Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (3): 482-492.doi: 10.16420/j.issn.0513-353x.2021-0244
• Research Papers • Previous Articles Next Articles
XIANG Li1, ZHAO Lei1, WANG Mei1, LÜ Yi2, WANG Yanfang3, SHEN Xiang1, CHEN Xuesen1, YIN Chengmiao1,**(), MAO Zhiquan1,**()
Received:
2021-04-26
Revised:
2021-05-10
Online:
2022-03-25
Published:
2022-03-25
Contact:
YIN Chengmiao,MAO Zhiquan
E-mail:yinchengmiao@163.com;mzhiquan@sdau.edu.cn
CLC Number:
XIANG Li, ZHAO Lei, WANG Mei, LÜ Yi, WANG Yanfang, SHEN Xiang, CHEN Xuesen, YIN Chengmiao, MAO Zhiquan. Cloning and Functional Analysis of MdWRKY74 in Apple[J]. Acta Horticulturae Sinica, 2022, 49(3): 482-492.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0244
用途 Use | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
CDs | MdWRKY74 | F:ATGGAGGAGGTTGAGGCAGC;R:CCAGGCCGATTGTGAATGC |
qRT-PCR | MdWRKY74 | F:GGAAGAGGAAGAGTGAGA;R:GGAAAGTAGGAGGGAGTAA |
qRT-PCR | MdActin | F:TGACCGAATGAGCAAGGAAATTACT;R:TACTCAGCTTTGGCAATCCACATC |
qRT-PCR | AtSOS1 | F:GGAAGAGGAAGAGTGAGA;R:GGAAAGTAGGAGGGAGTAA |
qRT-PCR | AtNHX1 | F:TCTTGCTATTGGTGCCATAT;R:AGGTGTCTCGTCTTGATTC |
qRT-PCR | AtActin | F:CGCTCTTTCTTTCCAAGCTC;R:AACAGCCCTGGGAGCATC |
亚细胞定位 Subcellular localization | MdWRKY74 | F:CAAGCTTGCATGCCTGCAGGTCGACATGGAGGAGGTTGAGGCAGC; R:CTCGCCCTTGCTCACCATGGATCCCCAGGCCGATTGTGAATGC |
Table 1 Primers used for cloning and qRT-PCR analysis in this study
用途 Use | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
CDs | MdWRKY74 | F:ATGGAGGAGGTTGAGGCAGC;R:CCAGGCCGATTGTGAATGC |
qRT-PCR | MdWRKY74 | F:GGAAGAGGAAGAGTGAGA;R:GGAAAGTAGGAGGGAGTAA |
qRT-PCR | MdActin | F:TGACCGAATGAGCAAGGAAATTACT;R:TACTCAGCTTTGGCAATCCACATC |
qRT-PCR | AtSOS1 | F:GGAAGAGGAAGAGTGAGA;R:GGAAAGTAGGAGGGAGTAA |
qRT-PCR | AtNHX1 | F:TCTTGCTATTGGTGCCATAT;R:AGGTGTCTCGTCTTGATTC |
qRT-PCR | AtActin | F:CGCTCTTTCTTTCCAAGCTC;R:AACAGCCCTGGGAGCATC |
亚细胞定位 Subcellular localization | MdWRKY74 | F:CAAGCTTGCATGCCTGCAGGTCGACATGGAGGAGGTTGAGGCAGC; R:CTCGCCCTTGCTCACCATGGATCCCCAGGCCGATTGTGAATGC |
作用元件 Functional element | 序列 Sequence | 位点功能 Function of site | 位置 Location |
---|---|---|---|
ABRE | ACGTG | 参与ABA响应 cis-acting element involved in the abscisic acid responsiveness | + 1 530 |
CGTCA-motif | CGTCA | 参与MeJA响应 cis-acting regulatory element involved in the MeJA-responsiveness | -215 |
LTR | CCGAAA | 低温响应 cis-acting element involved in low-temperature responsiveness | + 485 |
MBS | CAACTG | 与干旱诱导相关的MYB绑定位点 MYB binding site involved in drought-inducibility | -175 |
TC-rich repeats | ATTTTCTTCA | 参与防御反应和胁迫响应 cis-acting element involved in defense and stress responsiveness | + 927 |
Table 2 Analysis of cis-acting regulatory elements in the upstream regulatory sequences of MdWRKY74 gene
作用元件 Functional element | 序列 Sequence | 位点功能 Function of site | 位置 Location |
---|---|---|---|
ABRE | ACGTG | 参与ABA响应 cis-acting element involved in the abscisic acid responsiveness | + 1 530 |
CGTCA-motif | CGTCA | 参与MeJA响应 cis-acting regulatory element involved in the MeJA-responsiveness | -215 |
LTR | CCGAAA | 低温响应 cis-acting element involved in low-temperature responsiveness | + 485 |
MBS | CAACTG | 与干旱诱导相关的MYB绑定位点 MYB binding site involved in drought-inducibility | -175 |
TC-rich repeats | ATTTTCTTCA | 参与防御反应和胁迫响应 cis-acting element involved in defense and stress responsiveness | + 927 |
Fig. 6 The Arabidopsis thaliana that overexpressing MdWRKY74 treated with NaCl(A),and qRT-PCR detection of MdWRKY74 expression in transgenic Arabidopsis(B)
[1] |
Ali M A, Azeem F, Nawaz M A, Acet T, Abbas A, Imran Q M, Snah K H, Rehman H M, Chung G, Yang S H, Bohlman H. 2018. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 226(7):12-21.
doi: 10.1016/j.jplph.2018.04.007 URL |
[2] |
Castañares J L, Bouzo C A. 2019. Effect of exogenous melatonin on seed germination and seedling growth in melon(Cucumis melo L.)under salt stress. Horticultural Plant Journal, 5(2):79-87.
doi: 10.1016/j.hpj.2019.01.002 URL |
[3] |
Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. 2010. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 10(1):281.
doi: 10.1186/1471-2229-10-281 URL |
[4] | Chu X Q, Wang C, Chen X B, Lu W J, Li H, Wang X L, Hao L L, Guo X Q. 2015. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE, 11(6):e0157026. |
[5] |
Cui X, Yan Q, Gan S, Xue D, Wang H, Xing H, Zhao J, Guo N. 2019. GmWRKY40,a member of the WRKY transcription factor genes identified from Glycine max L. enhanced the resistance to Phytophthora sojae. BMC Plant Biology, 19(1):1-15.
doi: 10.1186/s12870-018-1600-2 URL |
[6] |
Dong J, Chen C, Chen Z. 2003. Expression profile of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 51(1):21-37.
doi: 10.1023/A:1020780022549 URL |
[7] |
Gao Y, Liu J, Yang F, Zhang G, Wang D, Zhang L, Ou Y, Yao Y. 2020. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 168(1):98-117.
doi: 10.1111/ppl.v168.1 URL |
[8] |
Gong D, Guo Y, Schumaker K, Zhu J. 2004. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiology, 134(3):919-926.
doi: 10.1104/pp.103.037440 URL |
[9] | Gu Yan-bing. 2016. Cloning and expression analysis of two WRKY transcription factors in apple(Malus domestica Borkh.)[M. D. Dissertation]. Xincheng: Chinese Academy of Agricultural Sciences. (in Chinese) |
谷彦冰. 2016. 苹果两个WRKY转录因子的克隆和表达分析[硕士论文]. 兴城: 中国农业科学院. | |
[10] | Guo Yu-min, Zhang Yun-hua, Jing Tao, Zang Xiao-ping. 2020. Overexpression of a maize transcription factor ZmWRKY101 improving salt tolerance of Arabidopsis plants. Plant Physiology Journal, 56(9):1921-1932. (in Chinese) |
郭玉敏, 张云华, 井涛, 臧小平. 2020. 过表达玉米转录因子ZmWRKY101基因提高拟南芥植株的耐盐力. 植物生理学报, 56(9):1921-1932. | |
[11] | Jiang Ming-yue, Su Xiao-shuai, Zhang Bao-hua, Li Xiao-juan, Xiao Kai. 2020. Function analysis of wheat(Triticum aestivum)TaWRKY46 gene in mediating salt stress tolerance in transgenic tobacco(Nicotiana tabacum). Journal of Agricultural Biotechnology, 28(10):1733-1746. (in Chinese) |
蒋明月, 苏晓帅, 张宝华, 李小娟, 肖凯. 2020. 小麦TaWRKY46介导转基因烟草耐盐性的功能分析. 农业生物技术学报, 28(10):1733-1746. | |
[12] |
Jiang Y, Deyholos M K. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69(1):91-105.
doi: 10.1007/s11103-008-9408-3 URL |
[13] |
Jiang Y, Liang G, Yu D. 2012. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 5(6):1375-1388.
doi: 10.1093/mp/sss080 URL |
[14] | Lan Liming, Luo Changguo, Wang Sanhong. 2021. Analysis of resistance mechanism to powdery mildew based on transcriptome sequencing in Malus hupehensis. Acta Horticulturae Sinica, 48(5):860-872. (in Chinese) |
兰黎明, 罗昌国, 王三红. 2021. 基于转录组测序的湖北海棠抗白粉病机制分析. 园艺学报, 48(5):860-872. | |
[15] |
Li C, Wei Z, Liang D, Zhou S, Li Y, Liu C, Ma F W. 2013. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis. Plant Physiology and Biochemistry, 70(9):164-173.
doi: 10.1016/j.plaphy.2013.05.005 URL |
[16] |
Li S, Fu Q, Chen L, Huang W, Yu D. 2011. Arabidopsis thaliana WRKY25,WRKY26,and WRKY33 coordinate induction of plant thermotolerance. Planta, 233(6):1237-1252.
doi: 10.1007/s00425-011-1375-2 URL |
[17] |
Li Y, Qin R, Li H, Xu R, Qiu C, Sun Y, Ma H, Yang Y, Ni D, Li L, Wei P, Yang J. 2015. Identification and analysis of the mechanism underlying heat-inducible expression of rice aconitase 1. Plant Science, 233(4):22-31.
doi: 10.1016/j.plantsci.2015.01.003 URL |
[18] | Liu Yong, Wang Zeqiong, Gong Linzhong, Wang Furong, Wang Huiliang, Ai Xiaoyan, He Huaping. 2020. Cloning and functional analysis of ERF transcription factor gene PpERF1a in peach. Acta Horticulturae Sinica, 47(6):1165-1171. (in Chinese) |
刘勇, 王泽琼, 龚林忠, 王富荣, 王会良, 艾小艳, 何华平. 2020. 桃乙烯应答因子PpERF1a的克隆与功能分析. 园艺学报, 47(6):1165-1171. | |
[19] |
Livak K, Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[20] | Luo Guo-wei. 2020. Screening of salt-tolerant mutants in maize and molecular characterization of ZmWRKY74[M. D. Dissertation]. Heifei: Anhui Agricultural University. (in Chinese) |
罗国伟. 2020. 玉米耐盐突变体的筛选及ZmWRKY74的分子特征研究[硕士论文]. 合肥: 安徽农业大学. | |
[21] | Lü B B, Wu Q, Wang A H, Li Q, Dong Q, Yang J J, Zhao H X, Wang X, Chen H, Li C L. 2020. A WRKY transcription factor,FtWRKY46,from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana. Plant Physiolgy and Biochemistry, 147(2):43-53. |
[22] |
Merz P R, Moser T, Höll J, Kortekamp A, Buchholz G, Zyprian E, Bogs J. 2015. The transcription factor VvWRKY33 is involved in the regulation of grapevine(Vitis vinifera)defense against the oomycete pathogen Plasmopara viticola. Physiologia Plantarum, 153(3):365-380.
doi: 10.1111/ppl.2015.153.issue-3 URL |
[23] | Niu C, Wei W, Zhou Q, Tian A, Hao Y, Zhang W, Ma B, Lin Q, Zhang Z, Zhang J. 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell & Environment, 35(6):1156-1170. |
[24] |
Qi Chen-hui, Zhao Xian-yan, Jiang Han, Zheng Peng-fei, Liu Hai-tao, Li Yuan-yuan, Hao Yu-jin. 2019. Cloning and functional identification of MdWRKY53 gene in apple. Plant Physiology Journal, 55(4):511-520. (in Chinese)
doi: 10.1104/pp.55.3.511 URL |
齐晨辉, 赵先炎, 姜翰, 郑朋飞, 刘海涛, 李媛媛, 郝玉金. 2019. 苹果MdWRKY53基因克隆和功能鉴定. 植物生理学报, 55(4):511-520. | |
[25] | Qiao Yonggang, Wang Yongfei, Cao Yaping, He Jiaxin, Jia Mengjun, Li Zheng, Zhang Xinrui, Song Yun. 2020. Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale. Acta Horticulturae Sinica, 47(6):1153-1164. (in Chinese) |
乔永刚, 王勇飞, 曹亚萍, 贺嘉欣, 贾孟君, 李政, 张鑫瑞, 宋芸. 2020. 药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析. 园艺学报, 47(6):1153-1164. | |
[26] | Qiu Hua-rong. 2017. The molecular mechanism of ethylene suppressed MAPK-WRKY33 immune signaling pathway induced by the apple ring rot pathogenenic fungi Botryosphaeria dothidea[Ph. D. Dissertation]. Tai’an: Shandong Agricultural University. (in Chinese) |
邱化荣. 2017. 乙烯抑制苹果轮纹病菌诱导的MAPK-WRKY33免疫信号途径的分子机制[博士论文]. 泰安: 山东农业大学. | |
[27] | Şahin-Çevik M, Çevik B, Coşkan A. 2020. Identification and expression analysis of salinity-induced genes in rangpur lime(Citrus limonia)Horticultural Plant Journal, 6(5):267-276. |
[28] | Sanoubar R, Cellini A, Gianfranco G, Spinelli F. 2020. Osmoprotectants and antioxidative enzymes as screening tools for salinity tolerance in radish (Raphanus sativus). Horticultural Plant Journal, 6(1):11-24. |
[29] |
Sarris P, Duxbury Z, Huh S, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet S, Wirthmueller L, Menke F, Sohn K, Jones J. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 161(5):1089-1100.
doi: 10.1016/j.cell.2015.04.024 URL |
[30] |
Shi H, Ishitani M, Kim C, Zhu J. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS, 97(12):6896-6901.
pmid: 10823923 |
[31] |
Shi W N, Liu D, Hao L, Wu C A, Guo X Q, Li H. 2014. GhWRKY39,a member of the WRKY transcription factor family in cotton,has a positive role in disease resistance and salt stress tolerance. Plant Cell Tissue and Organ Culture, 118(5):17-32.
doi: 10.1007/s11240-014-0458-8 URL |
[32] |
Singh N, Bhatla S C. 2016. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide, 53(2):54-64.
doi: 10.1016/j.niox.2016.01.003 URL |
[33] |
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. 2014. Abiotic and biotic stress combinations. New Phytologist, 203(1):32-43.
doi: 10.1111/nph.2014.203.issue-1 URL |
[34] | Wang N, Qu C, Wang Y, Xu H, Jiang S, Fang H, Liu J, Zhang Z, Chen X. 2017. MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels. Plant Cell Tissue & Organ Culture, 131(9):183-293. |
[35] | Wang Quan-zhen, Liu Qian, Gao Ya-ni, Liu Xu. 2017. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecologica Sinica, 37(16):5565-5577. (in Chinese) |
王佺珍, 刘倩, 高娅妮, 柳旭. 2017. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 37(16):5565-5577. | |
[36] | Wang X H, Guo R R, Tu M X, Wang D J, Guo C L, Wan R, Li Z, Wang X P. 2017. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Frontiers in Plant Science, 8:97. |
[37] |
Wei W, Cui M H, Hu Y, Gao K, Xie Y G, Jiang Y, Feng J Y. 2018. Ectopic expression of FvWRKY42,a WRKY transcription factor from the diploid woodland strawberry(Fragaria vesca),enhances resistance to powdery mildew,improves osmotic stress resistance,and increases abscisic acid sensitivity in Arabidopsis. Plant Science, 275:60-74.
doi: S0168-9452(18)30191-2 pmid: 30107882 |
[38] | Xiang L, Wang M, Pan F B, Wang G S, Jiang W T, Wang Y F, Chen X S, Yin C M, Mao Z Q. 2021. Transcriptome analysis Malus domestica ‘M9T337’root molecular responses to Fusarium solani infection. Physiological and Molecular Plant Pathology, 113(1):101567. |
[39] | Xu Hai-feng, Yang Guan-xian, Zhang-jing, Zou Qi, Wang Yi-cheng, Qu Chang-zhi, Jiang Sheng-hui, Wang Nan, Chen Xue-sen. 2018. Molecular mechanism of apple MdWRKY18 and MdWRKY40 participating in salt stress. Scientia Agricultura Sinica, 51(23):4514-4521. (in Chinese) |
许海峰, 杨官显, 张静, 邹琦, 王意程, 曲常志, 姜生辉, 王楠, 陈学森. 2018. 苹果MdWRKY18和MdWRKY40参与盐胁迫途径分子机理研究. 中国农业科学, 51(23):4514-4521. | |
[40] | Yu Yan-chong, Qiao Meng, Liu Zhen-hua, Xiang Feng-ning. 2010. Diversification function of WRKY transcription factor. Chinese Bulletin of Life Sciences, 22(4):345-351. (in Chinese) |
于延冲, 乔孟, 刘振华, 向凤宁. 2010. WRKY转录因子功能的多样化. 生命科学, 22(4):345-351. | |
[41] | Yue Maolan, Jiang Leiyu, Liu Yi, Li Yue, Liu Yongqiang, Chen Qing, Lin Yuanxiu, Tang Haoru. 2019. Cloning,subcellular location and expression analysis of FaWRKY31 in Fragaria × ananassa. Acta Horticulturae Sinica, 46(10):1947-1959. (in Chinese) |
岳茂兰, 江雷雨, 刘怡, 李栎, 刘勇强, 陈清, 林源秀, 汤浩茹. 2019. 草莓FaWRKY31的克隆、亚细胞定位及表达特性分析. 园艺学报, 46(10):1947-1959. | |
[42] |
Zhang J, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Yang G, Wang Y, Su M, Xu L, Chen X. 2018. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology, 98(9):205-218.
doi: 10.1007/s11103-018-0770-5 URL |
[43] |
Zhang X, Henriques R, Lin S, Niu Q, Chua N. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1(2):641-646.
doi: 10.1038/nprot.2006.97 URL |
[44] |
Zhang Y, Wang L. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 5(1):1-12.
doi: 10.1186/1471-2148-5-1 URL |
[45] |
Zhou L, Wang N, Gong S, Lu R, Li Y, Li X. 2015. Overexpression of a cotton(Gossypium hirsutum)WRKY gene,GhWRKY34,in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiology and Biochemistry, 96(11):311-320.
doi: 10.1016/j.plaphy.2015.08.016 URL |
[46] | Zhou Tao, Wang Juan, Wang Lulu, Wang Baike, Hu Jiahui, Lan Haiyan, Yu Qinghui. 2020. Cloning and prokaryotic expression analysis of a transcription factor gene SlWRKY16 in tomato. Acta Horticulturae Sinica, 47(7):1312-1322. (in Chinese) |
周涛, 王娟, 王露露, 王柏柯, 胡佳蕙, 兰海燕, 余庆辉. 2020. 番茄转录因子基因SlWRKY16的克隆及原核表达分析. 园艺学报, 47(7):1312-1322. | |
[47] |
Zhu D, Che Y, Xiao P, Hou L, Guo Y, Liu X. 2018. Functional analysis of a grape WRKY30 gene in drought resistance. Plant Cell Tissue and Organ Culture, 132(11):449-459.
doi: 10.1007/s11240-017-1341-1 URL |
[1] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[2] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YANG An, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Zhongping Youlei’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 1-2. |
[3] | SUN Simiao, WANG Kun, GAO Yuan, WANG Dajiang, and LI Lianwen. A New Ornamental Crabapple Cultivar‘Zichen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 267-268. |
[4] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Pingyou 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 1-2. |
[5] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Late Ripening Apple Cultivar‘Huayou Tianwa’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 3-4. |
[6] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Mid-ripening Apple Cultivar‘Huayou Baomi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 5-6. |
[7] | YANG Ling, CONG Peihua, WANG Qiang, LI Wuxing, and KANG Liqun. A New Mid-ripening Apple Cultivar‘Huafeng’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 7-8. |
[8] | WANG Sha, ZHANG Xinhui, ZHAO Yujie, LI Bianbian, ZHAO Xueqing, SHEN Yu, DONG Jianmei, YUAN Zhaohe. Cloning and Functional Analysis of PgMYB111 Related to Anthocyanin Synthesis in Pomegranate [J]. Acta Horticulturae Sinica, 2022, 49(9): 1883-1894. |
[9] | LIU Chuanhe, HE Han, SHAO Xuehua, LAI Duo, KUANG Shizi, XIAO Weiqiang, LIU Yan. A New Pineapple Cultivar‘Yuetong’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2053-2054. |
[10] | GAO Yanlong, WU Yuxia, ZHANG Zhongxing, WANG Shuangcheng, ZHANG Rui, ZHANG De, WANG Yanxiu. Bioinformatics Analysis of Apple ELO Gene Family and Its Expression Analysis Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(8): 1621-1636. |
[11] | LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a [J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662. |
[12] | ZHENG Xiaodong, XI Xiangli, LI Yuqi, SUN Zhijuan, MA Changqing, HAN Mingsan, LI Shaoxuan, TIAN Yike, WANG Caihong. Effects and Regulating Mechanism of Exogenous Brassinosteroids on the Growth of Malus hupehensis Under Saline-alkali Stress [J]. Acta Horticulturae Sinica, 2022, 49(7): 1401-1414. |
[13] | XIA Yan, HUANG Song, WU Xueli, LIU Yiqi, WANG Miaomiao, SONG Chunhui, BAI Tuanhui, SONG Shangwei, PANG Hongguang, JIAO Jian, ZHENG Xianbo. Identification and Analysis of Apple Viruses Diseases Based on Virome Sequencing Technology [J]. Acta Horticulturae Sinica, 2022, 49(7): 1415-1428. |
[14] | LIU Zhaoxia, ZHANG Xin, WANG Lu, MA Yuting, CHEN Qian, ZHU Zhanling, GE Shunfeng, JIANG Yuanmao. Effects of Fertilizer Hole Application Sites on Fine Root Growth,15N Absorption and Utilization,Yield and Quality of Apple Trees [J]. Acta Horticulturae Sinica, 2022, 49(7): 1545-1556. |
[15] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd