). Gene, 608:66-72.
doi: 10.1016/j.gene.2017.01.020 URL |
[41] |
Long J M, Liu C Y, Feng M Q, Liu Y, Wu X M, Guo W W. 2018. miR156-SPLs module regulates somatic embryogenesis induction in citrus callus. Journal of Experimental Botany, 69 (12):2979-2993.
doi: 10.1093/jxb/ery132 URL |
[42] | Luo Hong-yu, Yang Jiang-wei, Feng Ya, Zhang Huan-huan, Liu Shen-yan, Zhang Ning, Si Huai-jun. 2021. The effect of STTM technology silenced potato Stu-miR156 on lateral root development. Acta Horticulturae Sinica, 48 (3):531-538. (in Chinese) |
罗红玉, 杨江伟, 冯亚, 张欢欢, 刘升燕, 张宁, 司怀军. 2021. STTM技术沉默马铃薯Stu-miR156对其侧根发育的影响. 园艺学报: 48( 3):531-538. | |
[43] | Luo Rong-li, Li Yu-xin, Zhang Jie, Zhang Jie, Yao Yun-cong. 2019. Cloning and functional assay of McmiR160 regulatedred leaf coloration in Malus spp. Journal of Beijing University of Agriculture, 34 (1):14-19. (in Chinese) |
罗容丽, 李雨欣, 张洁, 张杰, 姚允聪. 2019. 观赏海棠中McmiR160a的克隆及调控红叶着色的功能分析. 北京农学院学报, 34 (1):14-19. | |
[44] |
Ma L, Zhou L, Quan S, Xu H, Yang J, Niu J. 2020. Evolutionary characteristics and expression patterns of miR156 gene family in Korla fragrant pear(Pyrus sinkiangensis Yu). The Journal of Horticultural Science and Biotechnology, 95 (3):303-315.
doi: 10.1080/14620316.2019.1681907 URL |
[45] | Ma Xin-rui, Li Liang, Liu Jin-hang, Yang Meng-jie, Chen Jie, Liang Qin, Wu Shao-hua, Li Yong-yu. 2018. Identification and differential expression analysis of miRNAs related to pear flower bud dormancy. Acta Horticulturae Sinica, 45 (11):2089-2105. (in Chinese) |
马鑫瑞, 李亮, 刘瑾航, 杨梦洁, 陈洁, 梁沁, 吴少华, 李永裕. 2018. 梨花芽休眠相关miRNA的鉴定和差异表达分析. 园艺学报, 45 (11):2089-2105. | |
[46] |
Ma Z, Jiang J, Hu Z, Lyu T, Yang Y, Jiang J, Cao J. 2017. Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis. Plant Mol Biol, 93 (3):313-326.
doi: 10.1007/s11103-016-0563-7 URL |
[47] |
Mao Y, Wu F, Yu X, Bai J, Zhong W, He Y. 2014. microRNA319a-Targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in Chinese cabbage by differential cell division arrest in leaf regions. Plant Physiology, 164 (2):710-720.
doi: 10.1104/pp.113.228007 URL |
[48] |
Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain N D, Suarez-Lopez P. 2009. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 136 (17):2873-2881.
doi: 10.1242/dev.031658 URL |
[49] | Meng Chun-yang, Wei Xiao-chun, Zhao Yan-yan, Yuan Yu-xiang, Yang Shuang-juan, Wang Zhi-yong, Zhang Xiao-wei, Zheng Zhi, Yao Qiu-ju, Zhang Qiang. 2018. Target prediction and expression analysis of 12 pepper microRNAs. Molecular Plant Breeding, 16 (12):3820-3829. (in Chinese) |
孟纯阳, 魏小春, 赵艳艳, 原玉香, 杨双娟, 王志勇, 张晓伟, 郑直, 姚秋菊, 张强. 2018. 12个辣椒microRNA的靶标预测及表达分析. 分子植物育种, 16 (12):3820-3829. | |
[50] |
Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet, 39 (6):787-791.
doi: 10.1038/ng2036 URL |
[51] | Pan Lei. 2016. Study on the regulation mechanism of hard peach flesh quality and discovery of miRNAs related to fruit ripening and softening[Ph. D. Dissertation]. Wuhan: Huazhong Agricultural University. (in Chinese) |
潘磊. 2016. 桃硬质型肉质调控机制研究及果实成熟软化相关miRNA发掘[博士论文]. 武汉: 华中农业大学. | |
[52] |
Ren W, Wang H, Bai J, Wu F, He Y. 2018. Association of microRNAs with types of leaf curvature in Brassica rapa. Frontiers in Plant Science, 9:73.
doi: 10.3389/fpls.2018.00073 URL |
[53] |
Ren W, Wu F, Bai J, Li X, Yang X, Xue X, Liu H, He Y. 2020. BcpLH organizes a specific subset of microRNAs to form a leafy head in Chinese cabbage(Brassica rapa ssp. pekinensis). Horticulture Research, 7 (1):13.
doi: 10.1038/s41438-019-0236-1 URL |
[54] | Shen Yan-hong, Jiang Tiao, Liu Lu-qi, Shi Tian-lei, Zhao Wan-wan, Chen Xiao-jing. 2019. Discovery of papaya fruit ripening-related miRNAs based on high-throughput sequencing. Journal of Fruit Science,(11):1473-1482. (in Chinese) |
申艳红, 姜涛, 刘璐琪, 石天磊, 赵湾湾, 陈晓静. 2019. 基于高通量测序发掘番木瓜果实成熟相关miRNA. 果树学报,(11):1473-1482. | |
[55] |
Shivaraj S M, Jain A, Singh A. 2018. Highly preserved roles of Brassica MIR172 in polyploid Brassicas:ectopic expression of variants of Brassica MIR172 accelerates floral transition. Molecular Genetics and Genomics, 293 (5):1121-1138.
doi: 10.1007/s00438-018-1444-3 pmid: 29752548 |
[56] |
Silva G F F E, Silva E M, Correa J P O, Vicente M H, Jiang N, Notini M M, Junior A C, De Jesus F A, Castilho P, Carrera E, López Díaz I, Grotewold E, Peres L E P, Nogueira F T S. 2019a. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytologist, 221 (3):1328-1344.
doi: 10.1111/nph.15492 URL |
[57] |
Silva P O, Batista D S, Cavalcanti J H F, Koehler A D, Vieira L M, Fernandes A M, Barrera-Rojas C H, Ribeiro D M, Nogueira F T S, Otoni W C. 2019b. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. Annals of Botany, 123 (7):1191-1203.
doi: 10.1093/aob/mcz025 URL |
[58] | Sui Meng-jie, Yan Hui-jun, Wang Zhen-zhen, Qiu Xian-qin, Jian Hong-ying, Wang Qi-gang, Chen Min, Zhang Hao, Tang Kai-xue. 2019. Identification and analysis of microRNAs related to the development of rose‘Green Calyx’flower organs. Journal of Plant Science, 37 (1):37-46. (in Chinese) |
眭梦洁, 晏慧君, 王珍珍, 邱显钦, 蹇洪英, 王其刚, 陈敏, 张颢, 唐开学. 2019. 月季‘绿萼’花器官发育相关microRNA的鉴定及分析. 植物科学学报, 37 (1):37-46. | |
[59] | Sun C, Zhao Q, Liu D D, You C, Hao Y. 2013. Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis. Plant cell Tissue & Organ Culture, 112 (3):343-351. |
[60] |
Sun Y, Luo W, Chang H, Li Z, Zhou J, Li X, Zheng J, Hao M. 2019. Identification of miRNAs and their target genes involved in cucumber fruit expansion using small RNA and degradome sequencing. Biomolecules, 9 (9):483.
doi: 10.3390/biom9090483 URL |
[61] | Tian Shi-ping. 2013. The molecular regulation mechanism of fruit ripening and senescence. Botanical Journal, 48 (5):481-488. |
田世平. 2013. 果实成熟和衰老的分子调控机制. 植物学报, 48 (5):481-488. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00481 |
|
[62] |
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad P V. 2019. miR828 and miR858 regulate VvMYB 114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany, 70 (18):4775-4792.
doi: 10.1093/jxb/erz264 pmid: 31145783 |
[63] |
Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherl P, MacDiarmid R M. 2010. Characterisation of microRNAs from apple(Malus domestica ‘Royal Gala’)vascular tissue and phloem sap. BMC Plant Biology, 10:159.
doi: 10.1186/1471-2229-10-159 pmid: 20682080 |
[64] |
Varkonyi-Gasic E, Lough R H, Moss S M, Wu R, Hellens R P. 2012. Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. Plant Mol Biol, 78 (4-5):417-429.
doi: 10.1007/s11103-012-9877-2 pmid: 22290408 |
[65] |
Veit B. 2009. Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol, 69 (4):397-408.
doi: 10.1007/s11103-008-9396-3 URL |
[66] | Wang Hai-feng. 2019. Identification and analysis of miRNA related to flower color of safflower strawberry[M. D. Dissertation]. Shenyang: Shenyang Agricultural University. (in Chinese) |
王海峰. 2019. 红花草莓花色相关miRNA的鉴定与分析[硕士论文]. 沈阳: 沈阳农业大学. | |
[67] | Wang Jing-yi, Wu Yao-ting, Liu Ju-hua, Jia Cai-hong, Miao Hong-xia, Zhang Jian-bin, Wang Zhuo, Jin Zhiqiang, Xu Biyu. 2016. Analysis of differential expression of microRNA in different organs of banana. Journal of Fruit Science, 33 (7):777-782. (in Chinese) |
王静毅, 武耀廷, 刘菊华, 贾彩红, 苗红霞, 张建斌, 王卓, 金志强, 徐碧玉. 2016. 香蕉不同器官中microRNA差异表达分析. 果树学报, 33 (7):777-782. | |
[68] | Wang Q L, Li Z H. 2007. The functions of microRNAs in plants. Front Biosci, 12:3975-3982. |
[69] |
Wang Y, Zhang J, Cui W, Guan C, Mao W, Zhang Z. 2017. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry, 65 (34):7361-7370.
doi: 10.1021/acs.jafc.7b01687 pmid: 28783952 |
[70] | Wang Yi-heng, Huang Shen-nan, Liu Zhi-yong, Tang Xiao-yan, Feng Hui. 2018. Study on the microRNA regulatory mechanism of ploidy variation in Chinese cabbage causing flower development. Journal of Shenyang Agricultural University, 49 (5):529-536. (in Chinese) |
王一衡, 黄胜楠, 刘志勇, 唐小燕, 冯辉. 2018. 大白菜倍性变异引起花发育变化的microRNA调控机制研究. 沈阳农业大学学报, 49 (5):529-536. | |
[71] | Wei Yan-hong, Liu Zhen, Li Ke, Meng Yuan, Wang Hui, Mao Jiang-pin, Ma Dou-dou, Li Shao-huan, Ma Juan-juan, Lu Xian, Zhang Dong. 2020. Identification of apple miR396 family and expression analysis during adventitious root development. Acta Horticulturae Sinica, 47 (7):1237-1252. (in Chinese) |
韦燕红, 刘桢, 李珂, 孟媛, 汪蕙, 毛江萍, 马豆豆, 李少欢, 马娟娟, 卢显, 张东. 2020. 苹果miR396家族鉴定及在不定根发育过程中的表达分析. 园艺学报, 47 (7):1237-1252. | |
[72] |
Wu G, Park M Y, Conway S R, Wang J W, Weigel J, Poethig R S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138(4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[73] |
Wu G, Poethig R S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by Mir156 and its target SPL3. Development, 133 (18):3539-3547.
doi: 10.1242/dev.02521 URL |
[74] |
Xu X, Li X, Hu X, Wu T, Wang Y, Xu X, Zhang X, Han Z. 2017. High miR156 expression is required for auxin-induced adventitious root formation via MxSPL26 independent of PINs and ARFs in Malus xiaojinensis. Frontiers in Plant Science, 8:1059.
doi: 10.3389/fpls.2017.01059 URL |
[75] | Yang Chun-wen. 2012. Study on the regulation of tomato miR164 on flower organ formation and fruit development[M. D. Dissertation]. Chongqing: Chongqing University. (in Chinese) |
杨春文. 2012. 番茄miR164对花器官形成和果实发育的调控研究[硕士论文]. 重庆: 重庆大学. | |
[76] |
Yao J, Xu J, Cornille A, Tomes S, Karunairetnam S, Luo Z, Bassett H, Whitworth C, Rees-George J, Ranatunga C, Snirc A, Crowhurst R, Silva N, Warren B, Deng C, Kumar S, Chagné D, Bus V G M, Volz R K, Rikkerink E H A, Gardiner S E, Giraud T, MacDiarmid R, Gleave A P. 2015. A microRNA allele that emerged prior to apple domestication may underlie fruit size evolution. The Plant Journal, 84 (2):417-427.
doi: 10.1111/tpj.13021 URL |
[77] |
Yoo B C, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee Y M, Lough T J, Lucas W J. 2004. A systemic small RNA signaling system in plants. Plant Cell, 16:1979-2000.
doi: 10.1105/tpc.104.023614 URL |
[78] |
Zhang C, Xian Z, Huang W, Li Z. 2015a. Evidence for the biological function of miR403 in tomato development. Scientia Horticulturae, 197:619-626.
doi: 10.1016/j.scienta.2015.10.027 URL |
[79] |
Zhang C H, Zhang B B, Ma R J, Yu M L, Guo S L, Guo L. 2015b. Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA 166 in peach. Genetics and Molecular Research, 14 (4):14151-14161.
doi: 10.4238/2015.October.29.37 URL |
[80] | Zhang Jie, Cheng Hao, Tian Ji, Zhang Jie, Yao Yun-cong. 2020. The role of miR156a in the formation of different petal colors of Begonia. Journal of Beijing Agricultural College, 35 (4):43-47. (in Chinese) |
张洁, 程昊, 田佶, 张杰, 姚允聪. 2020. miR156a在不同海棠花瓣色泽形成中的作用. 北京农学院学报, 35 (4):43-47. | |
[81] |
Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, Hu T, Xu X, Liu H, Li H, Ye Z. 2011. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Letters, 585 (2):435-439.
doi: 10.1016/j.febslet.2010.12.036 URL |
[82] | Zhang Yanping, Liu Zhaokun, Zhu Xudong, Wang Chen, Li Qingkui, Yuan Weiming, Lou Xiaoming. 2019. Identification of miR160a and its target gene ARF in peach fruit and analysis of its response to IAA. Acta Horticulturae Sinica, 46 (4):613-622. (in Chinese) |
张彦苹, 刘照坤, 朱旭东, 王晨, 李庆魁, 袁卫明, 娄晓鸣. 2019. 桃果实中miR160a与其靶基因ARF的鉴定及对IAA的响应分析. 园艺学报, 46 (4):613-622. | |
[83] |
Zheng G, Wei W, Li Y, Kan L, Wang F, Zhang X, Li F, Liu Z, Kang C. 2019a. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist, 224 (1):480-492.
doi: 10.1111/nph.15982 URL |
[84] |
Zheng J, Ma Y, Zhang M, Lyu M, Yuan Y, Wu B. 2019b. Expression pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum. International Journal of Molecular Sciences, 20 (11):2725.
doi: 10.3390/ijms20112725 URL |
[85] | Zhu Zao-bing, Yu Xia-qing, Zhai Yu-fei, Wang Pan-qiao, Zhao Qin-zheng, Li Ji, Lou Qun-feng, Chen Jin-feng. 2019. Cloning and functional analysis of cucumber microRNA171. Acta Horticulturae Sinica, 46 (5):864-876. (in Chinese) |
朱早兵, 虞夏清, 翟于菲, 王盼乔, 赵勤政, 李季, 娄群峰, 陈劲枫. 2019. 黄瓜microRNA171的克隆与功能分析. 园艺学报, 46 (5):864-876. |
[1] | ZHANG Xin, QI Yanxiang, ZENG Fanyun, WANG Yanwei, XIE Peilan, XIE Yixian, and PENG Jun. Functional Analysis of Dicer-like Genes in Fusarium oxysporum f. sp. cubense Race 4 [J]. Acta Horticulturae Sinica, 2023, 50(2): 279-294. |
[2] | LI Qiong, LI Lili, HOU Juan, LUO Renren, WANG Ruidan, HU Jianbin, HUANG Song. Advances on Mechanism of Cucurbit Crops in Response to Low- temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(6): 1382-1394. |
[3] | NIE Wenfeng, WANG Jinyu, GAO Chunjuan, CHEN Xuehao. A Review on Epigenetic Modifications in Regulating Fruit Development of Horticultural Crops [J]. Acta Horticulturae Sinica, 2022, 49(3): 671-686. |
[4] | PENG Yinxia, ZHANG Ying, ZHU Kangyou, SUN Xin, ZHANG Kemin, SUN Zhouping, QI Mingfang, LI Tianlai, WANG Feng. Light Regulation of Ascorbic Acid Biosynthesis in Horticultural Crops [J]. Acta Horticulturae Sinica, 2022, 49(11): 2502-2518. |
[5] | ZHOU Jie, SHI Kai, XIA Xiaojian, ZHOU Yanhong, and YU Jingquan. Vegetable Cultivation Technology in China:A Sixty-year Review and Prospect [J]. Acta Horticulturae Sinica, 2022, 49(10): 2131-2142. |
[6] | YANG Liyuan, WANG Qian, WANG Xuhui, XU Tongda, MA Jun. The Important Biological Function of T111,an Evolutional Conserved Amino Acid in FveTAA1,a Key Enzyme in Strawberry Auxin Biosynthesis [J]. Acta Horticulturae Sinica, 2021, 48(9): 1695-1705. |
[7] | ZHANG Xiaoyi, HONG Yuhui, ZHANG Yuanyuan, LUAN Yushi. Preliminary Study on the Role of sly-miR166b and Its Target Genes in Tomato Resistance to Late Blight [J]. Acta Horticulturae Sinica, 2021, 48(8): 1595-1604. |
[8] | HUANG Peng, DING Jie, HU Xiaomin, CHEN Yi, LIU Yafei, QIN Wen. Advances in Fresh-cut Fruit and Vegetables Based on Physical Anti-browning Technology [J]. Acta Horticulturae Sinica, 2021, 48(6): 1217-1232. |
[9] | SU Liyao, WANG Peiyu, JIANG Mengqi, HUANG Shuqi, XUE Xiaodong, LIU Mengyu, XIAO Xuechen, LAI Chunwang, ZHANG Zihao, CHEN Yukun, LAI Zhongxiong, LIN Yuling. The Activity Verification of pri-miR319a Encode Regulatory Peptide of Dimocarpus longan [J]. Acta Horticulturae Sinica, 2021, 48(5): 908-920. |
[10] | GU Jiamao, WANG Chenyang, WANG Feng, QI Mingfang, LIU Yufeng, LI Tianlai. Roles of CAMTA/SR in Plant Growth and Development and Stress Response [J]. Acta Horticulturae Sinica, 2021, 48(4): 613-631. |
[11] | ZHANG Qingwen, WANG Zhaohao, QI Jingjing, XIE Yu, LEI Tiangang, He Yongrui, CHEN Shanchun, YAO Lixiao. The Advances of Callose Synthase in Plant [J]. Acta Horticulturae Sinica, 2021, 48(4): 661-675. |
[12] | GENG Yanqiu, DONG Xiaochang, ZHANG Chunmei. Recent Progress of Sugar Transporter in Horticultural Crops [J]. Acta Horticulturae Sinica, 2021, 48(4): 676-688. |
[13] | HONG Yan, WU Yuwei, SONG Xiang, LI Mengling, DAI Silan. Molecular Mechanism of Light-induced Anthocyanin Biosynthesis in Horticultural Crops [J]. Acta Horticulturae Sinica, 2021, 48(10): 1983-2000. |
[14] | YAO Lixiao,HE Yongrui,and CHEN Shanchun*. Research Advances of Citrus microRNAs in Plant Development and Stress Resistance [J]. ACTA HORTICULTURAE SINICA, 2020, 47(5): 995-1008. |
[15] | XU Zhixuan and REN Zhonghai*. Re-identification of Tomato AP2/ERF Transcription Factor Superfamily and Phenotypic Analysis of the Overexpressing SlERF.D.3 Lines [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 653-664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd