Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (5): 945-957.doi: 10.16420/j.issn.0513-353x.2021-0671
• Research Papers • Next Articles
FENG Chen1, HUANG Xuewang1, LI Xingliang2, ZHOU Jia2, LI Tianhong1,**()
Received:
2022-01-12
Revised:
2022-05-16
Online:
2022-05-25
Published:
2022-05-24
Contact:
LI Tianhong
E-mail:lith@cau.edu.cn
CLC Number:
FENG Chen, HUANG Xuewang, LI Xingliang, ZHOU Jia, LI Tianhong. Comparative Study on Drought Resistance of Different Apple Dwarfing Rootstock and Scion Combinations[J]. Acta Horticulturae Sinica, 2022, 49(5): 945-957.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0671
Fig. 1 Differences in leaf lower epidermis(A)and longitudinal structure of leaves(B)of dwarfing rootstock and scion combinations of apple Number of stomata were counted on 0.15 mm2 leaf area. Different small letters in the same row indicate the significant difference among different dwarfing rootstock and scion combinations of apple at the level of P < 0.05.
Fig. 2 Changes of soil water potential in three dwarfing rootstock and scion combinations of apple under drought stress and rehydration Different small letters at the same treatment time indicate the significant difference among different dwarfing rootstock and scion combinations of apple at the level of P < 0.05. The same below.
Fig. 5 Changes of chlorophyll content and carotenoids content in three dwarfing rootstock and scion combinations of apple under drought stress and rehydration
Fig. 7 Changes of antioxidant enzymes activity and MDA content in three dwarfing rootstock and scion combinations of apple under drought stress and rehydration
指标 Index | 隶属函数值/ Membership function value | ||
---|---|---|---|
‘宫藤富士’Fuji/G935 | ‘宫藤富士’Fuji/M9-T337 | ‘宫藤富士’Fuji/SH6 | |
净光合速率 Photosynthetic rate | 1.000 | 0.901 | 0.000 |
气孔导度 Stomatal conductance | 0.000 | 0.143 | 1.000 |
胞间CO2浓度 Intercellular CO2 concentration | 1.000 | 0.000 | 0.552 |
蒸腾速率 Transpiration rate | 0.000 | 0.111 | 1.000 |
水分利用效率 Water use efficiency | 1.000 | 0.351 | 0.000 |
叶绿素Chlorophyl | 1.000 | 0.403 | 0.000 |
类胡萝卜素Carotenoid | 1.000 | 0.501 | 0.000 |
可溶性糖Soluble sugar | 1.000 | 0.000 | 0.868 |
可溶性蛋白Soluble protein | 0.000 | 0.800 | 1.000 |
游离脯氨酸Proline | 0.000 | 0.114 | 1.000 |
丙二醛Malondialdehyde | 1.000 | 0.000 | 0.215 |
超氧化物歧化酶Superoxide dismutase | 0.000 | 0.361 | 1.000 |
过氧化物酶Peroxidase | 1.000 | 0.000 | 0.652 |
过氧化氢酶Catalase | 0.000 | 1.000 | 0.590 |
超氧阴离子自由基Oxygen free radical | 0.000 | 0.496 | 1.000 |
过氧化氢Hydrogen peroxide | 0.000 | 0.501 | 1.000 |
脱落酸Abscisic acid | 0.000 | 0.334 | 1.000 |
叶片厚度 Leaf thickness | 0.655 | 1.000 | 0.000 |
上表皮厚度 Upper epidermis thickness | 0.487 | 1.000 | 0.000 |
栅栏组织厚度 Palisade tissue thickness | 0.687 | 1.000 | 0.000 |
海绵组织厚度 Sponge tissue thickness | 0.891 | 1.000 | 0.000 |
平均得分 Average score | 0.510 | 0.477 | 0.518 |
排序 Rank | 2 | 3 | 1 |
Table 1 Membership function value of drought resistance of different dwarfing rootstock and scion combinations of apple
指标 Index | 隶属函数值/ Membership function value | ||
---|---|---|---|
‘宫藤富士’Fuji/G935 | ‘宫藤富士’Fuji/M9-T337 | ‘宫藤富士’Fuji/SH6 | |
净光合速率 Photosynthetic rate | 1.000 | 0.901 | 0.000 |
气孔导度 Stomatal conductance | 0.000 | 0.143 | 1.000 |
胞间CO2浓度 Intercellular CO2 concentration | 1.000 | 0.000 | 0.552 |
蒸腾速率 Transpiration rate | 0.000 | 0.111 | 1.000 |
水分利用效率 Water use efficiency | 1.000 | 0.351 | 0.000 |
叶绿素Chlorophyl | 1.000 | 0.403 | 0.000 |
类胡萝卜素Carotenoid | 1.000 | 0.501 | 0.000 |
可溶性糖Soluble sugar | 1.000 | 0.000 | 0.868 |
可溶性蛋白Soluble protein | 0.000 | 0.800 | 1.000 |
游离脯氨酸Proline | 0.000 | 0.114 | 1.000 |
丙二醛Malondialdehyde | 1.000 | 0.000 | 0.215 |
超氧化物歧化酶Superoxide dismutase | 0.000 | 0.361 | 1.000 |
过氧化物酶Peroxidase | 1.000 | 0.000 | 0.652 |
过氧化氢酶Catalase | 0.000 | 1.000 | 0.590 |
超氧阴离子自由基Oxygen free radical | 0.000 | 0.496 | 1.000 |
过氧化氢Hydrogen peroxide | 0.000 | 0.501 | 1.000 |
脱落酸Abscisic acid | 0.000 | 0.334 | 1.000 |
叶片厚度 Leaf thickness | 0.655 | 1.000 | 0.000 |
上表皮厚度 Upper epidermis thickness | 0.487 | 1.000 | 0.000 |
栅栏组织厚度 Palisade tissue thickness | 0.687 | 1.000 | 0.000 |
海绵组织厚度 Sponge tissue thickness | 0.891 | 1.000 | 0.000 |
平均得分 Average score | 0.510 | 0.477 | 0.518 |
排序 Rank | 2 | 3 | 1 |
[1] | Bertolino L T, Caine R S, Gray J E. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Fronters in Plant Science, 10:225. |
[2] | Gao Jun-feng. 2006. Experimental guidance of plant physiology. Beijing: China Agricultural Science and Technology Press:221-223. (in Chinese). |
高俊凤. 2006. 植物生理学实验指导. 北京: 高等教育出版社:221-223. | |
[3] | Guo Yan, Zhang Shuhang, Li Ying, Zhang Xinfang, Wang Guangpeng. 2020. Studies on the leaf morphology,anatomical structure and drought resistance evaluation of 238 Chinese chestnut varieties(strains). Acta Horticulturae Sinica, 47 (6):1033-1046. (in Chinese) |
郭燕, 张树航, 李颖, 张馨方, 王广鹏. 2020. 中国板栗238份品种(系)叶片形态、解剖结构及-其抗旱性评价. 园艺学报, 47 (6):1033-1046. | |
[4] | Han Zhen-hai. 2011. Theory and practice of apple dwarf close planting cultivation. Beijing: Science Press:9-12. (in Chinese) |
韩振海. 2011. 苹果矮化密植栽培理论与实践. 北京: 科学出版社:9-12. | |
[5] |
Jiao Q S, Chen T S, Niu G T, Zhang H C, Zhou C F, Hong Z. 2020. N-glycosylation is involved in stomatal development by modulating the release of active abscisic acid and auxin in Arabidopsis. Journal of Experimental Botany, 71 (19):5865-5879.
doi: 10.1093/jxb/eraa321 URL |
[6] |
Kusvuran S. 2021. Microalgae(Chlorella vulgaris Beijerinck)alleviates drought stress of broccoli plants by improving nutrient uptake,secondary metabolites,and antioxidative defense system. Horticultural Plant Journal, 7 (3):221-231.
doi: 10.1016/j.hpj.2021.03.007 URL |
[7] | Li Bing-zhi. 2020. Current situation and technical requirements of apple dwarf rootstock cultivation in China. Deciduous Fruits, 52 (6):1-3. (in Chinese) |
李丙智. 2020. 中国苹果矮砧栽培现状与栽培技术要求. 落叶果树, 52 (6):1-3. | |
[8] | Li Bing-zhi, Han Ming-yu, Fan Chong-hui, Zhang Li-gong, Han Fu-cheng, Wei Li-xin, Wang Jin-lu. 2009. Adaptability of SH6 and M 26 apple rootstocks in Weibei region. Northwest Horticulture,(6):47-49. (in Chinese) |
李丙智, 韩明玉, 范崇辉, 张立功, 韩福成, 魏立新, 王进禄. 2009. SH6和M26苹果矮砧在渭北地区的适应性调查. 西北园艺,(6):47-49. | |
[9] |
Li J, Wang X Q, Watson M B, Assmann S M. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 287 (5451):300-303.
doi: 10.1126/science.287.5451.300 pmid: 10634783 |
[10] | Li Ji-yue, He Qian, Wang Jun-hui, Chen Bo. 2019. Water-saving and drought-resistant mechanism of fast-growing Sorbus clone. Beijing: China Forestry Press:82-83. (in Chinese) |
李吉跃, 何茜, 王军辉, 陈博. 2019. 速生材楸树无性系节水抗旱机理. 北京: 中国林业出版社:82-83. | |
[11] | Li Jia-cheng, Luo Da, Shi Yan-jiang, Song Feng-hui. 2019. Study on drought resistance of leaf anatomical structure of Corylus heterophylla × Corylus avellana. Acta Botanica Boreali-Occidentalia Sinica, 39 (3):462-471. (in Chinese) |
李嘉诚, 罗达, 史彦江, 宋锋惠. 2019. 平欧杂种榛叶片解剖结构的抗旱性研究. 西北植物学报, 39 (3):462-471. | |
[12] | Li Xing-liang, Zhang Jun-ke, Li Min-ji, Zhou Bei-bei, Zhou Jia, Zhang Qiang, Wei Qin-ping. 2018. Evaluation and gene expression analysis of different apple(Malus × domestica)dwarfing stocks on drought resistance. Journal of Agricultural Biotechnology, 26 (3):401-409. (in Chinese) |
李兴亮, 张军科, 李民吉, 周贝贝, 周佳, 张强, 魏钦平. 2018. 不同类型苹果矮化砧木抗旱评价与基因表达分析. 农业生物技术学报, 26 (3):401-409. | |
[13] | Li Yong-tao, Zhang Shui-rong, Li Xiao-bin, Wang Jun-feng, Li Bing-zhi. 2016. Main advantages and disadvantages of apple dwarf rootstocks. Fruit Growers’ Friend,(4):37-38. (in Chinese) |
李永焘, 张水绒, 李晓斌, 王俊峰, 李丙智. 2016. 矮化自根砧苹果树的主要优缺点. 果农之友,(4):37-38. | |
[14] | Liu Zhong-xia. 2011. Study on photosynthesis,water consumption and drought resistance of apple seedlings under drought stress[M. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
刘忠霞. 2011. 干旱胁迫下苹果树苗光合、耗水特性及抗旱性研究[硕士论文]. 杨凌: 西北农林科技大学. | |
[15] |
Mittler R. 2017. ROS are good. Trends in Plant Science, 22:11-19.
doi: S1360-1385(16)30112-1 pmid: 27666517 |
[16] | Qi Da-wei. 2016. A comparative study of nine interstocks apple drought resistance[M. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
戚大伟. 2016. 9种苹果矮化中间砧栽培抗旱性比较[硕士论文]. 杨凌: 西北农林科技大学. | |
[17] | Schieber M, Chandel N S. 2014. ROS function in redox signaling and oxidative stress. Current Biology, 24 (10):R453-R462. |
[18] |
Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10 (3):296-302.
doi: 10.1016/j.pbi.2007.04.014 URL |
[19] | Sun Quan-gui, Long Zi, Zhang Xiao-di, Hai Chun-xu, Wang Xin. 2016. New progress in antioxidant system. Progress in Modern Biomedicine, 16 (11):2197-2200. (in Chinese) |
孙全贵, 龙子, 张晓迪, 海春旭, 王欣. 2016. 抗氧化系统研究新进展. 现代生物医学进展, 16 (11):2197-2200. | |
[20] | Xu Yang, Chen Xiao-hong, Zhao An-jiu. 2015. Drought resistance evaluation and leaf anatomical structures of four species of Malus plants in western Sichuan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 35 (11):2227-2234. (in Chinese) |
徐扬, 陈小红, 赵安玖. 2015. 川西高原4种苹果属植物叶片解剖结构与其抗旱性分析. 西北植物学报, 35 (11):2227-2234. | |
[21] |
Yamada M, Han X, Benfey P N. 2020. RGF 1 controls root meristem size through ROS signalling. Nature, 577:85-88.
doi: 10.1038/s41586-019-1819-6 URL |
[22] | Zhang Chun-yu. 2017. The study of replant disease and drought resistance in different apple dwarf rootstocks[M. D. Dissertation]. Yangling: Northwest A & F University. (in Chinese) |
张春禹. 2017. 不同苹果矮化自根砧的抗重茬和抗旱性比较研究[硕士论文]. 杨凌: 西北农林科技大学. | |
[23] | Zhao Shi-jie. 2002. Experimental guidance of plant physiology. Beijing: China Agricultural Science and Technology Press:90-137. (in Chinese). |
赵世杰. 2002. 植物生理学实验指导. 北京: 中国农业科学技术出版社:90-137. | |
[24] | Zheng Fei-xue, Zhang Xin-zhong, Wang Yi, Han Zhen-hai. 2013. Changes of H2O2 content and activities of related enzymes in leaf among ontogenetic phases in apple(Malus ssp.). Journal of Fruit Science, 30 (5):759-764. (in Chinese) |
郑飞雪, 张新忠, 王忆, 韩振海. 2013. 苹果实生树个体发育不同阶段叶片H2O2含量及相关酶活性的变化. 果树学报, 30 (5):759-764. | |
[25] | Zheng Shu-zhen, Kuang Bing-zhao. 1993. Study on the morphology and anatomy of drought resistance of teak(Tectona grandis L. f). provenances. Forest Research, 6 (2):123-130. (in Chinese) |
郑淑珍, 邝炳朝. 1993. 柚木种源抗旱性形态及解剖的研究. 林业科学研究, 6 (2):123-130. | |
[26] | Zhong Zaofa, Zhang Lijuan, Gao Sisi, Peng Ting. 2021. Leaf cytological characteristics and resistance comparison of four citrus rootstocks under drought stress. Acta Horticulturae Sinica, 48 (8):1579-1588. (in Chinese) |
钟灶发, 张利娟, 高思思, 彭婷. 2021. 干旱胁迫下4种柑橘砧木叶片细胞学特征及抗旱性比较. 园艺学报, 48 (8):1579-1588. |
[1] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[2] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YANG An, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Zhongping Youlei’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 1-2. |
[3] | SUN Simiao, WANG Kun, GAO Yuan, WANG Dajiang, and LI Lianwen. A New Ornamental Crabapple Cultivar‘Zichen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 267-268. |
[4] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Pingyou 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 1-2. |
[5] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Late Ripening Apple Cultivar‘Huayou Tianwa’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 3-4. |
[6] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Mid-ripening Apple Cultivar‘Huayou Baomi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 5-6. |
[7] | YANG Ling, CONG Peihua, WANG Qiang, LI Wuxing, and KANG Liqun. A New Mid-ripening Apple Cultivar‘Huafeng’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 7-8. |
[8] | LIU Chuanhe, HE Han, SHAO Xuehua, LAI Duo, KUANG Shizi, XIAO Weiqiang, LIU Yan. A New Pineapple Cultivar‘Yuetong’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2053-2054. |
[9] | GAO Yanlong, WU Yuxia, ZHANG Zhongxing, WANG Shuangcheng, ZHANG Rui, ZHANG De, WANG Yanxiu. Bioinformatics Analysis of Apple ELO Gene Family and Its Expression Analysis Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(8): 1621-1636. |
[10] | LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a [J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662. |
[11] | ZHENG Xiaodong, XI Xiangli, LI Yuqi, SUN Zhijuan, MA Changqing, HAN Mingsan, LI Shaoxuan, TIAN Yike, WANG Caihong. Effects and Regulating Mechanism of Exogenous Brassinosteroids on the Growth of Malus hupehensis Under Saline-alkali Stress [J]. Acta Horticulturae Sinica, 2022, 49(7): 1401-1414. |
[12] | XIA Yan, HUANG Song, WU Xueli, LIU Yiqi, WANG Miaomiao, SONG Chunhui, BAI Tuanhui, SONG Shangwei, PANG Hongguang, JIAO Jian, ZHENG Xianbo. Identification and Analysis of Apple Viruses Diseases Based on Virome Sequencing Technology [J]. Acta Horticulturae Sinica, 2022, 49(7): 1415-1428. |
[13] | LIU Zhaoxia, ZHANG Xin, WANG Lu, MA Yuting, CHEN Qian, ZHU Zhanling, GE Shunfeng, JIANG Yuanmao. Effects of Fertilizer Hole Application Sites on Fine Root Growth,15N Absorption and Utilization,Yield and Quality of Apple Trees [J]. Acta Horticulturae Sinica, 2022, 49(7): 1545-1556. |
[14] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[15] | YU Bo, QIN Sijun, LÜ Deguo. Continuous Supply of Zinc in Suitable Level Stimulates the Growth and Absorption and Utilization of Nitrogen in Malus hupehensis Seedlings [J]. Acta Horticulturae Sinica, 2022, 49(3): 473-481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd