Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (4): 816-826.doi: 10.16420/j.issn.0513-353x.2021-0007
• Research Papers • Previous Articles Next Articles
LIU Xiaowei1, XIA Bin1, LI Ziwei1, YANG Yujia1, CHEN Bin1, ZHOU Yunwei2,**(), HE Miao1,**()
Received:
2021-11-29
Revised:
2022-03-07
Online:
2022-04-25
Published:
2022-04-24
Contact:
ZHOU Yunwei,HE Miao
E-mail:dlzhyw@126.com;hm2017148@126.com
CLC Number:
LIU Xiaowei, XIA Bin, LI Ziwei, YANG Yujia, CHEN Bin, ZHOU Yunwei, HE Miao. Overexpression of Chrysanthemum indicum miR396a Gene in Arabidopsis Enhances Its Salt Tolerance[J]. Acta Horticulturae Sinica, 2022, 49(4): 816-826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0007
用途 Usage | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
前体基因克隆 Precursor gene cloning | MIR396a-F | TCTAGACGCTATTGTTTTACACACAAGTGTG |
MIR396a-R | CCCGGGCTGTGTTGATTCTTTCTCTATCTT | |
启动子克隆 Promoter cloning | P-miR396a-F | GCTCTCCATCTTGTTTCTCGTC |
转化植株PCR验证 PCR assay of the transgenic plants | P-miR396a-R | GCAGTTCAAGAAAGCTGTGGAAG |
35S-F | TCCCACTATCCTTCGCAAGAC | |
miR396a-R | CTGTGTTGATTCTTTCTCTATCTT | |
实时荧光定量PCR | athU6-F | CGATAAAATTGGAACGATACAGA |
Fluorescent quantitative real-time | athU6-R | ATTTGGACCATTTCTCGATTTGT |
PCR(qRT-PCR) | cin-miR396aF | TTCCACAGCTTTCTTGAACTG |
Table 1 Primers and sequences used in this study
用途 Usage | 引物名称 Primer name | 引物序列(5′-3′) Sequence |
---|---|---|
前体基因克隆 Precursor gene cloning | MIR396a-F | TCTAGACGCTATTGTTTTACACACAAGTGTG |
MIR396a-R | CCCGGGCTGTGTTGATTCTTTCTCTATCTT | |
启动子克隆 Promoter cloning | P-miR396a-F | GCTCTCCATCTTGTTTCTCGTC |
转化植株PCR验证 PCR assay of the transgenic plants | P-miR396a-R | GCAGTTCAAGAAAGCTGTGGAAG |
35S-F | TCCCACTATCCTTCGCAAGAC | |
miR396a-R | CTGTGTTGATTCTTTCTCTATCTT | |
实时荧光定量PCR | athU6-F | CGATAAAATTGGAACGATACAGA |
Fluorescent quantitative real-time | athU6-R | ATTTGGACCATTTCTCGATTTGT |
PCR(qRT-PCR) | cin-miR396aF | TTCCACAGCTTTCTTGAACTG |
Fig. 3 Phylogenetic relationship analysis of cin-MIR396a ath:Arabidopsis thaliana;bdi:Brachypodium distachyon;fve:Fragaria vesca;gma:Glycie max;mtr:Medicago truncatula;nta:Nicotiana tabacum;osa:Oryza sativa;sly:Solanum lycopersicum;stu:Solanum tuberosum;sbi:Sorghum bicolor;tcc:Theobroma cacao;vvi:Vitis vinifera;zma:Zea mays.
顺式作 用元件 cis-acting elements | 功能 Function | 野菊 Chrysanthemum indicum | 拟南芥 Arabidopsis thaliana | 水稻 Oryza sativa |
---|---|---|---|---|
A-box | 顺式作用调节元件cis-Acting regulatory element | + | - | - |
ABRE | 脱落酸应答元件cis-Acting element involved in ABA responsiveness | + | + | + |
ACE | 光应答元件cis-Acting element involved in light responsiveness | - | - | + |
AE-box | 部分光应答元件Part of a light responsive element | - | - | + |
ARE | 厌氧诱导应答元件cis-Acting element essential for the anaerobic induction | + | + | - |
Box 4 | 部分光应答元件Part of a light responsive element | + | + | - |
BoxⅡ | 部分光应答元件Part of a light responsive element | + | - | - |
CAAT-box | 增强子元件cis-Acting element playing an enhancing role | + | + | + |
CAT-box | 分生组织表达有关的应答元件cis-Acting element related to meristem expression | - | - | + |
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | + | - | - |
CGTCA-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | + | + | + |
circadian | 昼夜节律应答元件cis-Acting element involved in circadian control | - | + | - |
ERE | 乙烯应答元件Ethylene responsive element | + | + | - |
GA-motif | 部分光应答元件Part of a light responsive element | + | - | - |
GARE-motif | 赤霉素应答元件Gibberellin-responsive element | - | - | + |
GATA-motif | 部分光应答元件Part of a light responsive element | + | - | + |
G-Box | 光应答元件cis-Acting element involved in light responsiveness | + | + | + |
GCN4_motif | 胚乳表达的应答元件cis-Acting element involved in endosperm expression | + | - | - |
I-box | 部分光应答元件Part of a light responsive element | + | - | - |
MBS | 干旱诱导中MYB 结合位点MYB binding site involved in drought-inducibility | + | - | - |
MYB | MYB结合位点MYB binding site | + | + | + |
MYC | MYC结合位点MYC binding site | + | + | + |
O2-site | 玉米醇溶蛋白代谢的应答元件cis-Acting element involved in zein metabolism regulation | + | - | + |
P-box | 赤霉素应答元件cis-Acting element involved in gibberellin-responsive | + | + | - |
TATA-box | 核心启动子元件Core promoter elements | + | + | + |
TCA-element | 水杨酸应答元件cis-Acting element involved in salicylic acid responsiveness | + | - | - |
TGACG-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | - | + | + |
Table 2 Comparison of cis-acting elements in promoters of cin-MIR396a
顺式作 用元件 cis-acting elements | 功能 Function | 野菊 Chrysanthemum indicum | 拟南芥 Arabidopsis thaliana | 水稻 Oryza sativa |
---|---|---|---|---|
A-box | 顺式作用调节元件cis-Acting regulatory element | + | - | - |
ABRE | 脱落酸应答元件cis-Acting element involved in ABA responsiveness | + | + | + |
ACE | 光应答元件cis-Acting element involved in light responsiveness | - | - | + |
AE-box | 部分光应答元件Part of a light responsive element | - | - | + |
ARE | 厌氧诱导应答元件cis-Acting element essential for the anaerobic induction | + | + | - |
Box 4 | 部分光应答元件Part of a light responsive element | + | + | - |
BoxⅡ | 部分光应答元件Part of a light responsive element | + | - | - |
CAAT-box | 增强子元件cis-Acting element playing an enhancing role | + | + | + |
CAT-box | 分生组织表达有关的应答元件cis-Acting element related to meristem expression | - | - | + |
CCAAT-box | MYBHv1结合位点MYBHv1 binding site | + | - | - |
CGTCA-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | + | + | + |
circadian | 昼夜节律应答元件cis-Acting element involved in circadian control | - | + | - |
ERE | 乙烯应答元件Ethylene responsive element | + | + | - |
GA-motif | 部分光应答元件Part of a light responsive element | + | - | - |
GARE-motif | 赤霉素应答元件Gibberellin-responsive element | - | - | + |
GATA-motif | 部分光应答元件Part of a light responsive element | + | - | + |
G-Box | 光应答元件cis-Acting element involved in light responsiveness | + | + | + |
GCN4_motif | 胚乳表达的应答元件cis-Acting element involved in endosperm expression | + | - | - |
I-box | 部分光应答元件Part of a light responsive element | + | - | - |
MBS | 干旱诱导中MYB 结合位点MYB binding site involved in drought-inducibility | + | - | - |
MYB | MYB结合位点MYB binding site | + | + | + |
MYC | MYC结合位点MYC binding site | + | + | + |
O2-site | 玉米醇溶蛋白代谢的应答元件cis-Acting element involved in zein metabolism regulation | + | - | + |
P-box | 赤霉素应答元件cis-Acting element involved in gibberellin-responsive | + | + | - |
TATA-box | 核心启动子元件Core promoter elements | + | + | + |
TCA-element | 水杨酸应答元件cis-Acting element involved in salicylic acid responsiveness | + | - | - |
TGACG-motif | 茉莉酸甲酯应答元件cis-Acting element involved in the MeJA-responsiveness | - | + | + |
Fig. 4 Resistance screening(A)and PCR verification(B)of Arabidopsis thaliana overexpressing cin-MIR396a M:Marker 2000;1:Recombinant plasmid;2:Wild-type Arabidopsis;3:Negative control;4-10:Transformed plant.
Fig. 5 Expression analysis of miR396a in transgenic Arabidopsis(OE1-OE7) * indicates that the difference is significant at the α = 0.05 level;** indicates that the difference is significant at the α = 0.01 level. WT:Wild type;OE1-OE7:Overexpression strains. The same below.
[1] |
Bao M L, Bian H W, Zha Y L, Li F Y, Sun Y Z, Bai B, Chen Z H, Wang J H, Zhu M Y, Han N. 2014. miR396a-mediated basic Helix-Loop-Helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol, 55:1343-1353.
doi: 10.1093/pcp/pcu058 URL |
[2] |
Cao D Y, Wang J, Ju Z, Liu Q Q, Li S, Tian H Q, Fu D Q, Zhu H L, Luo Y B, Zhu B Z. 2016. Regulations on growth and development in tomato cotyledon,flower and fruit via destruction of miR396 with short tandem target mimic. Plant Sci, 247:1-12.
doi: 10.1016/j.plantsci.2016.02.012 URL |
[3] |
Casadevall R, Rodriguez R E, Debernardi J M, Palatnik J F, Casati P. 2013. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell, 25:3570-3583.
doi: 10.1105/tpc.113.117473 URL |
[4] |
Chandran V, Wang H, Gao F, Cao X L, Chen Y P, Li G B, Zhu Y, Yang X M, Zhang L L, Zhao Z X, Zhao J H, Wang Y G, Li S C, Fan J, Li Y, Zhao J Q, Li S Q, Wang W M. 2019. miR396-OsGRFs module balances growth and rice blast disease-resistance. Front Plant Sci, 9:1999.
doi: 10.3389/fpls.2018.01999 URL |
[5] |
Chen L, Luan Y S, Zhai J M. 2015. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports, 34:2013-2025.
doi: 10.1007/s00299-015-1847-0 pmid: 26242449 |
[6] |
Debernardi J M, Mecchia M A, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez R E, Palatnik J F. 2014. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J, 79:413-426.
doi: 10.1111/tpj.12567 URL |
[7] |
Feng L, Xia R, Liu Y L. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry(Fragaria vesca)genome. Horticultural Plant Journal, 5 (6):255-267.
doi: 10.1016/j.hpj.2019.11.004 URL |
[8] |
Giacomelli J I, Weigel D, Chan R L, Manavella P A. 2012. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytologist, 195:766-773.
doi: 10.1111/j.1469-8137.2012.04259.x pmid: 22846054 |
[9] |
Hu M Y, Shi Z G, Zhang Z B, Zhang Y J, Li H. 2012. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul, 68:177-188.
doi: 10.1007/s10725-012-9705-3 URL |
[10] |
Jones-Rhoades M W, Bartel D P. 2004. Computational identification of plant MicroRNAs and their targets,including a stress-induced miRNA. Mol Cell, 14:787-799.
pmid: 15200956 |
[11] |
Liebsch D, Palatnik J F. 2020. MicroRNA miR396,GRF transcription factors and GIF co-regulators:a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol, 53:31-42.
doi: 10.1016/j.pbi.2019.09.008 URL |
[12] | Lin S, Sun M. 2017. Analysis of physiological response and salt tolerance mechanism of Crossostephium chinense and four species of Chrysanthemum under salt stress. Acta Botanica Boreali-Occidentalia Sinica, 37:1137-1144. |
[13] |
Manavella P A, Yang S W, Palatnik J. 2019. Keep calm and carry on:miRNA biogenesis under stress. Plant J, 99:832-843.
doi: 10.1111/tpj.14369 |
[14] |
Noon J B, Hewezi T, Baum T J. 2019. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 70:1653-1668.
doi: 10.1093/jxb/erz022 URL |
[15] |
Samad A F A, Nazaruddin N, Jani J, Ismail I. 2020. Identification and analysis of microRNAs responsive to abscisic acid and methyl jasmonate treatments in Persicaria minor. Sains Malays, 49:1245-1272.
doi: 10.17576/jsm-2020-4906-04 URL |
[16] |
Song C, Liu Y F, Song A P, Dong G Q, Zhao H B, Sun W, Ramakrishnan S, Wang Y, Wang S B, Li T Z, Niu Y, Jiang J F, Dong B, Xia Y, Chen S M, Hu Z G, Chen F D, Chen S L. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol Plant, 11:1482-1491.
doi: S1674-2052(18)30308-3 pmid: 30342096 |
[17] | Su Liyao, Wang Peiyu, Jiang Mengqi, Huang Shuqi, Xue Xiaodong, Liu Mengyu, Xiao Xuechen, Lai Chunwang, Zhang Zihao, Chen Yukun, Lai Zhongxiong, Lin Yuling. 2021. The activity verification of pri-miR319a encode regulatory peptide in Dimocarpus longan. Acta Horticulturae Sinica, 48 (5):908-920. (in Chinese) |
苏立遥, 王培育, 蒋梦琦, 黄倏祺, 薛晓东, 刘梦雨, 肖学宸, 赖春旺, 张梓浩, 陈裕坤, 赖钟雄, 林玉玲. 2021. 龙眼pri-miR319a 编码短肽活性的研究. 园艺学报, 48 (5):908-920. | |
[18] |
Sun Y, Gao H, Guan Z, Chen S, Fang W, Chen F. 2012. Analysis of shade-tolerance and determination of evaluation indicators of shadetolerance in seedlings of Chrysanthemum grandiflorum and its closely related genera. Acta Ecologica Sinica, 32:1908-1916.
doi: 10.5846/stxb201103010250 URL |
[19] | Sunitha S, Loyola R, Alcalde J A, Arce-Johnson P, Matus J T, Rock C D. 2019. The role of UV-B light on small RNA activity during grapevine berry development. G3-Genes Genom Genet, 9:769-787. |
[20] |
Szczygiel-Sommer A, Gaj M D. 2019. The miR396-GRF regulatory module controls the embryogenic response in Arabidopsis via an auxin-related pathway. Int J Mol Sci, 20 (20):5221.
doi: 10.3390/ijms20205221 URL |
[21] |
Wang R, Han X K, Xu S, Xia B, Jiang Y M, Xue Y, Wang R. 2019. Cloning and characterization of a tyrosine decarboxylase involved in the biosynthesis of galanthamine in Lycoris aurea. PeerJ, 7:e6729.
doi: 10.7717/peerj.6729 URL |
[22] | Wei Yan-hong, Liu Zhen, Li Ke, Meng Yuan, Wang Hui, Mao Jiang-ping, Ma Dou-dou, Li Shao-huan, Ma Juan-juan, Lu Xian, Zhang Dong. 2020. Genome-wide identification and expression analysis of miR396 family during adventitious root development in apple. Acta Horticulturae Sinica, 47 (7):1237-1252. (in Chinese) |
韦燕红, 刘桢, 李珂, 孟媛, 汪蕙, 毛江萍, 马豆豆, 李少欢, 马娟娟, 卢显, 张东. 2020. 苹果miR396家族鉴定及在不定根发育过程中的表达分析. 园艺学报, 47 (7) :1237-1252. | |
[23] | Yao Lixiao, He Yongrui, Chen Shanchun. 2020. Research advances of citrus microRNAs in plant development and stress resistance. Acta Horticulturae Sinica, 47 (5):995-1008. (in Chinese) |
姚利晓, 何永睿, 陈善春. 2020. microRNA参与柑橘生长发育和抗逆的研究进展. 园艺学报, 47 (5):995-1008. | |
[24] | Yu S, Wang J W. 2020. The crosstalk between MicroRNAs and gibberellin signalling in plants. Plant & Cell Physiology, 61 (11):1880-1890. |
[25] |
Yuan S R, Zhao J M, Li Z G, Hu Q, Yuan N, Zhou M, Xia X X, Noorai R, Saski C, Li S G, Luo H. 2019. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research, 6 (1) :1-13.
doi: 10.1038/s41438-018-0066-6 URL |
[26] | Zhai J, Luan Y, Cui J. 2013. Evolution and Function Analysis of miR396 Gene Family. Bulletin of Botanical Research, 33:421-428. |
[27] |
Zhang X N, Li X, Liu J H. 2014. Identification of conserved and novel cold-responsive MicroRNAs in trifoliate orange(Poncirus trifoliata (L.) Raf.)using high-throughput sequencing. Plant Molecular Biology Reporter, 32:328-341.
doi: 10.1007/s11105-013-0649-1 URL |
[28] | Zhang Xiaoyi, Hong Yuhui, Zhang Yuanyuan, Luan Yushi. 2021. Preliminary study on the role of sly-miR166b and its target genes in tomato resistance to late blight. Acta Horticulturae Sinica, 48 (8):1595-1604. (in Chinese) |
张晓艺, 洪雨慧, 张媛媛, 栾雨时. 2021. Sly-miR166b及其靶基因在番茄抗晚疫病中的作用初探. 园艺学报, 48 (8):1595-1604. | |
[29] |
Zhao Y, Lu Z, He L. 2014. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor(L.)moench. Applied Biochemistry and Biotechnology, 173:1680-1691.
doi: 10.1007/s12010-014-0956-5 URL |
[1] | REN Fei, LU Miaomiao, LIU Jixiang, CHEN Xinli, LIU Daofeng, SUI Shunzhao, and MA Jing. Expression and Adversity Resistance Analysis of a Late Embryogenesis Abundant Protein Gene CpLEA from Chimonanthus praecox [J]. Acta Horticulturae Sinica, 2023, 50(2): 359-370. |
[2] | LIN Yuanmi, ZHU Wenjiao, CHEN Min, XUE Chunmei, JIN Fangyu, ZHU Yuping, JIANG Xinyue, YE Lingfeng, NI Shunanling, YANG Qing. Mir396b Negatively Regulates Eggplant Defense Response to Verticillium Wilt [J]. Acta Horticulturae Sinica, 2022, 49(8): 1713-1722. |
[3] | LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress [J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. |
[4] | XIANG Li, ZHAO Lei, WANG Mei, LÜ Yi, WANG Yanfang, SHEN Xiang, CHEN Xuesen, YIN Chengmiao, MAO Zhiquan. Cloning and Functional Analysis of MdWRKY74 in Apple [J]. Acta Horticulturae Sinica, 2022, 49(3): 482-492. |
[5] | YANG Ni, WAN Qiwen, LI Yimin, HAN Miaohua, TENG Ruimin, LIU Jiexia, ZHUANG Jing. Effects of Exogenous Spermidine on Photosynthetic Characteristics and Gene Expression of Key Enzymes Under Salt Stress in Tea Plant [J]. Acta Horticulturae Sinica, 2022, 49(2): 378-394. |
[6] | ZHU Junfei, LI Xin, DONG Kangting, TANG Zhifei, BIAN Xiuju, WANG Lihong, LI Huibin, SUN Xinbo. Effect of Creeping Bentgrass Small Heat Shock Protein AsHSP26.8a on Transgenic Photosynthesis in Arabidopsis thaliana [J]. Acta Horticulturae Sinica, 2021, 48(8): 1619-1625. |
[7] | CHEN Haowei, CHEN Mengjiao, WANG Yahui, ZHANG Rongrong, WANG Xinrui, XU Zhisheng, TAN Guofei, XIONG Aisheng. Research on the Response Mechanism of Lignin in Carrot Taproot Under Salt Stress [J]. Acta Horticulturae Sinica, 2021, 48(1): 153-161. |
[8] | WEI Yanhong,LIU Zhen,LI Ke,MENG Yuan,WANG Hui,MAO Jiangping,MA Doudou,LI Shaohuan,MA Juanjuan,LU Xian,and ZHANG Dong*. Genome-wide Identification and Expression Analysis of miR396 Family During Adventitious Root Development in Apple [J]. ACTA HORTICULTURAE SINICA, 2020, 47(7): 1237-1252. |
[9] | ZHAO Kaixi,DING Xi,and WANG Yuejin*. Research on Control of Disease Resistance by Stilbene Synthase Genes Derived from Chinese wild Vitis quinquangularis [J]. ACTA HORTICULTURAE SINICA, 2020, 47(7): 1264-1276. |
[10] | QIN Yaqi,HU Guibing,and ZHAO Jietang*. Studies on Agrobacterium rhizogenesis-mediated Transformation of LcMYB1 Gene into Tobacco Leaves [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 635-642. |
[11] | ZHENG Fuchao1,GENG Xingmin1,*,YUE Yuanzheng1,SU Jiale2,and JIA Xinping2. Analysis of Different Expressed Genes of Rhododendrons Under Salinity Stress by cDNA-SCoT [J]. ACTA HORTICULTURAE SINICA, 2019, 46(6): 1192-1200. |
[12] | ZHU Zaobing,YU Xiaqing*,ZHAI Yufei,WANG Panqiao,ZHAO Qinzheng,LI Ji,LOU Qunfeng,and CHEN Jinfeng*. Cloning and Functional Analysis of microRNA171 in Cucumber [J]. ACTA HORTICULTURAE SINICA, 2019, 46(5): 864-876. |
[13] | LU Jing,MA Qijun,KANG Hui,LI Wenhao,LIU Yajing,HAO Yujin,and YOU Chunxiang*. Ectopic Expressing MdSWEET1 in Tomato Enhanced Salt Tolerance [J]. ACTA HORTICULTURAE SINICA, 2019, 46(3): 433-443. |
[14] | JIN Xinkai,LI Xiaohan,SHEN Hui,LI Jinhua,PAN Yu,and ZHANG Xingguo*. Ectopic Expression of AtCOR15a Improves Cold Tolerance in Solanum lycopersicum [J]. ACTA HORTICULTURAE SINICA, 2018, 45(7): 1283-1295. |
[15] | CHENG Bei1,WANG Weihua1,*,and WU Zhongdong2. Effects of Non-uniform Salt Stress on Salt Tolerance of Tomato Seedlings [J]. ACTA HORTICULTURAE SINICA, 2018, 45(5): 887-896. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd