Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (1): 157-165.doi: 10.16420/j.issn.0513-353x.2020-0758
• Research Notes • Previous Articles Next Articles
LI Maofu1,2,3, YANG Yuan1,2,4, WANG Hua1,2,3, FAN Youwei1,2,3, SUN Pei1,2,3, JIN Wanmei1,2,3,*()
Received:
2021-03-30
Revised:
2021-09-07
Online:
2022-01-25
Published:
2022-01-24
Contact:
JIN Wanmei
E-mail:jwm0809@163.com
CLC Number:
LI Maofu, YANG Yuan, WANG Hua, FAN Youwei, SUN Pei, JIN Wanmei. Identification and Analysis of Self Incompatibility S-RNase in Rose[J]. Acta Horticulturae Sinica, 2022, 49(1): 157-165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0758
目的 Purpose | 基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因克隆 Gene cloning | RcS1-RNase | F:ATGGGTTCCTATGAATATTTTAAATTTGTGG;R:CTACAGAATATCGATTGGAAAAGTATCTTGAC |
RcS2-RNase | F:ATGGCACAAAATAATATGGCTTACGTCCTC;R:TCAGTTCGGATATTCTATAAGAGTTGGAGC | |
RT-PCR | RcS1-RNase | F:GCGTTTAGTCTGCAATGACGCAGAAGCTC;R:ACTAGTATCAAACGAAATGATTGCTCGCG |
RcS2-RNase | F:TGTGGTAACAGCTGCAAAGC;R:TCAACCACGTTTTTGCCATA | |
Actin | F:GGCTGTTCTCTCTCTGTATGC;R:TTCTGGGCACCTGAATCTC |
Table 1 Primers sequence used in this study
目的 Purpose | 基因 Gene | 引物序列(5′-3′) Primer sequence |
---|---|---|
基因克隆 Gene cloning | RcS1-RNase | F:ATGGGTTCCTATGAATATTTTAAATTTGTGG;R:CTACAGAATATCGATTGGAAAAGTATCTTGAC |
RcS2-RNase | F:ATGGCACAAAATAATATGGCTTACGTCCTC;R:TCAGTTCGGATATTCTATAAGAGTTGGAGC | |
RT-PCR | RcS1-RNase | F:GCGTTTAGTCTGCAATGACGCAGAAGCTC;R:ACTAGTATCAAACGAAATGATTGCTCGCG |
RcS2-RNase | F:TGTGGTAACAGCTGCAAAGC;R:TCAACCACGTTTTTGCCATA | |
Actin | F:GGCTGTTCTCTCTCTGTATGC;R:TTCTGGGCACCTGAATCTC |
授粉 Pollination | 材料 Material | 授粉花朵数 Number of pollinated flowers | 收获果实数 Number of fruits | 坐果率/% Fruit-set ration | 种子数 Number of seeds |
---|---|---|---|---|---|
自花授粉 Self-pollination | 2015-58-20(P1) | 20 | 0 | 0 | 0 |
月月红(P2) Slater’s Crimson China | 51 | 0 | 0 | 0 | |
异花授粉 Cross-pollination | P1 × P2 | 235 | 96 | 40.86 | 362 |
Table 2 Comparison of fruit setting among four crosses
授粉 Pollination | 材料 Material | 授粉花朵数 Number of pollinated flowers | 收获果实数 Number of fruits | 坐果率/% Fruit-set ration | 种子数 Number of seeds |
---|---|---|---|---|---|
自花授粉 Self-pollination | 2015-58-20(P1) | 20 | 0 | 0 | 0 |
月月红(P2) Slater’s Crimson China | 51 | 0 | 0 | 0 | |
异花授粉 Cross-pollination | P1 × P2 | 235 | 96 | 40.86 | 362 |
蛋白 Protein | 长度/aa Length | 分子量/kD MW | 等电点 pI | 天冬氨酸 + 谷氨酸 Asp(-)+ Glu(-) | 精氨酸 + 赖氨酸 Arg(+)+ Lys(+) | 不稳定性系数 Instablility index | 脂肪族氨基酸系数 Aliphatic aa index | 亲疏水性 Hydropathicity |
---|---|---|---|---|---|---|---|---|
RcS1-RNase | 206 | 24.04 | 8.74 | 20 | 25 | 37.78 | 67.23 | -0.66 |
RcS2-RNase | 219 | 24.84 | 7.57 | 19 | 20 | 35.73 | 71.28 | -0.30 |
Table 3 Physical and chemical property of RcS1-RNase and RcS2-RNase from Rosa chinensis
蛋白 Protein | 长度/aa Length | 分子量/kD MW | 等电点 pI | 天冬氨酸 + 谷氨酸 Asp(-)+ Glu(-) | 精氨酸 + 赖氨酸 Arg(+)+ Lys(+) | 不稳定性系数 Instablility index | 脂肪族氨基酸系数 Aliphatic aa index | 亲疏水性 Hydropathicity |
---|---|---|---|---|---|---|---|---|
RcS1-RNase | 206 | 24.04 | 8.74 | 20 | 25 | 37.78 | 67.23 | -0.66 |
RcS2-RNase | 219 | 24.84 | 7.57 | 19 | 20 | 35.73 | 71.28 | -0.30 |
Fig. 3 Alignment of the conserved amino acid region between the RcS1-RNase,RcS2-RNase and PbS21-RNase(Pyrus × bretschneideri),MdS34-RNase(Malus × domestica)Pyrus × bretschneideri),MdS34-RNase(Malus × domestica)
Fig. 4 Phylogenetic tree of amino acid sequence of Rosa chinensis RcS-RNase and S-RNase of other plants Pb:Pyrus × bretschneideri;Md:Malus × domestica;Pm:Prunus mume;Pa:Prunus avium;Ah:Antirrhinum hispanicum;Na:Nicotiana alata;Ph:Petunia hybrid;At:Arabidopsis thaliana.
[1] | Bai Songling, Yi Kai, Liu Guocheng, Han Zhenhai, Xu Xuefeng, Wang Dongmei, Li Tianzhong. 2008. The self-fruitfulness of ‘Hanfu’ apple and identification of the S-genotype. Acta Horticulturae Sinica, 35 (4):475-480. (in Chinese) |
白松龄, 伊凯, 刘国成, 韩振海, 许雪峰, 王冬梅, 李天忠. 2008. ‘寒富’苹果的自花结实性及其S基因型. 园艺学报, 35 (4):475-480. | |
[2] |
Broothaerts W. 2003. New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theoretical and Applied Genetics, 106:703-714.
pmid: 12596001 |
[3] |
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 2010. ‘A life or death decision’for pollen tubes in S-RNase-based self-incompatibility. Journal of Experimental Botany, 61:2027-2037.
doi: 10.1093/jxb/erp381 URL |
[4] | Chen Qiuju, Meng Dong, Li Wei, Gu Zhaoyu, Duan Xuwei, Yuan Hui, Zhang Yi, Li Tianzhong. 2015. Cloning and analysis of S-RNase and SFB genes in Xinjiang peach(Prunus ferganensis Kost. et Riab).. Journal of China Agricultural University,(20):76-83. (in Chinese) |
陈秋菊, 孟冬, 李威, 顾钊宇, 段续伟, 袁晖, 张懿, 李天忠. 2015. 新疆桃花柱S-RNase和花粉SFB基因的克隆与分析. 中国农业大学学报,(20):76-83. | |
[5] | de Franceschi P, Pierantoni L, Dondini L, Grandi M, Sansavini S, Sanzol J. 2011. Evaluation of candidate F-box genes for the pollen S of gametophytic self-incompatibility in the Pyrinae(Rosaceae)on the basis of their phylogenomic context. Tree Genetics & Genomes, 7:663-683. |
[6] | de Nettancourt D 1977. Incompatibility in angiosperms. New York: Springer-Verlag. |
[7] |
Fujii S, Kubo K, Takayama S. 2016. Non-self- and self-recognition models in plant self-incompatibility. Nature Plants, 2:16130.
doi: 10.1038/nplants.2016.130 pmid: 27595657 |
[8] |
Fujii S, Takayama S. 2018. Multilayered dominance hierarchy in plant self-incompatibility. Plant Reproduction, 31:15-19.
doi: 10.1007/s00497-017-0319-9 pmid: 29248961 |
[9] |
Goldraij A, Kondo K, Lee C B, Hancock C N, Sivaguru M, Vazquez-Santana S, Kim S, Phillips T E, Cruz-Garcia F, McClure B. 2006. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature, 439:805-810.
doi: 10.1038/nature04491 URL |
[10] | Goonetilleke S N, Croxford A E, March T J, Wirthensohn M G, Hrmova M, Mather D E. 2020. Variation among S-locus haplotypes and among stylar RNases in almond. Science Reports, 10:583. |
[11] |
Haring V, Gray J E, McClure B A, Anderson M A, Clarke A E. 1990. Self-incompatibility:a self-recognition system in plants. Science, 250:937-941.
pmid: 2237440 |
[12] |
Herrera S, Rodrigo J, Hormaza J, Lora J. 2018. Identification of self-incompatibility alleles by specific PCR analysis and S-RNase sequencing in apricot. International Journal of Molecular Sciences, 19 (11):3612.
doi: 10.3390/ijms19113612 URL |
[13] | He Min, Gu Chao, Wu Juyou, Zhang Shaoling. 2021. Recent advances on self-incompatibility mechanism in fruit trees. Acta Horticulturae Sinica, 48 (4):759-777. (in Chinese) |
何敏, 谷超, 吴巨友, 张绍铃. 2021. 果树自交不亲和机制研究进展. 园艺学报, 48 (4):759-777. | |
[14] |
Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou N N, Bourke P M, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm T J A, Arens P, Voorrips R E, Maliepaard C, Neu E, Linde M, Le Paslier M C, Berard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders M J M, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F. 2018. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nature Plants, 4:473-484.
doi: 10.1038/s41477-018-0166-1 pmid: 29892093 |
[15] |
Hiratsuka S, Fujimura M, Hayashida T, Nishikawa Y, Nada K. 2012. Pollen factors controlling self-incompatibility strength in Japanese pear. Sexual Plant Reproduction, 25:347-352.
doi: 10.1007/s00497-012-0202-7 pmid: 23117623 |
[16] |
Hua Z H, Fields A, Kao T H. 2008. Biochemical models for S-RNase-based self-incompatibility. Molecular Plant, 1:575-585.
doi: 10.1093/mp/ssn032 URL |
[17] | Ioerger T R, Clark A G, Kao T H. 1990. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proceedings of the National Academy of Sciences of the United States of America, 87:9732-9735. |
[18] | Komori S, Soejima J, Ito Y, Bessho H, Abe K, Kotoda N. 1999. Discrimination of cross incompatibility by number of seeds per fruit and fruit set percentage in apples. Bulletin of the National Institute of Fruit Tree Science, 33:97-112. |
[19] |
Kubo K, Entani T, Takara A, Wang N, Fields A M, Hua Z, Toyoda M, Kawashima S, Ando T, Isogai A, Kao T H, Takayama S. 2010. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science, 330:796-799.
doi: 10.1126/science.1195243 URL |
[20] |
Lee H S, Huang S, Kao T H. 1994. S proteins control rejection of incompatible pollen in Petunia inflata. Nature, 367:560-563.
doi: 10.1038/367560a0 URL |
[21] |
Li M F, Li X F, Han Z H, Shu H R, Li T Z. 2009. Molecular analysis on Chinese pear(Pyrus bretschneideri Rehd. of‘Yan Zhuang’and‘Jin Zhui’,spontaneous self-compatible mutant. Plant Biology, 11:774-783.
doi: 10.1111/j.1438-8677.2008.00180.x pmid: 19689786 |
[22] | Li Tianzhong, Naoki K, Toshikatsu O. 2005a. Purification and separation of style S-RNases from apple cv. Starking Delicious. Journal of Agricultural Biotechnology, 32 (5):23-26. (in Chinese) |
李天忠, 加藤直幹, 奥野智旦. 2005a. 红星苹果花柱S-核酸酶的分离与纯化. 农业生物技术学报, 32 (5):23-26. | |
[23] | Li Tianzhong, Naoki K, Toshikatsu O. 2005b. S-RNases cDNA cloning in style of self-fruitful apple cultivars. Acta Horticulturae Sinica, 32 (5):104-106. (in Chinese) |
李天忠, 加藤直幹, 奥野智旦. 2005b. 苹果自花结实性品种花柱S-核酸酶基因的克隆. 园艺学报, 32 (5):104-106. | |
[24] | Li W, Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S. 2018. Generation of self-compatible diploid potato by knockout of S-RNase. Plant Molecular Biology, 4:651-654. |
[25] | Li Xiaofang, Li Maofu, Han Zhenhai, Xu Xuefeng, Li Tianzhong. 2008. Self-compatible pear cultivar‘Yanzhuang’resulting from S-RNase mutation of‘Ya Li’ (Pyrus bretschneideri Rehd). Acta Horticulturae Sinica, 35 (1):13-18. (in Chinese) |
李晓芳, 李茂福, 韩振海, 许雪峰, 李天忠. 2008. ‘鸭梨’芽变‘闫庄梨’自交亲和性分子机制初步研究. 园艺学报, 35 (1):13-18. | |
[26] | Li Y, Wu J, Wu C, Yu J, Liu C, Fan W, Li T. 2020. A mutation near the active site of S-RNase causes self-compatibility in S-RNase-based self-incompatible plants. Evolution, 103:129-139. |
[27] | Li Yang, Li Changlong, Yan Guohua, Zhang Xiaoming, Li Wei, Li Tianzhong. 2015. Research of relationship between sweet cherry Lapins self-compatibility and SFB4’ gene. Acta Horticulturae Sinica, 42 (7):1251-1259. (in Chinese) |
李洋, 李长龙, 王晶, 闫国华, 张晓明, 李威, 李天忠. 2015. 甜樱桃‘拉宾斯’自交亲和性与SFB4′基因的关系研究. 园艺学报, 42 (7):1251-1259. | |
[28] |
Liang M, Cao Z, Zhu A, Liu Y, Tao M, Yang H, Xu Q, Wang S, Liu J, Li Y, Chen C, Xie Z, Deng C, Ye J, Guo W, Xu Q, Xia R, Larkin R M, Deng X, Bosch M, Franklin-Tong V E, Chai L. 2020. Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nature Plants, 6:131-142.
doi: 10.1038/s41477-020-0597-3 pmid: 32055045 |
[29] | Long Shengshan, Li Maofu, Han Zhenhai, Zhang Bingbing, Wang Kun, Li Tianzhong. 2010. Characterization of two novel S-RNase genes and PCR analyzing of S genotypes of 46 cultivars in Malus domestica Borkh. Journal of Agricultural Biotechnology,(18):265-271. (in Chinese) |
龙慎山, 李茂福, 韩振海, 张冰冰, 王昆, 李天忠. 2010. 苹果两个新S-RNase基因克隆与46个品种S基因型的PCR分析. 农业生物技术学报,(18):265-271. | |
[30] |
Matsumoto D, Tao R. 2019. Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. Plant Molecular Biology, 100:367-378.
doi: 10.1007/s11103-019-00860-8 pmid: 30937702 |
[31] | Matsumoto S, Yamada K, Shiratake K, Okada K, Abe K. 2015. Structural and functional analyses of two new S-RNase alleles,Ssi5 and Sad5,in apple. Journal of Pomology & Horticultural Science, 85 (2):131-136. |
[32] |
McClure B A, Gray J E, Anderson M A, Clarke A E. 1990. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature, 347:757-760.
doi: 10.1038/347757a0 URL |
[33] |
Qiao H, Wang F, Zhao L, Zhou J, Lai Z, Zhang Y, Robbins T P, Xue Y. 2004. The F-Box frotein AhSLF-S 2 controls the pollen function of S-Rnase-based self-incompatibility. The Plant Cell, 16 (9):2307-2322.
doi: 10.1105/tpc.104.024919 URL |
[34] |
Ramanauskas K, Igic B. 2017. The evolutionary history of plant T2/S-type ribonucleases. Peer J, 5:e3790.
doi: 10.7717/peerj.3790 URL |
[35] |
Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H. 1996. Self-incompatibility(S)alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Molecular and General Genetics, 250:547-557.
pmid: 8676858 |
[36] |
Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T. 2007. S locus F-box brothers:multiple and pollen-specific F-box genes with S haplotypespecific polymorphisms in apple and Japanese pear. Genetics, 175:1869-1881.
doi: 10.1534/genetics.106.068858 URL |
[37] | Scandola S, Samuel M A. 2019. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Nature Plants, 29:506-512. |
[38] | Terai O, Sato Y, Saito T, Abe K, Kotobuki K. 1992. Identification of homozygotes of self-incompatibility gene(S-gene),as useful tools to determine the S-genotype in Japanese pear,Pyrus pyrifolia Nakai. Bulletin of the National Institute of Fruit Tree Science, 32:31-38. |
[39] |
Ushijima K, Sassa H, Hirano H. 1998. Characterization of the flanking regions of the S-RNase genes of Japanese pear(Pyrus serotina)and apple (Malus × domestica). Gene, 211 (1):159-167.
pmid: 9573352 |
[40] | Zenil-Ferguson R. 2019. Interaction among ploidy,breeding system and lineage diversification. International Journal of Molecular Sciences, 224:1252-1265. |
[41] |
Zhao P, Wang M, Zhao L. 2016. Dissecting stylar responses to self-pollination in wild tomato self-compatible and self-incompatible species using comparative proteomics. Plant Physiology and Biochemistry, 106:177-186.
doi: 10.1016/j.plaphy.2016.05.001 URL |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[3] | WANG Sha, ZHANG Xinhui, ZHAO Yujie, LI Bianbian, ZHAO Xueqing, SHEN Yu, DONG Jianmei, YUAN Zhaohe. Cloning and Functional Analysis of PgMYB111 Related to Anthocyanin Synthesis in Pomegranate [J]. Acta Horticulturae Sinica, 2022, 49(9): 1883-1894. |
[4] | LI Maofu, YANG Yuan, WANG Hua, FAN Youwei, SUN Pei, JIN Wanmei. Analysis the Function of R2R3 MYB Transcription Factor RhMYB113c on Regulating Anthocyanin Synthesis in Rosa hybrida [J]. Acta Horticulturae Sinica, 2022, 49(9): 1957-1966. |
[5] | QIU Ziwen, LIU Linmin, LIN Yongsheng, LIN Xiaojie, LI Yongyu, WU Shaohua, YANG Chao. Cloning and Functional Analysis of the MbEGS Gene from Melaleuca bracteata [J]. Acta Horticulturae Sinica, 2022, 49(8): 1747-1760. |
[6] | ZHENG Lin, WANG Shuai, LIU Yunuo, DU Meixia, PENG Aihong, HE Yongrui, CHEN Shanchun, ZOU Xiuping. Gene Cloning and Expression Analysis of NAC Gene in Citrus in Response to Huanglongbing [J]. Acta Horticulturae Sinica, 2022, 49(7): 1441-1457. |
[7] | ZHANG Qiuyue, LIU Changlai, YU Xiaojing, YANG Jiading, FENG Chaonian. Screening of Reference Genes for Differentially Expressed Genes in Pyrus betulaefolia Plant Under Salt Stress by qRT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. |
[8] | LIU Yaoyao, WU Yanyan, Shi Yan, MAO Tianyu, BAO Manzhu, ZHANG Junwei, ZHANG Jie. Preliminary Study on the Relationship Between Promoter Sequence Difference of PmTAC1 and Weeping Trait of Prunus mume [J]. Acta Horticulturae Sinica, 2022, 49(6): 1327-1338. |
[9] | LI Yamei, MA Fuli, ZHANG Shanqi, HUANG Jinqiu, CHEN Mengting, ZHOU Junyong, SUN Qibao, SUN Jun. Optimization of Jujube Callus Transformation System and Application of ZjBRC1 in Regulating ZjYUCCA Expression [J]. Acta Horticulturae Sinica, 2022, 49(4): 749-757. |
[10] | WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng. Identification and Expression Analysis of Genes Related to DNA Methylation in Chrysanthemum × morifolium and C. nankingense [J]. Acta Horticulturae Sinica, 2022, 49(4): 827-840. |
[11] | ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu. Transcriptome Analysis of the Molecular Mechanism of Saline-alkali Stress Response in Malus halliana Leaves [J]. Acta Horticulturae Sinica, 2022, 49(2): 237-251. |
[12] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[13] | SONG Mengfei, ZHA Gaohui, CHEN Jinfeng, LOU Qunfeng. Research Progress on Molecular Basis of Plant Architecture Related Traits in Cucumber [J]. Acta Horticulturae Sinica, 2022, 49(12): 2683-2702. |
[14] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[15] | HOU Tianze, YI Shuangshuang, ZHANG Zhiqun, WANG Jian, LI Chonghui. Selection and Validation of Reference Genes for RT-qPCR in Phalaenopsis- type Dendrobium Hybrid [J]. Acta Horticulturae Sinica, 2022, 49(11): 2489-2501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd