Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (2): 265-280.doi: 10.16420/j.issn.0513-353x.2020-1000
• Research Papers • Previous Articles Next Articles
LI Chunhong1,2, WANG Kaituo1,2,*(), LEI Changyi1, XU Feng3, JI Nana2, JIANG Yongbo1
Received:
2021-10-30
Revised:
2022-01-18
Online:
2022-02-25
Published:
2022-02-28
Contact:
WANG Kaituo
E-mail:wangkaituo83@gmail.com
CLC Number:
LI Chunhong, WANG Kaituo, LEI Changyi, XU Feng, JI Nana, JIANG Yongbo. Identification of TGA Gene Family in Peach and Analysis of Expression Mode Involved in a BABA-Induced Disease Resistance[J]. Acta Horticulturae Sinica, 2022, 49(2): 265-280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-1000
基因(ID) Gene/vector | 引物序列(5′-3′) Primer sequences |
---|---|
Pp18S rRNA(L28749.1) PpNPR1(LOC18771764) PpPR1(LOC18789999) PpPR2(LOC109950426) PpPR5(LOC18791880) PpTGA1-1(XM_007205344.2) PpTGA1-2(XM_020566027.1) PpTGA2.2(XM_007218305.2) PpTGA7-1(XM_020555774.1) PpTGA7-2(XM_020555775.1) PpTGA7-3(XM_007222027.2) PpTGA9-1(XM_007204982.2) PpTGA9-2(XM_020567215.1) PpTGA9-3(XM_020567216.1) PpTGA10-1(XM_007204506.2) PpTGA10-2(XM_020567712.1) PpTGA10-3(XM_020567713.1) PpHBP-1b-1(XM_020568216.1) PpHBP-1b-2(XM_007226654.2) PpHBP-1b-3(XM_020558260.1) | F:ATGGCCGTTCTTAGTTGGTG;R:GTACAAAGGGCAGGGACGTA F:CGGCAAAGCGTGTGAGAGAT;R:CTGTCCAAGCCAAGTGCCAA F:CCGGTCAGCCACCAAAATGA;R:GCCTCAAAGCGCAGTCGTAT F:CCGGAAGGGCCATAGAAACC;R:TCGGCTGTTTGCTTGGTGAA F:CGGAGTTCACGACAGGTTCG;R:ATTCAAGTCGGCCACGCATC F:CTCATGGAATCCTGGGGCCT;R:CTTTTACGAGCAGCCTCCCG F:TGCCGCAAAAGCTGACGTAT;R:TCTCTGAAGGGCGAAACCCT F:TGTGGCTTGGTGGTTTTCGT;R:CCTGTTGGGAGGATTGCTGC F:CACTGGAGACCTTTGTGGGC;R:CACGCAGCCGGTGAAAGTAT F:CGGAAGATGCTCTCACGCAG;R:CCCACAAAGGTCTCCAGTGC F:AGCTGCTCGCAAAAGTCGTAT;R:AGGCACCCTGTTTTCTAGCTCT F:TTTCTGCCACATGTCCCGATT;R:CAACTCTATGACTCGCCATGCAA F:CTGAGCGTTGCTTCCTCTGG;R:CGAGGACTGCTGGAGGCTAT F:GCAGGCTCAAGACATGGCAATA;R:ACGTCTCAATGTCTTTTCCTGGG F:AGCCTATGCACGTAGAGCCA;R:AGCATCTTTGCGAGGGTTGG F:GAACTTCATCAAAGACAGTGGAGC;R:TGTGATGGTCTTGTGACTGTCC F:CCAACCCTCGCAAAGATGCT;R:GGGTCTGGTGTTTTGGGTCC F:TCAAAATCGTGAAGCCGCCA;R:CACGCTGAAGCTCTTGCTCA F:TCCTTCTATTTCAGAGGAGACGACA;R:CGTGAGGGAAGACAGTAGCG F:CCTTGAACACGAGCACTGGG;R:AAAGTGTCCGTTTCCCGACG |
Table 1 The gene-specific primer sequences used in this experiment
基因(ID) Gene/vector | 引物序列(5′-3′) Primer sequences |
---|---|
Pp18S rRNA(L28749.1) PpNPR1(LOC18771764) PpPR1(LOC18789999) PpPR2(LOC109950426) PpPR5(LOC18791880) PpTGA1-1(XM_007205344.2) PpTGA1-2(XM_020566027.1) PpTGA2.2(XM_007218305.2) PpTGA7-1(XM_020555774.1) PpTGA7-2(XM_020555775.1) PpTGA7-3(XM_007222027.2) PpTGA9-1(XM_007204982.2) PpTGA9-2(XM_020567215.1) PpTGA9-3(XM_020567216.1) PpTGA10-1(XM_007204506.2) PpTGA10-2(XM_020567712.1) PpTGA10-3(XM_020567713.1) PpHBP-1b-1(XM_020568216.1) PpHBP-1b-2(XM_007226654.2) PpHBP-1b-3(XM_020558260.1) | F:ATGGCCGTTCTTAGTTGGTG;R:GTACAAAGGGCAGGGACGTA F:CGGCAAAGCGTGTGAGAGAT;R:CTGTCCAAGCCAAGTGCCAA F:CCGGTCAGCCACCAAAATGA;R:GCCTCAAAGCGCAGTCGTAT F:CCGGAAGGGCCATAGAAACC;R:TCGGCTGTTTGCTTGGTGAA F:CGGAGTTCACGACAGGTTCG;R:ATTCAAGTCGGCCACGCATC F:CTCATGGAATCCTGGGGCCT;R:CTTTTACGAGCAGCCTCCCG F:TGCCGCAAAAGCTGACGTAT;R:TCTCTGAAGGGCGAAACCCT F:TGTGGCTTGGTGGTTTTCGT;R:CCTGTTGGGAGGATTGCTGC F:CACTGGAGACCTTTGTGGGC;R:CACGCAGCCGGTGAAAGTAT F:CGGAAGATGCTCTCACGCAG;R:CCCACAAAGGTCTCCAGTGC F:AGCTGCTCGCAAAAGTCGTAT;R:AGGCACCCTGTTTTCTAGCTCT F:TTTCTGCCACATGTCCCGATT;R:CAACTCTATGACTCGCCATGCAA F:CTGAGCGTTGCTTCCTCTGG;R:CGAGGACTGCTGGAGGCTAT F:GCAGGCTCAAGACATGGCAATA;R:ACGTCTCAATGTCTTTTCCTGGG F:AGCCTATGCACGTAGAGCCA;R:AGCATCTTTGCGAGGGTTGG F:GAACTTCATCAAAGACAGTGGAGC;R:TGTGATGGTCTTGTGACTGTCC F:CCAACCCTCGCAAAGATGCT;R:GGGTCTGGTGTTTTGGGTCC F:TCAAAATCGTGAAGCCGCCA;R:CACGCTGAAGCTCTTGCTCA F:TCCTTCTATTTCAGAGGAGACGACA;R:CGTGAGGGAAGACAGTAGCG F:CCTTGAACACGAGCACTGGG;R:AAAGTGTCCGTTTCCCGACG |
所用载体 Vector | 引物名称 Primer name | 寡核苷酸引物对 Oligonucleotide primers |
---|---|---|
pGADT7 | PpNPR1-SmaI-F PpNPR1-BamHI-R | GGCCAGTGAATTCCACCCGGGCCCGGGATGGAATTCAAAGCCGGAGTC CAGCTCGAGCTCGATGGATCCGGATCCTTGATTGAGGGTGAGCATTCCA |
pGBKT7 | PpTGA1-1-SmaI-F PpTGA1-1-BamHI-R | CATGGAGGCCGAATTCCCGGGATGAATTCTCCATCCACCCAGTT ATGCGGCCGCTGCAGGTCGACGGCAGGCTCACGAGGACG |
Table 2 The primer sequences used in yeast two-hybrid
所用载体 Vector | 引物名称 Primer name | 寡核苷酸引物对 Oligonucleotide primers |
---|---|---|
pGADT7 | PpNPR1-SmaI-F PpNPR1-BamHI-R | GGCCAGTGAATTCCACCCGGGCCCGGGATGGAATTCAAAGCCGGAGTC CAGCTCGAGCTCGATGGATCCGGATCCTTGATTGAGGGTGAGCATTCCA |
pGBKT7 | PpTGA1-1-SmaI-F PpTGA1-1-BamHI-R | CATGGAGGCCGAATTCCCGGGATGAATTCTCCATCCACCCAGTT ATGCGGCCGCTGCAGGTCGACGGCAGGCTCACGAGGACG |
基因名称 Gene name | 蛋白ID(NCBI) Protein ID | 编码序列长度/bp CDS length | 蛋白特性 Protein property | ||||
---|---|---|---|---|---|---|---|
氨基酸数 Number of amino acids | 分子量/kD MW | 等电点 pI | 不稳定系数 Instability index | 平均亲水性 GRAVY | |||
PpTGA1-1 PpTGA1-2 PpTGA2.2 PpTGA7-1 PpTGA7-2 PpTGA7-3 PpTGA9-1 PpTGA9-2 PpTGA9-3 PpTGA10-1 PpTGA10-2 PpTGA10-3 PpHBP-1b-1 PpHBP-1b-2 PpHBP-1b-3 | XP_007205406.1 XP_020421616.1 XP_007218367.2 XP_020411363.1 XP_020411364.1 XP_007222089.2 XP_007205044.2 XP_020422804.1 XP_020422805.1 XP_007204568.1 XP_020423301.1 XP_020423302.1 XP_020423805.1 XP_007226716.1 XP_020413849.1 | 1 092 1 089 1 002 1 131 1 116 1 104 1 596 1 515 1 467 1 641 1 638 1 641 1 359 1 395 1 221 | 363 362 333 376 371 367 531 504 488 546 545 546 452 464 406 | 40.99 40.86 37.07 42.78 42.12 41.67 58.59 55.55 53.87 61.47 61.39 61.47 49.95 51.67 45.14 | 6.41 6.41 8.59 6.51 6.51 6.37 6.45 6.58 6.32 6.64 6.64 6.64 7.84 6.01 6.38 | 49.13 48.70 58.49 52.03 51.20 50.29 56.81 56.70 56.54 67.80 67.75 67.80 62.22 40.31 41.33 | -0.468 -0.459 -0.570 -0.594 -0.587 -0.584 -0.538 -0.555 -0.520 -0.757 -0.757 -0.757 -0.616 -0.539 -0.509 |
Table 3 Characterisation of the physical and chemical properties of TGA family members in peach
基因名称 Gene name | 蛋白ID(NCBI) Protein ID | 编码序列长度/bp CDS length | 蛋白特性 Protein property | ||||
---|---|---|---|---|---|---|---|
氨基酸数 Number of amino acids | 分子量/kD MW | 等电点 pI | 不稳定系数 Instability index | 平均亲水性 GRAVY | |||
PpTGA1-1 PpTGA1-2 PpTGA2.2 PpTGA7-1 PpTGA7-2 PpTGA7-3 PpTGA9-1 PpTGA9-2 PpTGA9-3 PpTGA10-1 PpTGA10-2 PpTGA10-3 PpHBP-1b-1 PpHBP-1b-2 PpHBP-1b-3 | XP_007205406.1 XP_020421616.1 XP_007218367.2 XP_020411363.1 XP_020411364.1 XP_007222089.2 XP_007205044.2 XP_020422804.1 XP_020422805.1 XP_007204568.1 XP_020423301.1 XP_020423302.1 XP_020423805.1 XP_007226716.1 XP_020413849.1 | 1 092 1 089 1 002 1 131 1 116 1 104 1 596 1 515 1 467 1 641 1 638 1 641 1 359 1 395 1 221 | 363 362 333 376 371 367 531 504 488 546 545 546 452 464 406 | 40.99 40.86 37.07 42.78 42.12 41.67 58.59 55.55 53.87 61.47 61.39 61.47 49.95 51.67 45.14 | 6.41 6.41 8.59 6.51 6.51 6.37 6.45 6.58 6.32 6.64 6.64 6.64 7.84 6.01 6.38 | 49.13 48.70 58.49 52.03 51.20 50.29 56.81 56.70 56.54 67.80 67.75 67.80 62.22 40.31 41.33 | -0.468 -0.459 -0.570 -0.594 -0.587 -0.584 -0.538 -0.555 -0.520 -0.757 -0.757 -0.757 -0.616 -0.539 -0.509 |
[1] |
Buscaill P, Rivas S. 2014. Transcriptional control of plant defence responses. Current Opinion in Plant Biology, 20 (1):35-46.
doi: 10.1016/j.pbi.2014.04.004 URL |
[2] | Chen Si, Wang Li, Xia Ming-xing, Wu Dong-zhi, Liao Yun-xia, Wang Kai-tuo, Zheng Yong-hua. 2019. Effects of BABA treatment on redox status and its impact on induction of disease resistance in postharvest peaches. Food Science, 40 (1):217-223. (in Chinese) |
陈偲, 汪立, 夏明星, 伍冬志, 廖云霞, 汪开拓, 郑永华. 2019. β-氨基丁酸处理对采后桃果实还原势的影响及抗病性的诱导作用. 食品科学, 40 (1):217-223. | |
[3] |
Chisholm S, Coaker G, Day B, Staskawicz B. 2006. Host-microbe interactions:shaping the evolution of the plant immune response. Cell, 124 (4):803-814.
doi: 10.1016/j.cell.2006.02.008 pmid: 16497589 |
[4] |
Conrath U, Beckers G J M, Langenbach C J G, Jaskiewicz M R. 2015. Priming for enhanced defense. Annual Review of Phytopathology, 53 (1):97-119.
doi: 10.1146/phyto.2015.53.issue-1 URL |
[5] |
Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert P R. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The Plant Cell, 15 (9):2181-2191.
doi: 10.1105/tpc.012849 URL |
[6] | Fan Meili, Pan Lei, Zeng Wenfang, Lu Zhenhua, Cui Guochao, Meng Junren, Jin Zhe, Wang Zhiqiang, Niu Liang. 2020. Genome wide identification of MRLK family genes and expression analysis in response to Aphid infection in peach. Acta Horticulturae Sinica, 47 (1):1-13. (in Chinese) |
樊美丽, 潘磊, 曾文芳, 鲁振华, 崔国朝, 孟君仁, 靳哲, 王志强, 牛良. 2020. 桃 MRLK 家族全基因组鉴定及蚜虫侵染后的表达分析. 园艺学报, 47 (1):1-13. | |
[7] | Finn R D, Clements J, Eddy S R. 2011. HMMER web server:interactive sequence similarity searching. Nucleic Acids Research, 39 (2):29-37. |
[8] | Franco-Zorrilla J M, López-Vidriero I, Carrasco J L, Godoy M, Vera P, Solano R. 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences of the United States of America, 111 (6):2367-2372. |
[9] |
Geng X Q, Jin L, Shimada M, Kim M G, Mackey D. 2014. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 240 (1):1149-1165.
doi: 10.1007/s00425-014-2151-x URL |
[10] |
Hamiduzzaman M M, Jakab G, Barnavon L, Neuhaus J M, Mauch-Mani B. 2005. β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18 (8):819-829.
pmid: 16134894 |
[11] |
Hussain R M F, Sheikh A H, Haider I, Quareshy M, Linthorst J M. 2018. Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1. Frontiers in Plant Science, 9 (1):930-945.
doi: 10.3389/fpls.2018.00930 URL |
[12] |
Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J. 2009. Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochemical and Biophysical Research Communications, 380 (1):28-32.
doi: 10.1016/j.bbrc.2008.12.165 URL |
[13] |
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Kroj T, Parcy F. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7 (3):106-111.
pmid: 11906833 |
[14] |
Kesarwani M, Yoo J, Dong X N. 2007. Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiology, 144 (1):336-346.
pmid: 17369431 |
[15] |
Lee S, Choi D. 2013. Comparative transcriptome analysis of pepper(Capsicum annuum)revealed common regulons in multiple stress conditions and hormone treatments. Plant Cell Reports, 32 (1):1351-1359.
doi: 10.1007/s00299-013-1447-9 URL |
[16] |
Li C H, Wang J, Ji N N, Lei C Y, Zhou D X, Zheng Y H, Wang K T. 2020a. PpHOS1, a RING E 3 ubiquitin ligase,interacts with PpWRKY22 in the BABA-induced priming defense of peach fruit against Rhizopus stolonifer. Postharvest Biology and Technology, 159 (1):111029-111037.
doi: 10.1016/j.postharvbio.2019.111029 URL |
[17] | Li C H, Wang K T, Lei C Y, Zheng Y H. 2020b. Translocation of PpNPR1 is required for β-aminobutyric acid-triggered resistance against Rhizopus stolonifer in peach fruit. Scientia Horticulturae, 272 (1):1-10. |
[18] |
Li C H, Wang K T, Huang Y X, Lei C Y, Cao S F, Qiu L L, Xu F, Jiang Y B, Zou Y Y, Zheng Y H. 2021. Activation of the BABA-induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK 5 in postharvest peach fruit. Molecular Plant Pathology, 22 (12):1624-1640.
doi: 10.1111/mpp.13134 URL |
[19] |
Lindermayr C, Sell S, Müller B, Leister D, Durner J. 2010. Redox regulation of the NPR1-TGA 1 system of Arabidopsis thaliana by nitric oxide. The Plant Cell, 22 (1):2894-2907.
doi: 10.1105/tpc.109.066464 URL |
[20] |
Luna E, Van Hulten M, Zhang Y, Berkowitz O, López A, Pétriacq P, Sellwood M A, Chen B, Burrell M, van de Meene A, Pieterse C M, Flors V, Ton J. 2014. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 10 (1):450-456.
doi: 10.1038/nchembio.1520 URL |
[21] |
Ma L, Sham Y Y, Walters K J, Towle H C. 2006. A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription. Nucleic Acids Research, 35 (1):35-44.
doi: 10.1093/nar/gkl987 URL |
[22] |
Murmu J, Bush M J, Delong C, Li S T, Xu M L, Khan M, Malcolmson C, Fobert P R, Zachgo S, Hepworth S R. 2010. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA 10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology, 154 (3):1492-1504.
doi: 10.1104/pp.110.159111 URL |
[23] |
Mou Z, Fan W, Dong X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113 (7):935-944.
doi: 10.1016/S0092-8674(03)00429-X URL |
[24] |
Panebianco S, Vitale A, Platania C, Restuccia C, Polizzi G, Cirvilleri G. 2014. Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. Journal of Plant Diseases and Protection, 121 (4):177-183.
doi: 10.1007/BF03356507 URL |
[25] |
Porat R, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt E E, Droby S. 2003. Induction of resistance to Penicillium digitatum in grapefruit by β-aminobutyric acid. European Journal of Plant Pathology, 109 (9):901-907.
doi: 10.1023/B:EJPP.0000003624.28975.45 URL |
[26] |
Rahman I, Kode A, Biswas S K. 2006. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols, 1 (6):3159-3165.
pmid: 17406579 |
[27] |
Romanazzi G, Sanzani S M, Bi Y, Tian S P, Martínez P G, Alkan N. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122 (12):82-94.
doi: 10.1016/j.postharvbio.2016.08.003 URL |
[28] |
Schwarzenbacher R E, Wardell G, Stassen J, Guest E, Zhang P J, Luna E, Ton J. 2020. The IBI 1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense. Molecular Plant, 13 (10):1455-1469.
doi: 10.1016/j.molp.2020.07.010 pmid: 32717347 |
[29] |
Shearer H L, Cheng Y T, Wang L P, Liu J M, Boyle P, Després C, Zhang Y L, Li X, Fobert P R. 2012. Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion. Molecular Plant-Microbe Interactions, 25 (11):1459-1468.
doi: 10.1094/MPMI-09-11-0256 URL |
[30] |
Siegmund T, Lehmann M. 2002. The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins. Development Genes and Evolution, 212 (3):152-157.
pmid: 11976954 |
[31] |
Sun T J, Busta L, Zhang Q, Ding P T, Jetter R, Zhang Y L. 2017. TGACG-binding factor 1(TGA1)and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of systemic acquired resistance deficient 1(SARD1)and calmodulin-binding protein 60g (CBP60g). New Phytologist, 217 (1):344-354.
doi: 10.1111/nph.2018.217.issue-1 URL |
[32] |
Tian S P, Fan Q, Xu Y, Jiang A L. 2010. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathology, 51 (3):352-358.
doi: 10.1046/j.1365-3059.2002.00711.x URL |
[33] |
Wang K T, Li C H, Lei C Y, Jiang Y B, Qiu L L, Zou X Y, Zheng Y H. 2020. β-Aminobutyric acid induces priming defence against Botrytis cinerea in grapefruit by reducing intercellular redox status that modifies posttranslation of VvNPR1 and its interaction with VvTGA1. Plant Physiology and Biochemistry, 156 (11):552-565.
doi: 10.1016/j.plaphy.2020.09.026 URL |
[34] |
Wang K T, Liao Y X, Xiong Q, Kai J Q, Cao S F, Zheng Y H. 2016. Induction of direct or priming resistance against Botrytis cinerea in strawberries by β-aminobutyric acid and their effects on sucrose metabolism. Journal of Agricultural and Food Chemistry, 64 (1):5855-5865.
doi: 10.1021/acs.jafc.6b00947 URL |
[35] |
Wang K T, Wu D Z, Bo Z Y, Chen S, Wang Z R, Zheng Y H, Fang Y. 2019. Regulation of redox status contributes to priming defense against Botrytis cinerea in grape berries treated with β-aminobutyric acid. Scientia Horticulturae, 244 (1):352-364.
doi: 10.1016/j.scienta.2018.09.074 URL |
[36] |
Wang L, Jin P, Wang J, Jiang L, Shan T, Zheng Y H. 2015a. Effect of β-aminobutyric acid on cell wall modification and senescence in sweet cherry during storage at 20 ℃. Food Chemistry, 175 (1):471-477.
doi: 10.1016/j.foodchem.2014.12.011 URL |
[37] |
Wang L P, Fobert P R. 2013. Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes. PLoS ONE, 8 (9):e77378-e77390.
doi: 10.1371/journal.pone.0077378 URL |
[38] | Wang Ping, Lu Shixiong, Liang Guoping, Ma Zonghuan, Li Wenfang, Mao Juan, Chen Baihong. 2019. Bioinformatics identification and expression analysis of Trihelix transcription factor family in apple. Acta Horticulturae Sinica, 46 (11):2082-2098. (in Chinese) |
王萍, 卢世雄, 梁国平, 马宗桓, 李文芳, 毛娟, 陈佰鸿. 2019. 苹果 Trihelix 转录因子家族生物信息学鉴定与基因表达分析. 园艺学报, 46 (11):2082-2098. | |
[39] |
Wang Z H, Cheng K, Wan L Y, Yan L Y, Jiang H F, Liu S Y, Lei Y, Liao B S. 2015b. Genome-wide analysis of the basic leucine zipper(bZIP)transcription factor gene family in six legume genomes. BMC Genomics, 16 (1):1053-1067.
doi: 10.1186/s12864-015-2258-x URL |
[40] |
Wilkinson S W, Pastor V, Paplauskas S, P´etriacq P, Luna E. 2018. Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology, 67 (1):30-41.
doi: 10.1111/ppa.2018.67.issue-1 URL |
[41] | Withers J, Dong X N. 2016. Posttranslational modifications of NPR1:a single protein playing multiple roles in plant immunity and physiology. PLoS Pathogens, 12 (8):e1005707-e1005715. |
[42] |
Zavaliev R, Mohan R, Chen T, Dong X. 2020. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell, 182 (5):1093-1108.
doi: S0092-8674(20)30881-3 pmid: 32810437 |
[43] |
Zhang Y, Tessaro M J, Lassner M, Li X. 2003. Knockout analysis of Arabidopsis transcription factors TGA2,TGA5,and TGA6 reveals their redundant and essential roles in systemic acquired resistance. The Plant Cell, 15 (1):2647-2653.
doi: 10.1105/tpc.014894 URL |
[44] |
Zhang Z K, Yang D P, Yang B, Gao Z Y, Li M, Jiang Y M, Hu M J. 2013. β-aminobutyric acid induces resistance of mango fruit to postharvest anthracnose caused by Colletotrichum gloeosporioides and enhances activity of fruit defense mechanisms. Scientia Horticulturae, 160 (1):78-84.
doi: 10.1016/j.scienta.2013.05.023 URL |
[1] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, and ZHAO Xiaochun, . Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[2] | SONG Yanhong, CHEN Yaduo, ZHANG Xiaoyu, SONG Pan, LIU Lifeng, LI Gang, ZHAO Xia, and ZHOU Houcheng, . The Transcription Factor FvbHLH130 Activates Flowering in Fragaria vesca [J]. Acta Horticulturae Sinica, 2023, 50(2): 295-306. |
[3] | HAN Rui, ZHONG Xionghui, CHEN Denghui, CUI Jian, YUE Xiangqing, XIE Jianming, and KANG Jungen, . Cloning and Functional Analysis of BobHLH34 Gene in Cabbage that Interacts with XopR from Xanthomonas [J]. Acta Horticulturae Sinica, 2023, 50(2): 319-330. |
[4] | TIAN Mingkang, XU Zhixiang, LIU Xiuqun, SUI Shunzhao, LI Mingyang, and LI Zhineng, . Identification of the AP2 Subfamily Transcription Factors in Chimonanthus praecox and the Functional Study of CpAP2-L11 [J]. Acta Horticulturae Sinica, 2023, 50(2): 382-396. |
[5] | LIN Haijiao, LIANG Yuchen, LI Ling, MA Jun, ZHANG Lu, LAN Zhenying, YUAN Zening. Exploration and Regulation Network Analysis of CBF Pathway Related Cold Tolerance Genes in Lavandula angustifolia [J]. Acta Horticulturae Sinica, 2023, 50(1): 131-144. |
[6] | JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956. |
[7] | XU Haifeng, WANG Zhongtang, CHEN Xin, LIU Zhiguo, WANG Lihu, LIU Ping, LIU Mengjun, ZHANG Qiong. The Analyses of Target Metabolomics in Flavonoid and Its Potential MYB Regulation Factors During Coloring Period of Winter Jujube [J]. Acta Horticulturae Sinica, 2022, 49(8): 1761-1771. |
[8] | QIAN Jieyu, JIANG Lingli, ZHENG Gang, CHEN Jiahong, LAI Wuhao, XU Menghan, FU Jianxin, ZHANG Chao. Identification and Expression Analysis of MYB Transcription Factors Regulating the Anthocyanin Biosynthesis in Zinnia elegans and Function Research of ZeMYB9 [J]. Acta Horticulturae Sinica, 2022, 49(7): 1505-1518. |
[9] | CHEN Daozong, LIU Yi, SHEN Wenjie, ZHU Bo, TAN Chen. Identification and Analysis of PAP1/2 Homologous Genes in Brassica rapa,B. oleracea and B. napus [J]. Acta Horticulturae Sinica, 2022, 49(6): 1301-1312. |
[10] | WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326. |
[11] | XIANG Miaolian, WU Fan, LI Shucheng, MA Qiaoli, WANG Yinbao, XIAO Liuhua, CHEN Jinyin, CHEN Ming. Exogenous Melatonin Regulates Reactive Oxygen Metabolism to Induce Resistance of Postharvest Pear Fruit to Black Spot [J]. Acta Horticulturae Sinica, 2022, 49(5): 1102-1110. |
[12] | CHEN Sijia, WANG Huan, LI Ruirui, WANG Zhuoyi, LUO Jing, WANG Caiyun. Characterization of CmMYC2 in Formation of Green Color in Ray Florets of Chrysanthemum [J]. Acta Horticulturae Sinica, 2022, 49(11): 2377-2387. |
[13] | XIE Siyi, ZHOU Chengzhe, ZHU Chen, ZHAN Dongmei, CHEN Lan, WU Zuchun, LAI Zhongxiong, GUO Yuqiong. Genome-wide Identification and Expression Analysis of CsTIFY Transcription Factor Family Under Abiotic Stress and Hormone Treatments in Camellia sinensis [J]. Acta Horticulturae Sinica, 2022, 49(1): 100-116. |
[14] | XU Hongxia, ZHOU Huifen, LI Xiaoying, JIANG Luhua, CHEN Junwei. Comparative Transcriptome Analysis of Different Developmental Stages of Flowers and Fruits in Loquat Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2021, 48(9): 1680-1694. |
[15] | BIAN Shicun, LU Yani, XU Wujun, CHEN Boqing, WANG Guanglong, XIONG Aisheng. Garlic Circadian Clock Genes AsRVE1 and AsRVE2 and Their Expression Analysis Under Osmotic Stress [J]. Acta Horticulturae Sinica, 2021, 48(9): 1706-1716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd