Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (2): 237-251.doi: 10.16420/j.issn.0513-353x.2021-0077
• Research Papers • Next Articles
ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu()
Received:
2021-05-11
Revised:
2021-07-19
Online:
2022-02-25
Published:
2022-02-28
Contact:
WANG Yanxiu
E-mail:wangxy@gsau.edu.cn
CLC Number:
ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu. Transcriptome Analysis of the Molecular Mechanism of Saline-alkali Stress Response in Malus halliana Leaves[J]. Acta Horticulturae Sinica, 2022, 49(2): 237-251.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0077
基因 Gene | 名称 Description | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
ANT | 溶质载体家族25 Solute carrier family 25 | CCAACTTCCACCGTGATCTGATG | TCCTTCCACCGCCGAGAATG |
ATP2A | 钙转运体 Calcium transporter | GGTACAGTAGTCGTGGCTGGTAG | TTCAATGGCGTCACTTCATCTTCC |
PLCD | 磷脂酰肌醇磷脂酶C Phosphatidylinositol phospholipase C,delta | GGTGTTCGCCAAGTACGCTCAG | GGGTCGTGAACTGGAGGAGGATAG |
SPHK | 鞘氨醇激酶Sphingosine kinase | CTCATAAGCGGCGTCGTCACAC | CGAACCCCAGGACCTCCTTCTC |
VDAC1 | 赖性阴离子通道蛋白1 Voltage-dependent anion channel protein 1 | TGCCGAACTGACCCACAGATTTTC | GGTCTCCATTCACGCTGCCATAG |
ABF | ABA响应元件结合因子 ABA responsive element binding factor | TGACAATGTTGAGTTCCGTGAGC | TCGACGACTGCCTCGCTAAC |
PR1 | 病程相关蛋白1 Pathogenesis-related protein 1 | ATGGGGTTGTGCAATATTTC | CTAGTAAGGCTTCTCCCCAAC |
PYL | 脱落酸受体PYR/PYL家族 Abscisic acid receptor PYR/PYL family | ATGTCTTCACCAATCCAGTTTC | AGTACTCCCAAAGAACCACAAA |
COI-1 | 冠菌素不敏感蛋白1 Coronatine-insensitive protein 1 | CGAGGGCGGCGATGTTCAATC | ACTTCAAGCGGTGGAACGAGTTG |
GOT1 | 细胞质天冬氨酸转氨酶 Aspartate aminotransferase,cytoplasmic | ACAACGCCTCCAAGCTCCTC | TCTGAGTTCGCCGAGTCCTTC |
CHI | 查耳酮异构酶Chalcone isomerase | ATGGCTGACGGTGACCAAC | TTATCTAGTGATATGAGCAATAAA |
ANS | 花青素合成酶Anthocyanidin synthase | ATGGTGAGCTCTGATTCAG | TCACTTGGGGAGCAAAGC |
ANR | 花青素还原酶Anthocyanidin reductase | ATGGCCACCCAACAACCC | CTAGTTCTGCAGCAGCCC |
NADH | 单脱水抗坏血酸还原酶 Monodehydroascorbate reductase(NADH) | ATGGGAAGGGCATTTGTG | TCACCACCTCCGGCGCTT |
CrtY | 番茄红素Lycopene beta-cyclase | ATGGATACATTGCTTAAAACGC | GATTAGAGATAGGACATAGTTCAAC |
CrtZ | β-胡萝卜素β-carotene 3-hydroxylase | GCAAGGTGGGCTCATAGAACTCTG | AAGAAGGGCAATAGCAGGAACAGC |
HPD | 羟苯丙酮酸加双氧酶 Hydroxyphenylpyruvate dioxygenase | TGTACCACAGAGACCTGAAGCC | CAGCAGCAGAGCCATCATAACC |
pckA | 膜伯胺氧化酶 Primary-amine oxidase | CGACGCCTTCCTGTTGCTTCC | CGGTGACGCCAGTCCAATCTTG |
VPS35 | 液泡蛋白分选相关蛋白35 Vacuolar protein sorting-associated protein 35 | TGAAGATTGGCTGCACTTGACTGG | CCGACAACTGCCCATTGAGGAAG |
VTA1 | 液泡蛋白分选相关蛋白 Vacuolar protein sorting-associated protein | GGGCTCTGATCCTTCCTACTCTCC | AGTCCCATTTCTGTTGCTCGTCTG |
Table 1 qRT-PCR primers
基因 Gene | 名称 Description | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
ANT | 溶质载体家族25 Solute carrier family 25 | CCAACTTCCACCGTGATCTGATG | TCCTTCCACCGCCGAGAATG |
ATP2A | 钙转运体 Calcium transporter | GGTACAGTAGTCGTGGCTGGTAG | TTCAATGGCGTCACTTCATCTTCC |
PLCD | 磷脂酰肌醇磷脂酶C Phosphatidylinositol phospholipase C,delta | GGTGTTCGCCAAGTACGCTCAG | GGGTCGTGAACTGGAGGAGGATAG |
SPHK | 鞘氨醇激酶Sphingosine kinase | CTCATAAGCGGCGTCGTCACAC | CGAACCCCAGGACCTCCTTCTC |
VDAC1 | 赖性阴离子通道蛋白1 Voltage-dependent anion channel protein 1 | TGCCGAACTGACCCACAGATTTTC | GGTCTCCATTCACGCTGCCATAG |
ABF | ABA响应元件结合因子 ABA responsive element binding factor | TGACAATGTTGAGTTCCGTGAGC | TCGACGACTGCCTCGCTAAC |
PR1 | 病程相关蛋白1 Pathogenesis-related protein 1 | ATGGGGTTGTGCAATATTTC | CTAGTAAGGCTTCTCCCCAAC |
PYL | 脱落酸受体PYR/PYL家族 Abscisic acid receptor PYR/PYL family | ATGTCTTCACCAATCCAGTTTC | AGTACTCCCAAAGAACCACAAA |
COI-1 | 冠菌素不敏感蛋白1 Coronatine-insensitive protein 1 | CGAGGGCGGCGATGTTCAATC | ACTTCAAGCGGTGGAACGAGTTG |
GOT1 | 细胞质天冬氨酸转氨酶 Aspartate aminotransferase,cytoplasmic | ACAACGCCTCCAAGCTCCTC | TCTGAGTTCGCCGAGTCCTTC |
CHI | 查耳酮异构酶Chalcone isomerase | ATGGCTGACGGTGACCAAC | TTATCTAGTGATATGAGCAATAAA |
ANS | 花青素合成酶Anthocyanidin synthase | ATGGTGAGCTCTGATTCAG | TCACTTGGGGAGCAAAGC |
ANR | 花青素还原酶Anthocyanidin reductase | ATGGCCACCCAACAACCC | CTAGTTCTGCAGCAGCCC |
NADH | 单脱水抗坏血酸还原酶 Monodehydroascorbate reductase(NADH) | ATGGGAAGGGCATTTGTG | TCACCACCTCCGGCGCTT |
CrtY | 番茄红素Lycopene beta-cyclase | ATGGATACATTGCTTAAAACGC | GATTAGAGATAGGACATAGTTCAAC |
CrtZ | β-胡萝卜素β-carotene 3-hydroxylase | GCAAGGTGGGCTCATAGAACTCTG | AAGAAGGGCAATAGCAGGAACAGC |
HPD | 羟苯丙酮酸加双氧酶 Hydroxyphenylpyruvate dioxygenase | TGTACCACAGAGACCTGAAGCC | CAGCAGCAGAGCCATCATAACC |
pckA | 膜伯胺氧化酶 Primary-amine oxidase | CGACGCCTTCCTGTTGCTTCC | CGGTGACGCCAGTCCAATCTTG |
VPS35 | 液泡蛋白分选相关蛋白35 Vacuolar protein sorting-associated protein 35 | TGAAGATTGGCTGCACTTGACTGG | CCGACAACTGCCCATTGAGGAAG |
VTA1 | 液泡蛋白分选相关蛋白 Vacuolar protein sorting-associated protein | GGGCTCTGATCCTTCCTACTCTCC | AGTCCCATTTCTGTTGCTCGTCTG |
Fig. 3 Changes of H2O2 content and CAT,POD,SOD activity in Malus halliana under saline-alkali stress for 0,2,4,6 d Changes of H2O2 content and CAT,POD,SOD activity in Malus halliana under saline-alkali stress for 0,2,4,6 d,average ± standard,different lowercase English letters indicate a significant difference at 0.05 level between treatment and control for the same index on the same day.
样品 Sample | 原始数据 Raw reads | 过滤数据 Clean reads | 有效碱基/% Valid bases | Q30含量/% Q30 content | GC含量/% GC content |
---|---|---|---|---|---|
对照 Control | 49 794 146 | 47 025 046 | 90.15 | 93.52 | 47.70 |
胁迫处理 Stress treatment | 49 258 400 | 47 513 110 | 92.50 | 94.63 | 47.90 |
Table 2 Summary of transcriptome sequencing data from leaves of Malus halliana under saline-alkali stress
样品 Sample | 原始数据 Raw reads | 过滤数据 Clean reads | 有效碱基/% Valid bases | Q30含量/% Q30 content | GC含量/% GC content |
---|---|---|---|---|---|
对照 Control | 49 794 146 | 47 025 046 | 90.15 | 93.52 | 47.70 |
胁迫处理 Stress treatment | 49 258 400 | 47 513 110 | 92.50 | 94.63 | 47.90 |
Fig. 5 Scatterplot of KEGG enrichment of the top 20 differential genes up-regulated(A)and down-regulated(B)in response to saline-alkali stress in leaves of Malus halliana
Fig. 6 Heat map analysis of DEG related to calcium signaling,plant hormone signal transduction and key metabolite synthesis pathways in leaves of Malus halliana under saline-alkali stress
[1] |
Abdallah S B, Auang B, Ayot L, Lalin I, Lachaal M. 2016. Salt stress(NaCl)affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiologiae Plantarum, 38 (3):1-13.
doi: 10.1007/s11738-015-2023-4 URL |
[2] |
Affenzeller M J. 2009. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 60 (3):939-954.
doi: 10.1093/jxb/ern348 pmid: 19213813 |
[3] |
Aslam RE, Williams L, Bhatti F, Virk N. 2017. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress. BMC Plant Biology, 17:174-187.
doi: 10.1186/s12870-017-1112-5 URL |
[4] |
Bi Y M, Kenton P, Mur L. 1995. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. The Plant Journal, 8 (2):235-245.
doi: 10.1046/j.1365-313X.1995.08020235.x URL |
[5] |
Boneh U, Biton I, Zheng C. 2012. Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Reports, 31 (2):311-321.
doi: 10.1007/s00299-011-1166-z pmid: 22016084 |
[6] |
Buchfink B, Xie C, Huson D H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 (1):59-60.
doi: 10.1038/nmeth.3176 URL |
[7] |
Dahro, Wang F, Peng T, Liu J H. 2016. PtrA/NINV,an alkaline/neutral invertase gene of Poncirus trifoliata,confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biology, 16:76.
doi: 10.1186/s12870-016-0761-0 URL |
[8] |
Du C X. 2010. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry, 71 (13):1450-1459.
doi: 10.1016/j.phytochem.2010.05.020 URL |
[9] | Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants:physiological,biochemical,and molecular characterization. International Journal of Genomics,1-18. |
[10] |
Jaina M, Rober D F, Sean R E, Alex B, Marco P. 2013. Challenges in homology search:HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 41 (12):e121.
doi: 10.1093/nar/gkt263 URL |
[11] |
Jia X M, Wang H, Svetla S, Zhu Y F, Hu Y, Wang Y X. 2019a. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt,alkali and saline-alkali stress. Scientia Horticulturae, 245:154-162.
doi: 10.1016/j.scienta.2018.10.017 URL |
[12] |
Jia X M, Zhu Y F, Hu Y, Zhang R, Wang Y X. 2019b. Integrated physiologic,proteomic,and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Horticulture Research, 6 (1):91.
doi: 10.1038/s41438-019-0172-0 URL |
[13] | Jia Xu-mei, Zhu Yan-fang, Wang Hai, Wu Yu Xia. 2019. Physiological response of the salt-alkali compound stress of Malus halliana. Acta Ecologica Sinica, 39 (17):6349-6361. (in Chinese) |
贾旭梅, 朱燕芳, 王海, 吴玉霞. 2019. 垂丝海棠应对盐碱复合胁迫的生理响应. 生态学报, 39 (17):6349-6361. | |
[14] | Karuppanapandian T, Moon J, Kim C. 2011. Reactive oxygen species in plants:their generation,signal transduction,and scavenging mechanisms. Australian Journal of Crop Science, 5 (6):709-725. |
[15] |
Lakshman N P, Yoichi T, Shinjiro T. 2012. Reducing the antigenicity of milk whey protein using acid proteinases from Monascus pilosus. Process Biochemistry, 46 (3):806-810.
doi: 10.1016/j.procbio.2010.11.014 URL |
[16] | Leckie C P, Mcainsh M R, Allen G J. 1998. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 95 (26):15837-15842. |
[17] |
Liu N N. 2019. Effects of IAA and ABA on the immature peach fruit development process. Horticultural Plant Journal, 5 (4):145-154.
doi: 10.1016/j.hpj.2019.01.005 URL |
[18] | Lofke C, Zwiewka M, Heilmann I. 2013. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proceedings of the National Academy of Sciences, 110 (9):3627-3632. |
[19] |
Lopezberges Lopezberges, Rispail N, Pradosrosales R C. 2010. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. The Plant Cell, 22 (7):2459-2475.
doi: 10.1105/tpc.110.075937 URL |
[20] | Manishankar P, Wang N, Ster P. 2018. Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany,(17):17. |
[21] |
Maria K, Aldona W, Agineszka P. 2017. A heterozygous mutation in GOT1 is associated with familial macro-aspartate aminotransferase. Journal of Hepatology, 67 (5):1026-1030.
doi: 10.1016/j.jhep.2017.07.003 URL |
[22] | Meng L S. 2015. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8. Journal of Cell Science, 128 (15):2919-2927. |
[23] | Nadia V, Cristina S C. 2012. Comparative study of phenolic compounds in different Brazilian rice(Oryza sativa L.)genotypes. Journal of Food Composition & Analysis, 22 (5):405-409. |
[24] | Pi E, Zhu C, Fan W. 2018. Quantitative phosphoproteomic and metabonomic analyses reveal GmMYB 173 optimizes flavonoid metabolism in soybean under salt stress. Molecular & Cellular Proteomics Mcp, 17 (2):1209-1224. |
[25] |
Şahin-Çevik M, Çevik B, Coşkan A. 2020. Identification and expression analysis of salinity-induced genes in rangpur lime(Citrus limonia). Horticultural Plant Journal, 6 (5):267-276.
doi: 10.1016/j.hpj.2020.07.005 URL |
[26] |
Sanchez D H, Pieckenstain F L, Escaray F, Erban A, Kopka J. 2011. Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic preadaptation hypothesis. Plant Cell Environment, 34:605-617.
doi: 10.1111/j.1365-3040.2010.02266.x URL |
[27] |
Sandra D, Santos O, Luis R. 2012. Contactin-associated protein 1(Caspr1)regulates the traffic and synaptic content of α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. The Journal of Biological Chemistry, 287 (9):68-77.
doi: 10.1074/jbc.M111.271205 URL |
[28] | Sanoubar R, Cellini A, Gianfranco G, Spinelli F. 2020. Osmoprotectants and antioxidative enzymes as screening tools for salinity tolerance in radish (Raphanus sativus). Horticultural Plant Journal, 6 (1):11-24. |
[29] |
Shen Jia-zhi, Zou Z W, Zhu X J. 2018. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.)cultivars. Horticulture Research, 5 (1):7.
doi: 10.1038/s41438-017-0010-1 URL |
[30] |
Vinocur B, Altman A. 2005. Recentadvances inengineering plant tolerance to abiotic stress:achievements and limitations. Current Opinion in Biotechnology, 16:123-132.
doi: 10.1016/j.copbio.2005.02.001 pmid: 15831376 |
[31] | Watanabe M, Balazadeh S, Hoefgen R. 2013. Comprehensive dissection of spatiotemporal metabolic shifts in primary,secondary,and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiolohy, 162:1290-1310. |
[32] | Xu Ji-hua, Zhao Zheng-yang, Wang Lei-cun, Gao Hua, Liu Zhen-zhong, Fan Hong-ke. 2011. Selection of factors for apple fruit quality evaluation. Agricultural Research in the Arid Areas, 29 (6):269-274. (in Chinese) |
徐吉花, 赵政阳, 王雷存, 高华, 刘振中, 樊红科. 2011. 苹果果实品质评价因子的选择研究. 干旱地区农业研究, 29 (6):269-274. | |
[33] | Xue Hao, Zhang Feng, Zhang Zhi-hong, Fu Jun-fan, Wang Feng, Zhang Bing, Ma Yue. 2015. Differences in salt tolerance between the diploid and autotetraploid‘Hanfu’apple. Acta Horticulturae Sinica, 42 (5):826-832. (in Chinese) |
薛浩, 张锋, 张志宏, 傅俊范, 王丰, 张兵, 马跃. 2015. ‘寒富’苹果与其同源四倍体耐盐差异研究. 园艺学报, 42 (5):826-832. | |
[34] | Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2015. Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant & Cell Physiology, 56 (6):1043-1052. |
[35] | Yoshihisa K, Kazuyoshi T, Masafumi H. 2012. Arabidopsis ABCB 21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant & Cell Physiology, 53 (12):2090-2100. |
[36] | Yu Le, Liu Yong-hai, Yuan Wei-chao, Zhou Li-ping, Peng Chang-lian. 2016. Advances in plant ascorbic acid accumulation and its molecular mechanism. Acta Botanica Sinica, 51 (3):396-410. (in Chinese) |
俞乐, 刘拥海, 袁伟超, 周丽萍, 彭长连. 2016. 植物抗坏血酸积累及其分子机制的研究进展. 植物学报, 51 (3):396-410. | |
[37] |
Zhang L S. 2019. Advance of horticultural plant genomes. Horticultural Plant Journal, 5 (6):229-230.
doi: 10.1016/j.hpj.2019.12.002 URL |
[38] | Zhang Xing-xu. 2011. Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass(Achnatherum inebrians). Biochemical Systematics & Ecology, 39 (4-6):471-476. |
[39] | Zheng J Y, Yang Y, Guo X, Jin L P, Xiong X Y. 2020. Eukaryotic translation initiation factors shape RNA viruses resistance in plants. Horticultural Plant Journal, 6 (2):99-110. |
[40] |
Zhu Jian-kang. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 53:247-273.
pmid: 12221975 |
[41] | Zhu Yan-fang. 2018. Resistance physiology and proteomics analysis of apple rootstocks under mixed saline-alkali stress[M. D. Dissertation]. Lanzhou: Gansu Agricultural University. (in Chinese) |
朱燕芳. 2018. 混合盐碱胁迫下苹果砧木的抗性生理和蛋白组学分析[硕士论文]. 兰州: 甘肃农业大学. |
[1] | ZHENG Xiaodong, XI Xiangli, LI Yuqi, SUN Zhijuan, MA Changqing, HAN Mingsan, LI Shaoxuan, TIAN Yike, WANG Caihong. Effects and Regulating Mechanism of Exogenous Brassinosteroids on the Growth of Malus hupehensis Under Saline-alkali Stress [J]. Acta Horticulturae Sinica, 2022, 49(7): 1401-1414. |
[2] | WANG Chunxia,YIN Yue,WANG Zhiping,YAN Rui,Fu Linlan,and SUN Hongmei*. Effects of Regeneration and Abiotic Stress Tolerance in Polyploid Lilium davidii var. unicolor and Lilium pumilum in Vitro [J]. ACTA HORTICULTURAE SINICA, 2019, 46(12): 2359-2368. |
[3] | Wu Caijun 一;Cao Jiashu;He Yong;and Dong Dekun. The Relationship between Diferential Gene Expression Patterns in Rosette Sta.ges and Heterosis in Chinese Cabbage-pak-choi,Turnip and Their Hybrids [J]. ACTA HORTICULTURAE SINICA, 2004, 31(4): 508-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd