Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (1): 200-220.doi: 10.16420/j.issn.0513-353x.2020-1039
• Reviews • Previous Articles Next Articles
LIANG Zhile, WANG Kuanhong, YANG Jing, ZHU Biao(), ZHU Zhujun
Received:
2021-02-22
Revised:
2021-08-20
Online:
2022-01-25
Published:
2022-01-24
Contact:
ZHU Biao
E-mail:billzhu@zafu.edu.cn
CLC Number:
LIANG Zhile, WANG Kuanhong, YANG Jing, ZHU Biao, ZHU Zhujun. The Importance of Glucosinolates on Plant Response to Abiotic Stress in Brassicaceae Family[J]. Acta Horticulturae Sinica, 2022, 49(1): 200-220.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-1039
Fig. 1 The variation of GSL under abiotic stress The solid red line indicates an increase in the total GSL content,the solid blue line indicates a decrease in the total GSL content.
Fig. 2 The biochemical metabolic pathway of GSL The red letter represents positive regulation,the blue letter represents negative regulation.The pathway is based on the integration of Aarabi et al.,2016;Malka & Cheng,2017;Sanchez Pujante et al.,2017;Harun et al.,2020.
Fig. 3 The signal transduction of GSL under abiotic stress The solid line represents the real existence,the dotted line represents the possible situation.
[1] |
Aarabi F, Kusajima M, Tohge T, Konishi T, Gigolashvili T, Takamune M, Sasazaki Y, Watanabe M, Nakashita H, Fernie A R, Saito K, Takahashi H, Hubberten H M, Hoefgen R, Maruyama Nakashita A. 2016. Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. Science Advances, 2:e1601087.
doi: 10.1126/sciadv.1601087 URL |
[2] |
Abe K, Kido S, Maeda T, Kami D, Matsuura H, Shimura H, Suzuki T. 2015. Glucosinolate profiles in Cardamine fauriei and effect of light quality on glucosinolate concentration. Scientia Horticulturae, 189:12-16.
doi: 10.1016/j.scienta.2015.03.028 URL |
[3] |
Aghajanzadeh T, Hawkesford M J, De Kok L J. 2014. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Frontiers in Plant Science, 5:704.
doi: 10.3389/fpls.2014.00704 pmid: 25566279 |
[4] |
Aghajanzadeh T, Kopriva S, Hawkesford M J, Koprivova A, De Kok L J. 2015. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa:impact on the glucosinolate composition. Frontiers in Plant Science, 6:924.
doi: 10.3389/fpls.2015.00924 pmid: 26579170 |
[5] | Aghajanzadeh T A, Prajapati D H, Burow M. 2019. Copper toxicity affects indolic glucosinolates and gene expression of key enzymes for their biosynthesis in Chinese cabbage. Archives of Agronomy and Soil Science, 66:288-1301. |
[6] |
Aghajanzadeh T A, Prajapati D H, Burow M. 2020. Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure. Journal of Plant Physiology, 244:153088.
doi: S0176-1617(19)30217-2 pmid: 31812906 |
[7] |
Aghajanzadeh T A, Reich M, Kopriva S, De Kok L J. 2018. Impact of chloride(NaCl,KCl)and sulphate(Na2SO4,K2SO4)salinity on glucosinolate metabolism in Brassica rapa. Journal of Agronomy and Crop Science, 204:137-146.
doi: 10.1111/jac.2018.204.issue-2 URL |
[8] | Al-Dhabi N A, Arasu M V, Kim S J, Romij Uddin M, Park W T, Lee S Y, Park S U. 2015. Methyl jasmonate-and light-induced glucosinolate and anthocyanin biosynthesis in radish seedlings. Natural Product Communications, 10 (7):1211-1214. |
[9] |
Ali M S, Baek K H. 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences, 21:621.
doi: 10.3390/ijms21020621 URL |
[10] |
Almuhayawi M S, Abdelgawad H, Al Jaouni S K, Selim S, Hassan A H A, Khamis G. 2020. Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food Chemistry, 328:127102.
doi: S0308-8146(20)30964-X pmid: 32512468 |
[11] |
Almuziny M, Decker C, Wang D, Gerard P, Tharayil N. 2017. Nutrient supply and simulated herbivory differentially alter the metabolite pools and the efficacy of the glucosinolate-based defense system in Brassica species. Journal of Chemical Ecology, 43:129-142.
doi: 10.1007/s10886-016-0811-y URL |
[12] |
Ambawat S, Sharma P, Yadav N R, Yadav R C. 2013. MYB transcription factor genes as regulators for plant responses:an overview. Physiology and Molecular Biology of Plants, 19:307-321.
doi: 10.1007/s12298-013-0179-1 URL |
[13] |
Asad S A, Young S, West H. 2015. Effect of zinc and glucosinolates on nutritional quality of Noccaea caerulescens and infestation by Aleyrodes proletella. Science of the Total Environment, 511:21-27.
doi: 10.1016/j.scitotenv.2014.12.029 URL |
[14] |
Augustine R, Bisht N C. 2015. Biotic elicitors and mechanical damage modulate glucosinolate accumulation by co-ordinated interplay of glucosinolate biosynthesis regulators in polyploid Brassica juncea. Phytochemistry, 117:43-50.
doi: S0031-9422(15)30003-0 pmid: 26057228 |
[15] | Baek S A, Im K H, Park S U, Oh S D, Choi J, Kim J K. 2019. Dynamics of short-term metabolic profiling in radish sprouts(Raphanus sativus L.)in response to nitrogen deficiency. Plants(Basel), 8:361. |
[16] |
Balazadeh S, Jaspert N, Arif M, Mueller Roeber B, Maurino V G. 2012. Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2in chloroplasts. Frontiers in Plant Science, 3:234.
doi: 10.3389/fpls.2012.00234 pmid: 23125844 |
[17] |
Bechtold U, Field B. 2018. Molecular mechanisms controlling plant growth during abiotic stress. Journal of Experimental Botany, 69:2753-2758.
doi: 10.1093/jxb/ery157 pmid: 29788471 |
[18] |
Bielecka M, Watanabe M, Morcuende R, Scheible W R, Hawkesford M J, Hesse H, Hoefgen R. 2014. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur,nitrogen and phosphorus nutritional responses in Arabidopsis. Frontiers in Plant Science, 5:805.
doi: 10.3389/fpls.2014.00805 pmid: 25674096 |
[19] |
Bong S J, Uddin M R, Kim S J, Park J S, Park S U. 2015. Influence of auxins and wounding on glucosinolate biosynthesis in hairy root cultures of Chinese cabbage(Brassica rapa ssp. pekinensis). Biosciences Biotechnology Research Asia, 12:1041-1046.
doi: 10.13005/bbra/1756 URL |
[20] |
Borpatragohain P, Rose T J, King G J. 2016. Fire and brimstone:molecular interactions between sulfur and glucosinolate biosynthesis in model and crop Brassicaceae. Frontiers in Plant Science, 7:1735.
pmid: 27917185 |
[21] |
Cargnel M D, Demkura P V, Ballare C L. 2014. Linking phytochrome to plant immunity:low red:far-red ratios increase Arabidopsis susceptibility to botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytologist, 204:342-354.
doi: 10.1111/nph.13032 pmid: 25236170 |
[22] |
Carvalho S D, Folta K M. 2014. Sequential light programs shape kale(Brassica napus)sprout appearance and alter metabolic and nutrient content. Horticulture Research, 1:8.
doi: 10.1038/hortres.2014.8 pmid: 26504531 |
[23] |
Cavaiuolo M, Cocetta G, Spadafora N D, Muller C T, Rogers H J, Ferrante A. 2017. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses:a transcriptomic resource for Diplotaxis tenuifolia. PLoS ONE, 12:e0178119.
doi: 10.1371/journal.pone.0178119 URL |
[24] |
Charron C S, Sams C E. 2004. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. Journal of the American Society for Horticultural Science, 129:321-330.
doi: 10.21273/JASHS.129.3.0321 URL |
[25] |
Chun J H, Kim S, Arasu M V, Al Dhabi N A, Chung D Y, Kim S J. 2017. Combined effect of nitrogen,phosphorus and potassium fertilizers on the contents of glucosinolates in rocket salad(Eruca sativa Mill.). Saudi Journal of Biological Sciences, 24:436-443.
doi: 10.1016/j.sjbs.2015.08.012 URL |
[26] | Chung I M, Rekha K, Rajakumar G, Thiruvengadam M. 2018. Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa. Bioprocess and Biosystems Engineering, 41:1665-1677. |
[27] |
Chung I M, Venkidasamy B, Thiruvengadam M. 2019. Nickel oxide nanoparticles cause substantial physiological,phytochemical,and molecular-level changes in Chinese cabbage seedlings. Plant Physiology and Biochemistry, 139:92-101.
doi: 10.1016/j.plaphy.2019.03.010 URL |
[28] |
Cocetta G, Mishra S, Raffaelli A, Ferrante A. 2018. Effect of heat root stress and high salinity on glucosinolates metabolism in wild rocket. Journal of Plant Physiology, 231:261-270.
doi: 10.1016/j.jplph.2018.10.003 URL |
[29] |
Del Carmen Martinez Ballesta M, Moreno D A, Carvajal M. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. International Journal of Molecular Sciences, 14:11607-11625.
doi: 10.3390/ijms140611607 URL |
[30] |
Deng M, Qian H, Chen L, Sun B, Chang J, Miao H, Cai C, Wang Q. 2017. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts. Food Chemistry, 222:1-5.
doi: 10.1016/j.foodchem.2016.11.157 URL |
[31] |
Durenne B, Druart P, Blondel A, Fauconnier M L. 2018. How cadmium affects the fitness and the glucosinolate content of oilseed rape plantlets. Environmental and Experimental Botany, 155:185-194.
doi: 10.1016/j.envexpbot.2018.06.008 URL |
[32] |
Endara M J, Coley P D. 2011. The resource availability hypothesis revisited:a meta-analysis. Functional Ecology, 25:389-398.
doi: 10.1111/fec.2011.25.issue-2 URL |
[33] |
Engelen Eigles G, Holden G, Cohen J D, Gardner G. 2006. The effect of temperature,photoperiod,and light quality on bluconasturtiin concentration in watercress(Nasturtium officinale R. Br.). Journal of Agricultural and Food Chemistry, 54:328-334.
pmid: 16417287 |
[34] |
Eom S H, Baek S A, Kim J K, Hyun T K. 2018. Transcriptome analysis in Chinese cabbage(Brassica rapa ssp. pekinensis)provides the role of glucosinolate metabolism in response to drought stress. Molecules, 23:1186.
doi: 10.3390/molecules23051186 URL |
[35] | Falk K L, Tokuhisa J G, Gershenzon J. 2007. The effect of sulfur nutrition on plant glucosinolate content:physiology and molecular mechanisms. Plant Biology(Stuttg), 9:573-581. |
[36] |
Fatemi H, Carvajal M, Rios J J. 2020. Foliar application of Zn alleviates salt stress symptoms of pak choi plants by activating water relations and glucosinolate synthesis. Agronomy, 10:1528.
doi: 10.3390/agronomy10101528 URL |
[37] |
Fones H N, Preston G M, Smith J A C. 2019. Variation in defence strategies in the metal hyperaccumulator plant Noccaea caerulescens is indicative of synergies and trade-offs between forms of defence. Royal Society Open Science, 6:172418.
doi: 10.1098/rsos.172418 URL |
[38] |
Frerigmann H, Gigolashvili T. 2014. Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. Frontiers in Plant Science, 5:626.
doi: 10.3389/fpls.2014.00626 pmid: 25426131 |
[39] | Fu Jianwei, Wei hui, Li Jianyu, Zhan Zhixiong, You Minsheng. 2009. Effect of pesticide stress on nutritional components of host plant,Brassica campestris,and feeding preference of striped flea beetle(SFB), Phyllotreta striolata. Journal of Agro-Environment Science, 6:1253-1257. (in Chinese) |
傅建炜, 魏辉, 李建宇, 占志雄, 尤民生. 2009. 杀虫剂胁迫对小白菜B. campestris体内营养物质和黄曲条跳甲P. striolata取食的影响. 农业环境科学学报, 6:1253-1257. | |
[40] | Gielen B, Vandermeiren K, Horemans N, D'haese D, Serneels R, Valcke R. 2006. Chlorophyll a fluorescence imaging of ozone-stressed Brassica napus L. plants differing in glucosinolate concentrations. Plant Biology(Stuttg), 8:698-705. |
[41] |
Gigolashvili T, Berger B, Mock H P, Muller C, Weisshaar B, Flugge U I. 2007. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant Journal, 50:886-901.
pmid: 17461791 |
[42] |
Gill R A, Ali B, Cui P, Shen E, Farooq M A, Islam F, Ali S, Mao B, Zhou W. 2016. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics, 17:885.
doi: 10.1186/s12864-016-3200-6 URL |
[43] |
Gudiño M E, Blanco Touriñán N, Arbona V, Gómez Cadenas A, Blázquez M A, Navarro García F. 2018. β-Lactam antibiotics modify root architecture and indole glucosinolate metabolism in Arabidopsis thaliana. Plant and Cell Physiology, 59:2086-2098.
doi: 10.1093/pcp/pcy128 pmid: 29986082 |
[44] |
Guo L, Yang R, Zhou Y, Gu Z. 2015. Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. European Food Research and Technology, 242:107-116.
doi: 10.1007/s00217-015-2522-y URL |
[45] |
Guo R, Shen W, Qian H, Zhang M, Liu L, Wang Q. 2013b. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. Journal of Experimental Botany, 64:5707-5719.
doi: 10.1093/jxb/ert348 URL |
[46] |
Guo R, Wang X, Han X, Li W, Liu T, Chen B, Chen X, Wang Pruski G. 2019. Comparative transcriptome analyses revealed different heat stress responses in high- and low-GS Brassica alboglabra sprouts. BMC Genomics, 20:269.
doi: 10.1186/s12864-019-5652-y URL |
[47] |
Guo R F, Yuan G F, Wang Q M. 2013a. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. Journal of Zhejiang University Science B, 14:124-131.
doi: 10.1631/jzus.B1200096 URL |
[48] |
Gutbrodt B, Dorn S, Unsicker S B, Mody K. 2012. Species-specific responses of herbivores to within-plant and environmentally mediated between-plant wariability in plant chemistry. Chemoecology, 22:101-111.
doi: 10.1007/s00049-012-0102-1 URL |
[49] |
Gutbrodt B, Mody K, Dorn S. 2011. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos, 120:1732-1740.
doi: 10.1111/j.1600-0706.2011.19558.x URL |
[50] |
Gyawali S, Parkin I A P, Steppuhn H, Buchwaldt M, Adhikari B, Wood R, Wall K, Buchwaldt L, Singh M, Bekkaoui D, Hegedus D D, Beres B. 2019. Seedling,early vegetative,and adult plant growth of oilseed rapes(Brassica napus L.)under saline stress. Canadian Journal of Plant Science, 99:927-941.
doi: 10.1139/cjps-2019-0023 URL |
[51] | Han Y J, Gharibeshghi A, Mewis I, Förster N, Beck W, Ulrichs C. 2020a. Effect of different durations of moderate ozone exposure on secondary metabolites of Brassica campestris L. ssp. chinensis. The Journal of Horticultural Science and Biotechnology, 96:110-120. |
[52] | Han Y J, Gharibeshghi A, Mewis I, Förster N, Beck W, Ulrichs C. 2020b. Plant responses to ozone:effects of different ozone exposure durations on plant growth and biochemical quality of Brassica campestris L. ssp. chinensis. Scientia Horticulturae, 262:108921. |
[53] |
Hansen C H, Wittstock U, Olsen C E, Hick A J, Pickett J A, Halkier B A. 2001. Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. Journal of Biological Chemistry, 276:11078-11085.
doi: 10.1074/jbc.M010123200 pmid: 11133994 |
[54] |
Hara M, Harazaki A, Tabata K. 2012. Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regulation, 69:71-77.
doi: 10.1007/s10725-012-9748-5 URL |
[55] |
Harun S, Abdullah Zawawi M R, Goh H H, Mohamed Hussein Z A. 2020. A comprehensive gene inventory for glucosinolate biosynthetic pathway in Arabidopsis thaliana. Journal of Agricultural and Food Chemistry, 68:7281-7297.
doi: 10.1021/acs.jafc.0c01916 URL |
[56] |
He H, Liang G, Li Y, Wang F, Yu D. 2014. Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana. Plant Physiology, 164:853-865.
doi: 10.1104/pp.113.228635 URL |
[57] |
Heinze M, Hanschen F S, Wiesner Reinhold M, Baldermann S, Grafe J, Schreiner M, Neugart S. 2018. Effects of developmental stages and reduced UVB and low UV conditions on plant secondary metabolite profiles in pak choi(Brassica rapa ssp. chinensis). Journal of Agricultural and Food Chemistry, 66:1678-1692.
doi: 10.1021/acs.jafc.7b03996 pmid: 29397716 |
[58] |
Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M L M, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou J P, Vavasseur A, Leonhardt N. 2006. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie, 88:1751-1765.
pmid: 16797112 |
[59] |
Hesse H, Nikiforova V, Gakiere B, Hoefgen R. 2004. Molecular analysis and control of cysteine biosynthesis:integration of nitrogen and sulphur metabolism. Journal of Experimental Botany, 55:1283-1292.
doi: 10.1093/jxb/erh136 URL |
[60] |
Himanen S J, Nissinen A, Auriola S, Poppy G M, Stewart C N Jr.., Holopainen J K, Nerg A M. 2008. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape(Brassica napus)leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta, 227:427-437.
doi: 10.1007/s00425-007-0629-5 pmid: 17922289 |
[61] | Hirai M Y, Yano M, Goodenowe D B, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101:10205-10210. |
[62] |
Hu K, Zhu Z, Zang Y, Hussain S A. 2011. Accumulation of glucosinolates and nutrients in pakchoi(Brassica campestris L. ssp. chinensis var. communis)two cultivar plants exposed to sulfur deficiency. Horticulture,Environment,and Biotechnology, 52:121-127.
doi: 10.1007/s13580-011-0097-5 URL |
[63] |
Huseby S, Koprivova A, Lee B R, Saha S, Mithen R, Wold A B, Bengtsson G B, Kopriva S. 2013. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. Journal of Experimental Botany, 64:1039-1048.
doi: 10.1093/jxb/ers378 pmid: 23314821 |
[64] |
Jacobo Velazquez D A, Gonzalez Aguero M, Cisneros Zevallos L. 2015. Cross-talk between signaling pathways:the link between plant secondary metabolite production and wounding stress response. Scientific Reports, 5:8608.
doi: 10.1038/srep08608 pmid: 25712739 |
[65] |
Jahangir M, Abdel Farid I B, Choi Y H, Verpoorte R. 2008. Metal ion-inducing metabolite accumulation in Brassica rapa. Journal of Plant Physiology, 165:1429-1437.
doi: 10.1016/j.jplph.2008.04.011 URL |
[66] |
Jakovljevic T, Cvjetko M, Sedak M, Dokic M, Bilandzic N, Vorkapic Furac J, Redovnikovic I R. 2013. Balance of glucosinolates content under Cd stress in two Brassica species. Plant Physiology and Biochemistry, 63:99-106.
doi: 10.1016/j.plaphy.2012.10.019 URL |
[67] |
Jasper J, Wagstaff C, Bell L. 2020. Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad. Postharvest Biology and Technology, 163:111157.
doi: 10.1016/j.postharvbio.2020.111157 pmid: 32362723 |
[68] |
Jensen C R, Mogensen V O, Mortensen G, Fieldsend J K, Milford G F J, Andersen M N, Thage J H. 1996. Seed glucosinolate,oil and protein contents of field-grown rape(Brassica napus L.)affected by soil drying and evaporative demand. Field Crops Research, 47:93-105.
doi: 10.1016/0378-4290(96)00026-3 URL |
[69] |
Jeschke V, Weber K, Moore S S, Burow M. 2019. Coordination of glucosinolate biosynthesis and turnover under different nutrient conditions. Frontiers in Plant Science, 10:1560.
doi: 10.3389/fpls.2019.01560 pmid: 31867028 |
[70] |
Johansen T J, Hagen S F, Bengtsson G B, Molmann J A. 2016. Growth temperature affects sensory quality and contents of glucosinolates,vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Food Chemistry, 196:228-235.
doi: 10.1016/j.foodchem.2015.09.049 pmid: 26593487 |
[71] |
Justen V L, Fritz V A. 2013. Temperature-induced glucosinolate accumulation is associated with expression of BrMYB transcription factors. HortScience, 48:47-52.
doi: 10.21273/HORTSCI.48.1.47 URL |
[72] |
Kask K, Kannaste A, Talts E, Copolovici L, Niinemets U. 2016. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra. Plant Cell and Environment, 39:2027-2042.
doi: 10.1111/pce.v39.9 URL |
[73] |
Khaling E, Papazian S, Poelman E H, Holopainen J K, Albrectsen B R, Blande J D. 2015. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra. Environmental Pollution, 199:119-129.
doi: 10.1016/j.envpol.2015.01.019 URL |
[74] |
Khan M A M, Ulrichs C, Mewis I. 2010. Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomologia Experimentalis et Applicata, 137:229-236.
doi: 10.1111/eea.2010.137.issue-3 URL |
[75] | Kim J K, Bongand S J, Park S U. 2018. Effect of heavy metal treatment on glucosinolate biosynthesis in hairy root culture of watercress (Nasturtium officinale). Bioscience Research, 15:303-309. |
[76] |
Klaiber J, Dorn S, Najar Rodriguez A J. 2013. Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. Journal of Chemical Ecology, 39:653-665.
doi: 10.1007/s10886-013-0282-3 pmid: 23609163 |
[77] |
Kolbert Z, Pető A, Lehotai N, Feigl G, Erdei L. 2012. Long-term copper (Cu 2+) exposure impacts on auxin,nitric oxide(NO)metabolism and morphology of Arabidopsis thaliana L. Plant Growth Regulation, 68:151-159.
doi: 10.1007/s10725-012-9701-7 URL |
[78] |
Kopsell D A, Sams C E. 2013. Increases in shoot tissue pigments,glucosinolates,and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society for Horticultural Science, 138:31-37.
doi: 10.21273/JASHS.138.1.31 URL |
[79] |
Kopsell D A, Sams C E, Barickman T C, Morrow R C. 2014. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-lmitting diode lighting. Journal of the American Society for Horticultural Science, 139:469-477.
doi: 10.21273/JASHS.139.4.469 URL |
[80] |
Kusznierewicz B, Baczek Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Namiesnik J, Konieczka P. 2012. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage(Brassica oleracea var. capitata F. alba). Environmental Toxicology and Chemistry, 31:2482-2489.
doi: 10.1002/etc.1977 pmid: 22886927 |
[81] |
La G X, Fang P, Teng Y B, Li Y J, Lin X Y. 2009. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale(Brassica alboglabra L.). Journal of Zhejiang University Science B, 10:454-464.
doi: 10.1631/jzus.B0820354 URL |
[82] | Li M, Xie F, Li J, Sun B, Luo Y, Zhang Y, Chen Q, Wang Y, Zhang F, Zhang Y, Lin Y, Wang X, Tang H. 2020a. Tumorous stem development of Brassica juncea:a complex regulatory network of stem formation and identification of key genes in glucosinolate biosynthesis. Plants (Basel), 9:1006. |
[83] |
Li S, Schonhof I, Krumbein A, Li L, Stützel H, Schreiner M. 2007. Glucosinolate concentration in turnip(Brassica rapa ssp. rapifera L.)roots as affected by nitrogen and sulfur supply. Journal of Agricultural and Food Chemistry, 55:8452-8457.
doi: 10.1021/jf070816k URL |
[84] |
Li W, Gupta A, Tian H, Nguyen K H, Tran C D, Watanabe Y, Tian C, Li K, Yang Y, Guo J, Luo Y, Miao Y, Phan Tran L S. 2020b. Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress. Plant Signaling and Behavior, 15:1789321.
doi: 10.1080/15592324.2020.1789321 URL |
[85] | Li W, Pang S, Lu Z Jin B. 2020c. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants(Basel), 9:1515. |
[86] |
Lin C W, Fu S F, Liu Y J, Chen C C, Chang C H, Yang Y W, Huang H J. 2019. Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biology, 19:3.
doi: 10.1186/s12870-018-1613-x URL |
[87] | Liu Zhe, Xue Huan, Zeng Chaozhen, Yan Mingli, Liu Zhixiang. 2020. Advances in elemental defense hypothesis for hyperaccumulator plants. Plant Physiology Journal, 56:1337-1345. ( in Chinese) |
刘哲, 薛欢, 曾超珍, 严明理, 刘志祥. 2020. 植物超富集重金属的元素防御假说研究进展. 植物生理学报, 56:1337-1345. | |
[88] | Linic I, Samec D, Gruz J, Vujcic Bok V, Strnad M, Salopek Sondi B. 2019. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among brassicaceae. Plants(Basel), 8:155. |
[89] |
López Berenguer C, Martínez Ballesta M C, García Viguera C, Carvajal M. 2008. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Science, 174:321-328.
doi: 10.1016/j.plantsci.2007.11.012 URL |
[90] |
Ludwig Müller J, Krishna P, Forreiter C. 2000. A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant physiology, 123:949-958.
pmid: 10889243 |
[91] |
Major I T, Yoshida Y, Campos M L, Kapali G, Xin X F, Sugimoto K, De Oliveira Ferreira D, He S Y, Howe G A. 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN(JAZ)-MYC transcriptional module. New Phytologist, 215:1533-1547.
doi: 10.1111/nph.14638 pmid: 28649719 |
[92] |
Malka S K, Cheng Y. 2017. Possible interactions between the biosynthetic pathways of indole glucosinolate and auxin. Frontiers in Plant Science, 8:2131.
doi: 10.3389/fpls.2017.02131 pmid: 29312389 |
[93] | Mao Pengpeng, Zheng Yinjian, Yang Qichang, Xu Yaliang, Wang Fang, Liao Qiuhong, Liu Xiaoying. 2020. Molecular mechanisms of light quality on the regulation of glucosinolates in cruciferae vegetables. Acta Horticulturae Sinica, 47:1633-1647. (in Chinese) |
毛鹏鹏, 郑胤建, 杨其长, 许亚良, 王芳, 廖秋红, 刘晓英. 2020. 光质对十字花科蔬菜硫代葡萄糖苷调控分子机制研究进展. 园艺学报, 47:1633-1647. | |
[94] | Martinez Ballesta M, Moreno Fernandez D A, Castejon D, Ochando C, Morandini P A, Carvajal M. 2015. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana. Frontiers in Plant Science, 6:524. |
[95] |
Maruyama Nakashita A, Kim S J, Zhang L, Miura D, Morikawa Ichinose T. 2020. Involvement of BGLU30 in glucosinolate catabolism in the Arabidopsis leaf under dark conditions. Plant and Cell Physiology, 61:1095-1106.
doi: 10.1093/pcp/pcaa035 pmid: 32255184 |
[96] |
Metz J, Ribbers K, Tielbörger K, Müller C. 2014. Long- and medium-term effects of aridity on the chemical defence of a widespread Brassicaceae in the Mediterranean. Environmental and Experimental Botany, 105:39-45.
doi: 10.1016/j.envexpbot.2014.04.007 URL |
[97] |
Mewis I, Khan M A, Glawischnig E, Schreiner M, Ulrichs C. 2012a. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana(L.). PLoS ONE, 7:e48661.
doi: 10.1371/journal.pone.0048661 URL |
[98] |
Mewis I, Schreiner M, Nguyen C N, Krumbein A, Ulrichs C, Lohse M, Zrenner R. 2012b. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts:induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology, 53:1546-1560.
doi: 10.1093/pcp/pcs096 URL |
[99] |
Mikkelsen M D, Petersen B L, Glawischnig E, Jensen A B, Andreasson E, Halkier B A. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by befense signaling pathways. Plant Physiology, 131:298-308.
pmid: 12529537 |
[100] |
Molmann J A, Steindal A L, Bengtsson G B, Seljasen R, Lea P, Skaret J, Johansen T J. 2015. Effects of temperature and photoperiod on sensory quality and contents of glucosinolates,flavonols and vitamin C in broccoli florets. Food Chemistry, 172:47-55.
doi: 10.1016/j.foodchem.2014.09.015 URL |
[101] |
Moreira Rodriguez M, Nair V, Benavides J, Cisneros Zevallos L, Jacobo Velazquez D A. 2017a. UVA,UVB light doses and harvesting time differentially tailor glucosinolate and phenolic profiles in broccoli sprouts. Molecules, 22:1065.
doi: 10.3390/molecules22071065 URL |
[102] |
Moreira Rodriguez M, Nair V, Benavides J, Cisneros Zevallos L, Jacobo Velazquez D A. 2017b. UVA,UVB light,and methyl jasmonate,alone or combined,redirect the biosynthesis of glucosinolates,phenolics,carotenoids,and chlorophylls in broccoli sprouts. International Journal of Molecular Sciences, 18:2330.
doi: 10.3390/ijms18112330 URL |
[103] |
Mukherjee S, Chakraborty A, Mondal S, Saha S, Haque A, Paul S. 2019. Assessment of common plant parameters as biomarkers of air pollution. Environmental Monitoring and Assessment, 191:400.
doi: 10.1007/s10661-019-7540-y pmid: 31134346 |
[104] |
Nadarajah K K. 2020. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences, 21:5208.
doi: 10.3390/ijms21155208 URL |
[105] |
Neugart S, Hideg E, Czegeny G, Schreiner M, Strid A. 2020. Ultraviolet-B radiation exposure lowers the antioxidant capacity in the Arabidopsis thaliana Pdx1.3-1 mutant and leads to glucosinolate biosynthesis alteration in both wild type and mutant. Photochemical and Photobiological Sciences, 19:217-228.
doi: 10.1039/C9PP00342H URL |
[106] |
Noman A, Aqeel M. 2017. MiRNA-based heavy metal homeostasis and plant growth. Environmental Science and Pollution Research, 24:10068-10082.
doi: 10.1007/s11356-017-8593-5 URL |
[107] |
Pandey C, Augustine R, Panthri M, Zia I, Bisht N C, Gupta M. 2017. Arsenic affects the production of glucosinolate,thiol and phytochemical compounds:a comparison of two Brassica cultivars. Plant Physiology and Biochemistry, 111:144-154.
doi: 10.1016/j.plaphy.2016.11.026 URL |
[108] |
Pant B D, Pant P, Erban A, Huhman D, Kopka J, Scheible W R. 2015. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis,and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant,Cell and Environment, 38:172-187.
doi: 10.1111/pce.2015.38.issue-1 URL |
[109] |
Park C H, Kim N S, Park J S, Lee S Y, Lee J W, Park S U. 2019. Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola(Brassica napus L.). Foods, 8:76.
doi: 10.3390/foods8020076 URL |
[110] | Park J E, Kim J, Purevdorj E, Son Y J, Nho C W, Yoo G. 2021. Effects of long light exposure and drought stress on plant growth and glucosinolate production in pak choi(Brassica rapa subsp. chinensis). Food Chemistry, 340:128167. |
[111] |
Paudel J R, Amirizian A, Krosse S, Giddings J, Ismail S A, Xia J, Gloer J B, Van Dam N M, Bede J C. 2016. Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants. BMC Plant Biology, 16:68.
doi: 10.1186/s12870-016-0752-1 URL |
[112] |
Pereira F M V, Rosa E, Fahey J W, Stephenson K K, Carvalho R, Aires A. 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli(Brassica oleracea var. italica)sprouts and their effect on the induction of mammalian phase 2 enzymes. Journal of Agricultural and Food Chemistry, 50:6239-6244.
doi: 10.1021/jf020309x URL |
[113] |
Pérez Balibrea S, Moreno D A, García Viguera C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture, 88:904-910.
doi: 10.1002/(ISSN)1097-0010 URL |
[114] |
Petretto G L, Urgeghe P P, Massa D, Melito S. 2019. Effect of salinity(NaCl)on plant growth,nutrient content,and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141:30-39.
doi: S0981-9428(19)30200-1 pmid: 31125809 |
[115] |
Pilarska M, Wiciarz M, Jajic I, Kozieradzka Kiszkurno M, Dobrev P, Vankova R, Niewiadomska E. 2016. A different pattern of production and scavenging of reactive oxygen species in halophytic Eutrema salsugineum(Thellungiella salsuginea)plants in comparison to Arabidopsis thaliana and its relation to salt stress signaling. Frontiers in Plant Science, 7:1179.
doi: 10.3389/fpls.2016.01179 pmid: 27540390 |
[116] |
Pineda A, Pangesti N, Soler R, Dam N M V, Loon J J A V, Dicke M. 2016. Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with,but not explained by an increase in herbivore-induced indole glucosinolates. Environmental and Experimental Botany, 123:88-97.
doi: 10.1016/j.envexpbot.2015.11.007 URL |
[117] |
Podda A, Pollastri S, Bartolini P, Pisuttu C, Pellegrini E, Nali C, Cencetti G, Michelozzi M, Frassinetti S, Giorgetti L, Fineschi S, Del Carratore R, Maserti B. 2019. Drought stress modulates secondary metabolites in Brassica oleracea L. convar. acephala (DC)Alef,var. sabellica L. Journal of the Science of Food and Agriculture, 99:5533-5540.
doi: 10.1002/jsfa.v99.12 URL |
[118] | Prakash D, Gupta C. 2012. Glucosinolates:the phytochemicals of nutraceutical importance. Journal of Complementary and Integrative Medicine, 9. |
[119] | Qasim M, Ashraf M, Ashraf M Y, Rehman S U, Rha E S. 2003. Salt-induced changes in two canola cultivars differing in salt tolerance. Biologia Plantarum, 46:629-632. |
[120] |
Qian H, Liu T, Deng M, Miao H, Cai C, Shen W, Wang Q. 2016. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese lale sprouts. Food Chemistry, 196:1232-1238.
doi: 10.1016/j.foodchem.2015.10.055 URL |
[121] |
Reddy G V P, Tossavainen P, Nerg A M, Holopainen J K. 2004. Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist,Plutella xylostella,but not the generalist, Spodoptera littoralis. Journal of Agricultural and Food Chemistry, 52:4185-4191.
pmid: 15212467 |
[122] |
Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford M J, De Kok L J. 2017. Chloride and sulfate salinity differently affect biomass,mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil, 411:319-332.
doi: 10.1007/s11104-016-3026-7 URL |
[123] |
Rios J J, Agudelo A, Moreno D A, Carvajal M. 2020. Growing broccoli under salinity:the influence of cultivar and season on glucosinolates content. Scientia Agricola, 77:e20190028.
doi: 10.1590/1678-992x-2019-0028 URL |
[124] |
Rodriguez Hernandez Mdel C, Moreno D A, Carvajal M, Martinez Ballesta Mdel C. 2014. Genotype influences sulfur metabolism in broccoli(Brassica oleracea L.)under elevated CO2 and NaCl stress. Plant and Cell Physiology, 55:2047-2059.
doi: 10.1093/pcp/pcu130 URL |
[125] |
Safavi Fard N, Heidari Sharif Abad H, Shirani Rad A H, Majidi Heravan E, Daneshian J. 2018. Effect of drought stress on qualitative characteristics of canola cultivars in winter cultivation. Industrial Crops and Products, 114:87-92.
doi: 10.1016/j.indcrop.2018.01.082 URL |
[126] |
Salehin M, Li B, Tang M, Katz E, Song L, Ecker J R, Kliebenstein D J, Estelle M. 2019. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications, 10:4021.
doi: 10.1038/s41467-019-12002-1 URL |
[127] |
Sanchez Pujante P J, Borja Martinez M, Pedreno M A, Almagro L. 2017. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. Planta, 246:19-32.
doi: 10.1007/s00425-017-2705-9 URL |
[128] |
Schonhof I, Blankenburg D, Müller S, Krumbein A. 2007a. Sulfur and nitrogen supply influence growth,product appearance,and glucosinolate concentration of broccoli. Journal of Plant Nutrition and Soil Science, 170:65-72.
doi: 10.1002/jpln.v170:1 URL |
[129] |
Schonhof I, Klaring H P, Krumbein A, Schreiner M. 2007b. Interaction between atmospheric CO2 and glucosinolates in broccoli. Journal of Chemical Ecology, 33:105-114.
doi: 10.1007/s10886-006-9202-0 URL |
[130] |
Sewelam N, Jaspert N, van Der Kelen K, Tognetti V B, Schmitz J, Frerigmann H, Stahl E, Zeier J, van Breusegem F, Maurino V G. 2014. Spatial H2O2 signaling specificity:H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Molecular Plant, 7:1191-1210.
doi: 10.1093/mp/ssu070 pmid: 24908268 |
[131] |
Shawon R A, Kang B S, Lee S G, Kim S K, Ju Lee H, Katrich E, Gorinstein S, Ku Y G. 2020. Influence of drought stress on bioactive compounds,antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chemistry, 308:125657.
doi: 10.1016/j.foodchem.2019.125657 URL |
[132] |
Signore A, Bell L, Santamaria P, Wagstaff C, van Labeke M C. 2020. Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity,and contributes to increased total glucosinolates content. Frontiers in Plant Science, 11:604.
doi: 10.3389/fpls.2020.00604 pmid: 32477393 |
[133] |
Steindal A L, Johansen T J, Bengtsson G B, Hagen S F, Molmann J A. 2016. Impact of pre-harvest light spectral properties on health-and sensory-related compounds in broccoli florets. Journal of the Science of Food and Agriculture, 96:1974-1981.
doi: 10.1002/jsfa.2016.96.issue-6 URL |
[134] |
Steindal A L, Molmann J, Bengtsson G B, Johansen T J. 2013. Influence of day length and temperature on the content of health-related compounds in broccoli(Brassica oleracea L. var. italica). Journal of Agricultural and Food Chemistry, 61:10779-10786.
doi: 10.1021/jf403466r URL |
[135] |
Steindal A L, Rodven R, Hansen E, Molmann J. 2015. Effects of photoperiod,growth temperature and cold acclimatisation on glucosinolates,sugars and fatty acids in kale. Food Chemistry, 174:44-51.
doi: 10.1016/j.foodchem.2014.10.129 URL |
[136] |
Sun X, Zhang J, Zhang H, Zhang Q, Ni Y, Chen J, Guan Y. 2008. Glucosinolate profiles of Arabidopsis thaliana in response to cadmium exposure. Water,Air,and Soil Pollution, 200:109-117.
doi: 10.1007/s11270-008-9897-3 URL |
[137] |
Tariq M, Rossiter J T, Wright D J, Staley J T. 2013. Drought alters interactions between root and foliar herbivores. Oecologia, 172:1095-1104.
doi: 10.1007/s00442-012-2572-9 URL |
[138] |
Tariq M, Wright D J, Rossiter J T, Staley J T. 2012. Aphids in a changing world:testing the plant stress,plant vigour and pulsed stress hypotheses. Agricultural and Forest Entomology, 14:177-185.
doi: 10.1111/afe.2012.14.issue-2 URL |
[139] |
Thiruvengadam M, Gurunathan S, Chung I M. 2015. Physiological,metabolic,and transcriptional effects of biologically-synthesized silver nanoparticles in turnip(Brassica rapa ssp. rapa L.). Protoplasma, 252:1031-1046.
doi: 10.1007/s00709-014-0738-5 pmid: 25471476 |
[140] |
Thompson L A, Darwish W S. 2019. Environmental chemical contaminants in food:review of a global problem. Journal of Toxicology, 2019:2345283.
doi: 10.1155/2019/2345283 pmid: 30693025 |
[141] | Tian Yan, Deng Fangming, Qing Zhixing, Zhao Lingyan, Peng Pei. 2020. Advances in understanding the structure and function of glucosinolates in Brassicaceae. Food Science, 41:292-303. (in Chinese) |
田艳, 邓放明, 卿志星, 赵玲艳, 彭佩. 2020. 十字花科植物中硫代葡萄糖苷类物质的结构与功能研究进展. 食品科学, 41:292-303. | |
[142] | Tian Yunxia, Dai Shaojun, Chen Sixue, Yan Xiufeng. 2009. Effect of mechanical wounding on glucosinolate content and composition in rosette leaves of Arabidopsis theliana. Acta Ecologica Sinica, 29:1647-1654. (in Chinese) |
田云霞, 戴绍军, 陈思学, 阎秀峰. 2009. 机械损伤对拟南芥莲座叶芥子油苷含量和组成的影响. 生态学报, 29:1647-1654. | |
[143] |
Tolrà R, Pongrac P, Poschenrieder C, Vogel Mikuš K, Regvar M, Barceló J. 2006. Distinctive effects of cadmium on glucosinolate profiles in Cd hyperaccumulator Thlaspi praecox and non-hyperaccumulator Thlaspi arvense. Plant and Soil, 288:333-341.
doi: 10.1007/s11104-006-9124-1 URL |
[144] |
Tolrà R P, Poschenrieder C, Alonso R, Barceló D, Barceló J. 2001. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytologist, 151:621-626.
doi: 10.1046/j.0028-646x.2001.00221.x URL |
[145] |
Tomiolo S, Metz J, Blackwood C B, Djendouci K, Henneberg L, Müller C, Tielbörger K. 2017. Short-term drought and long-term climate legacy affect production of chemical defenses among plant ecotypes. Environmental and Experimental Botany, 141:124-131.
doi: 10.1016/j.envexpbot.2017.07.009 URL |
[146] |
Torres Contreras A M, Nair V, Cisneros Zevallos L, Jacobo Velazquez D A. 2017. Stability of bioactive compounds in broccoli as affected by cutting styles and storage time. Molecules, 22:636.
doi: 10.3390/molecules22040636 URL |
[147] |
Travers Martin N, Muller C. 2007. Specificity of induction responses in Sinapis alba L. and their effects on a specialist herbivore. Journal of Chemical Ecology, 33:1582-1597.
pmid: 17587140 |
[148] |
Trejo Tellez L I, Estrada Ortiz E, Gomez Merino F C, Becker C, Krumbein A, Schwarz D. 2019. Flavonoid,nitrate and glucosinolate concentrations in Brassica species are differentially affected by photosynthetically active radiation,phosphate and phosphite. Frontiers in Plant Science, 10:371.
doi: 10.3389/fpls.2019.00371 pmid: 30972096 |
[149] |
Troufflard S, Mullen W, Larson T R, Graham I A, Crozier A, Amtmann A, Armengaud P. 2010. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biology, 10:172.
doi: 10.1186/1471-2229-10-172 pmid: 20701801 |
[150] |
Vale A P, Santos J, Brito N V, Fernandes D, Rosa E, Oliveira M B. 2015. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts. Phytochemistry, 115:252-260.
doi: 10.1016/j.phytochem.2015.02.004 pmid: 25698361 |
[151] |
Villarreal Garcia D, Nair V, Cisneros Zevallos L, Jacobo Velazquez D A. 2016. Plants as biofactories:postharvest stress-induced accumulation of phenolic compounds and glucosinolates in broccoli subjected to wounding stress and exogenous phytohormones. Frontiers in Plant Science, 7:45.
doi: 10.3389/fpls.2016.00045 pmid: 26904036 |
[152] | Wang Ruonan, Nie Lanchun, Zhang Shuangshuang, Cui Qiang, Jia Mingfei. 2019. Research progress on plant resistance to heavy metal stress. Acta Horticulturae Sinica, 46 (1):157-170. (in Chinese) |
王若男, 乜兰春, 张双双, 崔强, 贾明飞. 2019. 植物抗重金属胁迫研究进展. 园艺学报, 46 (1):157-170. | |
[153] | Wang Y, Xu W, Yan X, Wang Y. 2011. Glucosinolate content and related gene expression in response to enhanced UV-B radiation in Arabidopsis. African Journal of Biotechnology, 10:6481-6491. |
[154] |
Wasternack C, Strnad M. 2019. Jasmonates are signals in the biosynthesis of secondary metabolites - pathways,transcription factors and applied aspects - a brief review. New Biotechnology, 48:1-11.
doi: S1871-6784(17)30442-9 pmid: 29017819 |
[155] |
Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y, Liu L. 2015. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish(Raphanus sativus L.). Plant Science, 236:313-323.
doi: 10.1016/j.plantsci.2015.04.015 URL |
[156] |
Yan X, Chen S. 2007. Regulation of plant glucosinolate metabolism. Planta, 226:1343-1352.
doi: 10.1007/s00425-007-0627-7 URL |
[157] |
Yang J, Zhu Z, Gerendás J. 2009. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi(Brassica campestris L. ssp. chinensis var.communis). Plant and Soil, 323:323-333.
doi: 10.1007/s11104-009-9940-1 URL |
[158] |
Yang Shuhua, Gong Zhizhong, Guo Yan, Gong Jiming, Zheng Shaojian, Lin Rongcheng, Yang Hongquan, Mao Long, Qin Feng, Luo Lijun, Zhang Tianzhen, Chu Chengcai, Lai Jinsheng, Chao Daiyin, Guan Xueying, Peng Jiashi, Huang Chaofeng, Jiang Caifu, Wang Yu, Yang Yongqing, Shi Yiting, Ding Yanglin, Ma Liang, Chong Kang. 2019. Studies on plant responses to environmental change in China:the past and the future. Scientia Sinica Vitae, 49:1457-1478. (in Chinese)
doi: 10.1360/SSV-2019-0201 URL |
杨淑华, 巩志忠, 郭岩, 龚继明, 郑绍建, 林荣呈, 杨洪全, 毛龙, 秦峰, 罗利军, 张天真, 储成才, 赖锦盛, 晁代印, 关雪莹, 彭佳师, 黄朝峰, 蒋才富, 王瑜, 杨永青, 施怡婷, 丁杨林, 马亮, 种康. 2019. 中国植物应答环境变化研究的过去与未来. 中国科学:生命科学, 49:1457-1478. | |
[159] |
Yuan G, Wang X, Guo R, Wang Q. 2010. Effect of salt stress on phenolic compounds,glucosinolates,myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121:1014-1019.
doi: 10.1016/j.foodchem.2010.01.040 URL |
[160] |
Zang Y X, Kim H U, Kim J A, Lim M H, Jin M, Lee S C, Kwon S J, Lee S I, Hong J K, Park T H, Mun J H, Seol Y J, Hong S B, Park B S. 2009. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS Journal, 276:3559-3574.
doi: 10.1111/ejb.2009.276.issue-13 URL |
[161] | Zhang C L, Jiang H S, Gu S P, Zhou X H, Lu Z W, Kang X H, Yin L, Huang J. 2019. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environmantal Pollution, 252:1539-1549. |
[162] |
Zhang H, Schonhof I, Krumbein A, Gutezeit B, Li L, Stützel H, Schreiner M. 2008. Water supply and growing season influence glucosinolate concentration and composition in turnip root(Brassica rapa ssp. rapifera L.). Journal of Plant Nutrition and Soil Science, 171:255-265.
doi: 10.1002/jpln.v171:2 URL |
[163] |
Zhang L, Kawaguchi R, Morikawa Ichinose T, Allahham A, Kim S J, Maruyama Nakashita A. 2020. Sulfur deficiency-induced glucosinolate catabolism attributed to two β-glucosidases,BGLU28 and BGLU30,is required for plant growth maintenance under sulfur deficiency. Plant and Cell Physiology, 61:803-813.
doi: 10.1093/pcp/pcaa006 pmid: 32049325 |
[164] |
Zhang L, Xu B, Wu T, Wen M X, Fan L X, Feng Z Z, Paoletti E. 2017. Transcriptomic analysis of pak choi under acute ozone exposure revealed regulatory mechanism against ozone stress. BMC Plant Biology, 17:236.
doi: 10.1186/s12870-017-1202-4 pmid: 29216819 |
[165] |
Zheng Y J, Zhang Y T, Liu H C, Li Y M, Liu Y L, Hao Y W, Lei B F. 2018. Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity. Journal of Integrative Agriculture, 17:2245-2256.
doi: 10.1016/S2095-3119(18)62064-7 URL |
[166] |
Zhu B, Yang J, He Y, Zang Y, Zhu Z. 2015. Glucosinolate accumulation and related gene expression in pak choi(Brassica rapa L. ssp. chinensis var. communis[N. Tsen & S.H. Lee] Hanelt)in response to insecticide application. Journal of Agricultural and Food Chemistry, 63:9683-9689.
doi: 10.1021/acs.jafc.5b03894 URL |
[1] | XU Xiaoping, CAO Qingying, CAI Roudi, GUAN Qingxu, ZHANG Zihao, CHEN Yukun, XU HAN, LIN Yuling, LAI Zhongxiong. Gene Cloning and Expression Analysis of miR408 and Its Target DlLAC12 in Globular Embryo Development and Abiotic Stress in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(9): 1866-1882. |
[2] | JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956. |
[3] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[4] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[5] | WANG Yun, ZHANG Zhenwu, SUN Xun, ZHANG Shaoling. A State-of-the-art Review on the Interaction Between Plant Autophagy and Pathogens [J]. Acta Horticulturae Sinica, 2022, 49(10): 2205-2222. |
[6] | XIE Siyi, ZHOU Chengzhe, ZHU Chen, ZHAN Dongmei, CHEN Lan, WU Zuchun, LAI Zhongxiong, GUO Yuqiong. Genome-wide Identification and Expression Analysis of CsTIFY Transcription Factor Family Under Abiotic Stress and Hormone Treatments in Camellia sinensis [J]. Acta Horticulturae Sinica, 2022, 49(1): 100-116. |
[7] | YANG Tianchen, CHEN Xiaotong, LÜ Ke, ZHANG Di. Expression Pattern and Regulation Mechanism of ApSK3 Dehydrin (Agapanthus praecox)Response to Abiotic Stress and Hormone Signals [J]. Acta Horticulturae Sinica, 2021, 48(8): 1565-1578. |
[8] | MA Junjie, SONG Lina, LI Le, MA Xiaochun, JIN Lei, XU Weirong. VaCBL6 from Vitis amurensis Involved in Abiotic Stress Response and ABA-mediated Pathway [J]. Acta Horticulturae Sinica, 2021, 48(6): 1079-1093. |
[9] | YUE Lingqi, XING Qiaojuan, ZHANG Xiaolan, LIANG Xue, WANG Qian, QI Hongyan. Research Progress on the Effect of Phytochrome-interacting Factors in Plant Resistance to Abiotic Stress [J]. Acta Horticulturae Sinica, 2021, 48(4): 632-646. |
[10] | WANG Kuanhong, ZHU Biao, ZHU Zhujun. Review of the Role of GSH/GSSG in Plant Abiotic Stress Response [J]. Acta Horticulturae Sinica, 2021, 48(4): 647-660. |
[11] | ZHANG Qingwen, WANG Zhaohao, QI Jingjing, XIE Yu, LEI Tiangang, He Yongrui, CHEN Shanchun, YAO Lixiao. The Advances of Callose Synthase in Plant [J]. Acta Horticulturae Sinica, 2021, 48(4): 661-675. |
[12] | BAI Lu, ZHANG Zhiguo, ZHANG Shijie, HUANG Dongmei, QIN Qiaoping. Isolation of Three Types of Invertase Genes from Hemerocallis fulva and Their Responses to Low Temperature and Osmotic Stress [J]. Acta Horticulturae Sinica, 2021, 48(2): 300-312. |
[13] | ZHANG Tingting, LI Yuxin, ZHANG Deyao, KANG Yuqian, WANG Jian, SONG Xiqiang, ZHOU Yang. Genome-Wide Identification and Expression Analyses of PP2C Gene Family in Dendrobium catenatum [J]. Acta Horticulturae Sinica, 2021, 48(12): 2458-2470. |
[14] | KE Yujie, CHEN Mingkun, MA Shanhu, OU Yue, WANG Yi, ZHENG Qingdong, LIU Zhongjian, AI Ye. Research Progress of MYB Transcription Factors in Orchidaceae [J]. Acta Horticulturae Sinica, 2021, 48(11): 2311-2320. |
[15] | LI Xinxin, HOU Hongmin, XU Jihua, SUN Xiaohong, ZHANG Yugang. Genome-wide Identification and Abiotic Stress Response Analysis of MLP Family Genes in Apple [J]. Acta Horticulturae Sinica, 2021, 48(1): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd