Acta Horticulturae Sinica ›› 2022, Vol. 49 ›› Issue (1): 23-40.doi: 10.16420/j.issn.0513-353x.2020-0969
• Research Papers • Previous Articles Next Articles
LI Ying1,2, MENG Xianwei1,2, MA Zhihang2, LIU Mengjun1,2,**(), ZHAO Jin3,**()
Received:
2021-04-06
Revised:
2021-05-26
Online:
2022-01-25
Published:
2022-01-24
Contact:
LIU Mengjun,ZHAO Jin
E-mail:lmj1234567@aliyun.com;zhaojinbd@126.com
CLC Number:
LI Ying, MENG Xianwei, MA Zhihang, LIU Mengjun, ZHAO Jin. Identification and Expression Analysis of MicroRNA Families Associated with Phase Transition in Chinese Jujube[J]. Acta Horticulturae Sinica, 2022, 49(1): 23-40.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0969
Fig. 1 Sampling site of mother-bearing shoots at different development stages of jujube Juvenile period secondary branches:The secondary branches without flowering ability,below the transitional branches and close to the cotyledon part;Transition period secondary branches:The secondary branches,2-3 sections below the node of initial flowering site;Adult period secondary branches:The initial flowering nodes and above are the adult period.
miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|---|
zjmiR156a-5p | TGGCTGGGTGACAGAAGAGAGT | zjmiRnovel-16 | GGTTAGTGATCCTCCGGAAGATC | |
zjmiR156j | GGCTGGGTGACAGAAGAGAGA | zjmiRnovel-71 | TTGAAGTGTTTGGGGGAACC | |
zjmiR172c | TGAGAATCTTGATGATGCTGCAG | zjmiRnovel-35 | GGCTGCCTCTTGTCTTTCATG | |
zjmiR172e-3p | TGGAATCTTGATGATGCTGCAT | zjmiRnovel-17 | TGCATTTGCACCTGCACCT | |
zjmiR160a-5p | TGCCTGGCTCCCTGTATGC | zjmiR845a | TCGGCTCTGATACCAATTGATG | |
zjmiR157a-5p | CGGTTGACAGAAGATAGAGAGCAC | U6 | GGGACATCCGATAAAATTG | |
zjmiR396b-5p | TGGTTCCACAGCTTTCTTGAACTT | U6 | CCAATTTTATCGGATGTCC |
Table 1 Primer sequences of miRNA for qRT-PCR
miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | miRNA名称 miRNA name | 引物序列(5′-3′) Primer sequence | |
---|---|---|---|---|
zjmiR156a-5p | TGGCTGGGTGACAGAAGAGAGT | zjmiRnovel-16 | GGTTAGTGATCCTCCGGAAGATC | |
zjmiR156j | GGCTGGGTGACAGAAGAGAGA | zjmiRnovel-71 | TTGAAGTGTTTGGGGGAACC | |
zjmiR172c | TGAGAATCTTGATGATGCTGCAG | zjmiRnovel-35 | GGCTGCCTCTTGTCTTTCATG | |
zjmiR172e-3p | TGGAATCTTGATGATGCTGCAT | zjmiRnovel-17 | TGCATTTGCACCTGCACCT | |
zjmiR160a-5p | TGCCTGGCTCCCTGTATGC | zjmiR845a | TCGGCTCTGATACCAATTGATG | |
zjmiR157a-5p | CGGTTGACAGAAGATAGAGAGCAC | U6 | GGGACATCCGATAAAATTG | |
zjmiR396b-5p | TGGTTCCACAGCTTTCTTGAACTT | U6 | CCAATTTTATCGGATGTCC |
miRNA名称 miRNA name | 靶基因 Gene | 引物名称 Primer | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reversed primer |
---|---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | TCACTCTAAACGACCCGCAC | GAAGGCACGGAGGATATCGG |
LOC107411586 | TC4M | GTCACAGAGCCCGACATTCA | TTCCAGTTGGCAGGGTTGTT | |
LOC107420411 | GPT2 | TTCGTCTGGTGGGTTGTAGC | GAAGGTGCCGAGGATAGCAA | |
zjmiR156j | LOC107414106 | ERF105-like | ACGTCGTCGGAGAGTAAGGA | AGGTGACAAAGGAGGCACAC |
LOC107425063 | SPL | GCAATGCTGACTTGACCGAC | TACGACGCTCATTGTGTCCA | |
zjmiR172c | LOC107411289 | AP2c | AGAGCCTATGATCGAGCTGC | TCCCATTCGAGCTTCCCATC |
zjmiR172e-3p | LOC107413613 | AP2e | TTAGGTGGGTTCGACACTGC | CCGACGAAGTATCAGCACGA |
zjmiRnovel-16 | LOC107416596 | PIF4-like | TAGCAGGGTGTCCAGCAATG | TCTGATTGCCTCCGCCTTTT |
LOC107416597 | PIF4 | GAGTCAACGGTCGGGTTCAA | ATTGGTGCCATCCCACTTCC | |
LOC107415240 | ELF 3 | TGCTGAAGGAAGGGATGCTC | ATTGTGCGGTACAACCCTGA | |
LOC107420622 | CO-LIKE7-like | AGAGGCAAGCGTGTTGAGAT | GAACCGGCCCTTCATACGAG | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | GCTACCGTGTTCGGCATCTA | CCATGAACGTGGGAAGGTCA |
LOC107422008 | cro-GT2 | CGGACCGTTGATTCAGTCCA | GTGGCTTTGGTAACACGCAG | |
LOC107418233 | NFYA7 | AAGCTGGAGTTCCTTTGCCA | CCGCTTTTGCACGAGATTGT | |
LOC107412400 | RLK1 | GCGCAACAAAGTGGAACCTT | GCATTTGTGCACAGGAGAGC |
Table 2 qRT-PCR primers of target genes
miRNA名称 miRNA name | 靶基因 Gene | 引物名称 Primer | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reversed primer |
---|---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | TCACTCTAAACGACCCGCAC | GAAGGCACGGAGGATATCGG |
LOC107411586 | TC4M | GTCACAGAGCCCGACATTCA | TTCCAGTTGGCAGGGTTGTT | |
LOC107420411 | GPT2 | TTCGTCTGGTGGGTTGTAGC | GAAGGTGCCGAGGATAGCAA | |
zjmiR156j | LOC107414106 | ERF105-like | ACGTCGTCGGAGAGTAAGGA | AGGTGACAAAGGAGGCACAC |
LOC107425063 | SPL | GCAATGCTGACTTGACCGAC | TACGACGCTCATTGTGTCCA | |
zjmiR172c | LOC107411289 | AP2c | AGAGCCTATGATCGAGCTGC | TCCCATTCGAGCTTCCCATC |
zjmiR172e-3p | LOC107413613 | AP2e | TTAGGTGGGTTCGACACTGC | CCGACGAAGTATCAGCACGA |
zjmiRnovel-16 | LOC107416596 | PIF4-like | TAGCAGGGTGTCCAGCAATG | TCTGATTGCCTCCGCCTTTT |
LOC107416597 | PIF4 | GAGTCAACGGTCGGGTTCAA | ATTGGTGCCATCCCACTTCC | |
LOC107415240 | ELF 3 | TGCTGAAGGAAGGGATGCTC | ATTGTGCGGTACAACCCTGA | |
LOC107420622 | CO-LIKE7-like | AGAGGCAAGCGTGTTGAGAT | GAACCGGCCCTTCATACGAG | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | GCTACCGTGTTCGGCATCTA | CCATGAACGTGGGAAGGTCA |
LOC107422008 | cro-GT2 | CGGACCGTTGATTCAGTCCA | GTGGCTTTGGTAACACGCAG | |
LOC107418233 | NFYA7 | AAGCTGGAGTTCCTTTGCCA | CCGCTTTTGCACGAGATTGT | |
LOC107412400 | RLK1 | GCGCAACAAAGTGGAACCTT | GCATTTGTGCACAGGAGAGC |
样本类型 Sample type | 童期Juvenile period | 过渡期Transition period | 成年期Adult period | |||
---|---|---|---|---|---|---|
种类(%) Category | 数量(%) Number | 种类(%) category | 数量(%) Number | 种类(%) category | 数量(%) Number | |
已知miRNA Known miRNA | 121(0.03) | 22 367(0.33) | 152(0.04) | 36 906(0.57) | 167(0.04) | 34 796(0.35) |
rRNA | 118 138(31.30) | 5 535 824(82.23) | 112 531(32.56) | 5 295 448(81.29) | 134 295(28.46) | 8 073 860(80.84) |
tRNA | 4 740(1.26) | 181 112(2.69) | 4 537(1.31) | 152 992(2.35) | 5 847(1.24) | 340 580(3.41) |
snRNA | 965(0.26) | 4 027(0.06) | 1 007(0.29) | 4 148(0.06) | 1 328(0.28) | 7 269(0.07) |
snoRNA | 576(0.15) | 1 674(0.02) | 487(0.14) | 1 550(0.02) | 699(0.15) | 2 483(0.02) |
重复序列 Repeat | 14 323(3.80) | 37 164(0.55) | 13 090(3.79) | 33 685(0.52) | 17 230(3.65) | 48 302(0.48) |
NAT | 69 876(18.51) | 340 047(5.05) | 62 771(18.16) | 433 170(6.65) | 89 355(18.94) | 579 299(5.80) |
新miRNA Novel miRNA | 61(0.02) | 4 221(0.06) | 67(0.02) | 8 903(0.14) | 78(0.02) | 9 116(0.09) |
exon:+ | 25 350(6.72) | 52 607(0.78) | 22 878(6.62) | 54 968(0.84) | 38 512(8.16) | 86 381(0.86) |
exon:- | 2 263(0.60) | 12 125(0.18) | 2 841(0.82) | 20 279(0.31) | 3 489(0.74) | 24 477(0.25) |
intron:+ | 6 317(1.67) | 48 369(0.72) | 5 486(1.59) | 34 062(0.52) | 8 825(1.87) | 79 221(0.79) |
intron:- | 3 386(0.90) | 11 592(0.17) | 2 934(0.85) | 9 272(0.14) | 4 064(0.86) | 18 475(0.18) |
其他Other | 131 297(34.79) | 481 402(7.15) | 116 873(33.81) | 429 158(6.59) | 167 937(35.59) | 683 147(6.84) |
总和Total | 377 413 | 6 732 531 | 345 654 | 6 514 541 | 471 826 | 9 987 406 |
Table 3 The kind and quantity of small RNA
样本类型 Sample type | 童期Juvenile period | 过渡期Transition period | 成年期Adult period | |||
---|---|---|---|---|---|---|
种类(%) Category | 数量(%) Number | 种类(%) category | 数量(%) Number | 种类(%) category | 数量(%) Number | |
已知miRNA Known miRNA | 121(0.03) | 22 367(0.33) | 152(0.04) | 36 906(0.57) | 167(0.04) | 34 796(0.35) |
rRNA | 118 138(31.30) | 5 535 824(82.23) | 112 531(32.56) | 5 295 448(81.29) | 134 295(28.46) | 8 073 860(80.84) |
tRNA | 4 740(1.26) | 181 112(2.69) | 4 537(1.31) | 152 992(2.35) | 5 847(1.24) | 340 580(3.41) |
snRNA | 965(0.26) | 4 027(0.06) | 1 007(0.29) | 4 148(0.06) | 1 328(0.28) | 7 269(0.07) |
snoRNA | 576(0.15) | 1 674(0.02) | 487(0.14) | 1 550(0.02) | 699(0.15) | 2 483(0.02) |
重复序列 Repeat | 14 323(3.80) | 37 164(0.55) | 13 090(3.79) | 33 685(0.52) | 17 230(3.65) | 48 302(0.48) |
NAT | 69 876(18.51) | 340 047(5.05) | 62 771(18.16) | 433 170(6.65) | 89 355(18.94) | 579 299(5.80) |
新miRNA Novel miRNA | 61(0.02) | 4 221(0.06) | 67(0.02) | 8 903(0.14) | 78(0.02) | 9 116(0.09) |
exon:+ | 25 350(6.72) | 52 607(0.78) | 22 878(6.62) | 54 968(0.84) | 38 512(8.16) | 86 381(0.86) |
exon:- | 2 263(0.60) | 12 125(0.18) | 2 841(0.82) | 20 279(0.31) | 3 489(0.74) | 24 477(0.25) |
intron:+ | 6 317(1.67) | 48 369(0.72) | 5 486(1.59) | 34 062(0.52) | 8 825(1.87) | 79 221(0.79) |
intron:- | 3 386(0.90) | 11 592(0.17) | 2 934(0.85) | 9 272(0.14) | 4 064(0.86) | 18 475(0.18) |
其他Other | 131 297(34.79) | 481 402(7.15) | 116 873(33.81) | 429 158(6.59) | 167 937(35.59) | 683 147(6.84) |
总和Total | 377 413 | 6 732 531 | 345 654 | 6 514 541 | 471 826 | 9 987 406 |
类型 Sample type | miRNA总数 Total reads | 童期 Juvenile period | 过渡期 Transition period | 成年期 Adult period |
---|---|---|---|---|
已知miRNA前体数 Known miRNA hairpin | 58 | 47 | 50 | 55 |
已知miRNA成熟体数 Known miRNA mature | 49 | 36 | 40 | 44 |
新miRNA前体数 Novel miRNA hairpin | 23 | 22 | 19 | 20 |
新miRNA成熟体数 Novel miRNA mature | 17 | 14 | 13 | 15 |
Table 4 The results of identified miRNAs
类型 Sample type | miRNA总数 Total reads | 童期 Juvenile period | 过渡期 Transition period | 成年期 Adult period |
---|---|---|---|---|
已知miRNA前体数 Known miRNA hairpin | 58 | 47 | 50 | 55 |
已知miRNA成熟体数 Known miRNA mature | 49 | 36 | 40 | 44 |
新miRNA前体数 Novel miRNA hairpin | 23 | 22 | 19 | 20 |
新miRNA成熟体数 Novel miRNA mature | 17 | 14 | 13 | 15 |
不同比较组合 Different comparison | 差异基因数 Differentially expressed gene number | 上调表达 Up regulated | 下调表达 Down regulated |
---|---|---|---|
童期vs过渡期 Jup vs Trp | 27 | 17 | 10 |
童期vs成年期 Jup vs Adp | 32 | 20 | 12 |
过渡期vs成年期 Trp vs Adp | 25 | 11 | 14 |
Table 5 Summary of differentially expressed miRNA
不同比较组合 Different comparison | 差异基因数 Differentially expressed gene number | 上调表达 Up regulated | 下调表达 Down regulated |
---|---|---|---|
童期vs过渡期 Jup vs Trp | 27 | 17 | 10 |
童期vs成年期 Jup vs Adp | 32 | 20 | 12 |
过渡期vs成年期 Trp vs Adp | 25 | 11 | 14 |
miRNA家族 miRNA family | miRNA | 成熟体序列(5′-3′) miRNA mature sequence | 序列长度/nt Length | 靶基因数量 Number |
---|---|---|---|---|
zjMIR156 | zjmiR156a-5p | UGACAGAAGAGAGUGAGCAC | 20 | 340 |
zjmiR156j | UGACAGAAGAGAGAGAGCAC | 20 | 547 | |
zjMIR157 | zjmiR157a-5p | UUGACAGAAGAUAGAGAGCAC | 21 | 121 |
zjmiR157d | UGACAGAAGAUAGAGAGCAC | 20 | 265 | |
zjMIR160 | zjmiR160a-5p | UGCCUGGCUCCCUGUAUGCCA | 21 | 26 |
zjMIR164 | zjmiR164c-5p | UGGAGAAGCAGGGCACGUGCG | 21 | 93 |
zjMIR171 | zjmiR171a-3p | UGAUUGAGCCGCGCCAAUAUC | 21 | 25 |
zjmiR171b-3p | UUGAGCCGUGCCAAUAUCACG | 21 | 29 | |
zjMIR172 | zjmiR172a | AGAAUCUUGAUGAUGCUGCAU | 21 | 218 |
zjmiR172c | AGAAUCUUGAUGAUGCUGCAG | 21 | 211 | |
zjmiR172e-3p | GGAAUCUUGAUGAUGCUGCAU | 21 | 205 | |
zjMIR319 | zjmiR319a | UUGGACUGAAGGGAGCUCCCU | 21 | 50 |
zjmiR319c | UUGGACUGAAGGGAGCUCCUU | 21 | 79 | |
zjMIR390 | zjmiR390a-3p | CGCUAUCCAUCCUGAGUUUCA | 21 | 49 |
zjmiR390b-3p | CGCUAUCCAUCCUGAGUUCC | 20 | 77 | |
zjMIR396 | zjmiR396b-3p | GCUCAAGAAAGCUGUGGGAAA | 21 | 262 |
zjMIR399 | zjmiR399d | UGCCAAAGGAGAUUUGCCCCG | 21 | 53 |
zjMIRn-16 | zjmiRnovel-16 | UUAGUGAUCCUCCGGAAGAUC | 21 | 64 |
zjMIRn-17 | zjmiRnovel-17 | UGCAUUUGCACCUGCACCUUU | 21 | 104 |
zjMIRn-34 | zjmiRnovel-34 | UUGAGCCGUGCCAAUAUCACA | 21 | 54 |
zjMIRn-35 | zjmiRnovel-35 | UGGCUGCCUCUUGUCUUUCAUG | 22 | 54 |
zjMIRn-44 | zjmiRnovel-44 | UGGAGAAGCAGGGCACAUGCU | 21 | 146 |
zjMIRn-52 | zjmiRnovel-52 | UAUAAGUGAUUUGGGCUAGU | 20 | 168 |
zjMIRn-71 | zjmiRnovel-71 | UUGAAGUGUUUGGGGGAACCC | 21 | 72 |
Table 6 Molecular characteristics of 24 candidate miRNAs
miRNA家族 miRNA family | miRNA | 成熟体序列(5′-3′) miRNA mature sequence | 序列长度/nt Length | 靶基因数量 Number |
---|---|---|---|---|
zjMIR156 | zjmiR156a-5p | UGACAGAAGAGAGUGAGCAC | 20 | 340 |
zjmiR156j | UGACAGAAGAGAGAGAGCAC | 20 | 547 | |
zjMIR157 | zjmiR157a-5p | UUGACAGAAGAUAGAGAGCAC | 21 | 121 |
zjmiR157d | UGACAGAAGAUAGAGAGCAC | 20 | 265 | |
zjMIR160 | zjmiR160a-5p | UGCCUGGCUCCCUGUAUGCCA | 21 | 26 |
zjMIR164 | zjmiR164c-5p | UGGAGAAGCAGGGCACGUGCG | 21 | 93 |
zjMIR171 | zjmiR171a-3p | UGAUUGAGCCGCGCCAAUAUC | 21 | 25 |
zjmiR171b-3p | UUGAGCCGUGCCAAUAUCACG | 21 | 29 | |
zjMIR172 | zjmiR172a | AGAAUCUUGAUGAUGCUGCAU | 21 | 218 |
zjmiR172c | AGAAUCUUGAUGAUGCUGCAG | 21 | 211 | |
zjmiR172e-3p | GGAAUCUUGAUGAUGCUGCAU | 21 | 205 | |
zjMIR319 | zjmiR319a | UUGGACUGAAGGGAGCUCCCU | 21 | 50 |
zjmiR319c | UUGGACUGAAGGGAGCUCCUU | 21 | 79 | |
zjMIR390 | zjmiR390a-3p | CGCUAUCCAUCCUGAGUUUCA | 21 | 49 |
zjmiR390b-3p | CGCUAUCCAUCCUGAGUUCC | 20 | 77 | |
zjMIR396 | zjmiR396b-3p | GCUCAAGAAAGCUGUGGGAAA | 21 | 262 |
zjMIR399 | zjmiR399d | UGCCAAAGGAGAUUUGCCCCG | 21 | 53 |
zjMIRn-16 | zjmiRnovel-16 | UUAGUGAUCCUCCGGAAGAUC | 21 | 64 |
zjMIRn-17 | zjmiRnovel-17 | UGCAUUUGCACCUGCACCUUU | 21 | 104 |
zjMIRn-34 | zjmiRnovel-34 | UUGAGCCGUGCCAAUAUCACA | 21 | 54 |
zjMIRn-35 | zjmiRnovel-35 | UGGCUGCCUCUUGUCUUUCAUG | 22 | 54 |
zjMIRn-44 | zjmiRnovel-44 | UGGAGAAGCAGGGCACAUGCU | 21 | 146 |
zjMIRn-52 | zjmiRnovel-52 | UAUAAGUGAUUUGGGCUAGU | 20 | 168 |
zjMIRn-71 | zjmiRnovel-71 | UUGAAGUGUUUGGGGGAACCC | 21 | 72 |
Fig. 4 Phylogenetic relationships among different miRNA family A:Phylogenetic relationships among different miRNA familys between jujube and other species(zj:Ziziphus jujuba;ath:Arabidopsis thaliana;mdm:Malus × domestica;vvi:Vitis vinifera);B:Phylogenetic relationships among family members of candidate miRNAs.
miRNA | 靶基因编号 Gene ID | 基因命名 Gene name | 靶基因注释 Gene description |
---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | 1,3-β葡萄糖苷内切酶Glucan endo-1,3-beta-glucosidase |
LOC107411586 | TC4M | 肉桂酸转移单氧酶Trans-cinnamate 4-monooxygenase | |
LOC107420411 | GPT2 | 葡萄糖6-磷酸转运蛋白2 Glucose-6-phosphate/phosphate translocator 2 | |
zjmiR156j | LOC107414106 | ERF105-like | 乙烯应答元件结合蛋白转录因子 Ethylene-responsive transcription factor ERF105-like |
LOC107425063 | SPL1 | 鳞片类启动子结合蛋白SPLSquamosa promoter-binding protein 1 | |
zjmiR172c | LOC107411289 | AP2c | 花同源蛋白 AP2基因Floral homeotic protein APETALA 2 |
zjmiR172e-3p | LOC107413613 | AP2e | 花同源蛋白AP2基因Floral homeotic protein APETALA 2 |
zjmiRnovel-16 | LOC107416596 | PIF4-like | 转录因子PIF4-likeTranscription factor PIF4-like |
LOC107416597 | PIF4 | 转录因子PIF4Transcription factor PIF4 | |
LOC107415240 | CO-LIKE7-like | 锌指蛋白类CO-LIKE7-like Zinc finger protein CONSTANS-LIKE 7-like | |
LOC107420622 | ELF3 | 早花蛋白3 Protein EARLY FLOWERING 3 | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase |
LOC107422008 | cro-GT2 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase | |
LOC107418233 | NFYA7 | 核转录因子Y亚基A-7-like NFYA7-like Nuclear transcription factor Y subunit A-7-like | |
LOC107412400 | RLK1 | 富含亮氨酸重复受体类丝氨酸/苏氨酸蛋白激酶 Probable LRR receptor-like serine/threonine-protein kinase RFK1 |
Table 7 Candidate miRNAs and their target genes in jujube
miRNA | 靶基因编号 Gene ID | 基因命名 Gene name | 靶基因注释 Gene description |
---|---|---|---|
zjmiR156a-5p | LOC107411088 | GE1 | 1,3-β葡萄糖苷内切酶Glucan endo-1,3-beta-glucosidase |
LOC107411586 | TC4M | 肉桂酸转移单氧酶Trans-cinnamate 4-monooxygenase | |
LOC107420411 | GPT2 | 葡萄糖6-磷酸转运蛋白2 Glucose-6-phosphate/phosphate translocator 2 | |
zjmiR156j | LOC107414106 | ERF105-like | 乙烯应答元件结合蛋白转录因子 Ethylene-responsive transcription factor ERF105-like |
LOC107425063 | SPL1 | 鳞片类启动子结合蛋白SPLSquamosa promoter-binding protein 1 | |
zjmiR172c | LOC107411289 | AP2c | 花同源蛋白 AP2基因Floral homeotic protein APETALA 2 |
zjmiR172e-3p | LOC107413613 | AP2e | 花同源蛋白AP2基因Floral homeotic protein APETALA 2 |
zjmiRnovel-16 | LOC107416596 | PIF4-like | 转录因子PIF4-likeTranscription factor PIF4-like |
LOC107416597 | PIF4 | 转录因子PIF4Transcription factor PIF4 | |
LOC107415240 | CO-LIKE7-like | 锌指蛋白类CO-LIKE7-like Zinc finger protein CONSTANS-LIKE 7-like | |
LOC107420622 | ELF3 | 早花蛋白3 Protein EARLY FLOWERING 3 | |
zjmiRnovel-71 | LOC107422007 | cro-GT1 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase |
LOC107422008 | cro-GT2 | 西红花酸葡糖基转移酶Crocetin glucosyltransferase | |
LOC107418233 | NFYA7 | 核转录因子Y亚基A-7-like NFYA7-like Nuclear transcription factor Y subunit A-7-like | |
LOC107412400 | RLK1 | 富含亮氨酸重复受体类丝氨酸/苏氨酸蛋白激酶 Probable LRR receptor-like serine/threonine-protein kinase RFK1 |
[1] | Allen R S, Li J Y, Stahle M I, Dubroué A, Gubler F, Millar A A. 2007. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 Family. Proceedings of the National Academy of Sciences of the United States of America, 104 (41):16371-16376. |
[2] |
Ambros V. 2001. microRNAs:tiny regulators with great potential. Cell, 107 (7):823-826.
doi: 10.1016/s0092-8674(01)00616-x pmid: 11779458 |
[3] |
Arya H, Singh M B, Bhalla P L. 2018. Genomic and molecular analysis of conserved and unique features of soybean PIF4. Scientific Reports, 8 (1):12569.
doi: 10.1038/s41598-018-30043-2 URL |
[4] |
Bartel D P. 2004. MicroRNAs:genomics,biogenesis,mechanism,and function. Cell, 116 (2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[5] |
Baucher M, Moussawi J, Vandeputte O M, Monteyne D, Mol A, Pérez M D, El J M. 2013. A role for the miR396/GRF network in specification of organ type during flower development,as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco. Plant Biology, 15 (5):892-898.
doi: 10.1111/j.1438-8677.2012.00696.x pmid: 23173976 |
[6] |
Bhavani N, Sneha B, Anjan K B. 2017. The essential role of microRNAs in potato tuber development;a mini review. Indian Journal of Plant Physiology, 22 (4):401-410.
doi: 10.1007/s40502-017-0324-x URL |
[7] |
Borges F, Parent J S, van E F, Wolff P, Martínez G, Köhler C, Martienssen R A. 2018. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nature Genetics, 50 (2):186-192.
doi: 10.1038/s41588-017-0032-5 URL |
[8] | Chuck G S, Tobias C, Sun Lan, Kraemer F, Li Chenlin, Dibble D, Arora R, Bragg J N, Vogel J P, Singh S, Simmons B A, Pauly M, Hake S. 2011. Overexpression of the maize Corngrass 1 microRNA prevents flowering,improves digestibility,and increases starch content of switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 108 (42):17550-17555. |
[9] |
Damodharan S, Zhao D Z, Arazi T. 2016. A common miRNA 160-based mechanism regulates ovary patterning,floral organ abscission and lamina outgrowth in tomato. The Plant Journal, 86 (6):458-471.
doi: 10.1111/tpj.13127 pmid: 26800988 |
[10] | Duan Zhongxin. 2012. Expression pattern and functional analysis of microRNA Peu-miR156j and Peu-miR169o from Populus euphratica[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
段中鑫. 2012. 胡杨microRNA Peu-miR156j和Peu-miR169o表达模式分析及功能鉴定[硕士论文]. 北京: 北京林业大学. | |
[11] |
Feng L, Xia R, Liu Y. 2019. Comprehensive characterization of miRNA and PHAS loci in the diploid strawberry(Fragaria vesca)genome. Horticultural Plant Journal, 5 (6):255-267.
doi: 10.1016/j.hpj.2019.11.004 |
[12] |
France C, François C, Christine D, Claude W. 2001. A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cultured cells. Journal of Plant Physiology, 158 (5):553-560.
doi: 10.1078/0176-1617-00305 URL |
[13] |
Friedländer M R, Mackowiak S D, Li Na, Chen Wei, Rajewsky N. 2012. miRDeep 2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 40 (1):37-52.
doi: 10.1093/nar/gkr688 pmid: 21911355 |
[14] |
Gao Y, Yang F Q, Cao X, Li C M, Wang Y, Zhao Y B, Zeng G J, Chen D M, Han Z H, Zhang X Z. 2014. Differences in gene expression and regulation during ontogenetic phase change in apple seedlings. Plant Molecular Biology Reporter, 32 (2):357-371.
doi: 10.1007/s11105-013-0648-2 URL |
[15] | Gou Yanli, Zhang Le, Guo Huan, Ma Hongping, Bao Aike. 2020. Research progress on the AP2/ERF transcription factor in plants. Pratacultural Science, 37 (6):1150-1159. (in Chinese) |
苟艳丽, 张乐, 郭欢, 马红萍, 包爱科. 2020. 植物AP2/ERF类转录因子研究进展. 草业科学, 37 (6):1150-1159. | |
[16] | Gu Jie. 2008. Localization of regulator of G protein signaling(RGS)Protein and its functional analyses in glucose signaling in Arabidopsis thaliana[M. D. Dissertation]. Yangzhou: Yangzhou University. (in Chinese) |
顾杰. 2008. 拟南芥G蛋白信号转导调节蛋白(AtRGS1蛋白)的定位及在葡萄糖信号转导中的功能研究[硕士论文]. 扬州: 扬州大学. | |
[17] |
Hu Z W, Shen X P, Xiang X, Cao J S. 2019. Evolution of MIR159/ 319 genes in Brassica campestris and their function in pollen development. Plant Molecular Biology, 101 (6):537-550.
doi: 10.1007/s11103-019-00920-z URL |
[18] | Huang Jingmiao. 2018. Prediction and analysis of cis-acting elements and transcription factors of related MdMIR156s during vegetative phase change in apple[M. D. Dissertation]. Beijing: China Agriculture University. (in Chinese) |
黄晶淼. 2018. 苹果阶段转变相关MdMIR156s顺式元件及转录因子预测与分析[硕士论文]. 北京: 中国农业大学. | |
[19] |
José M F Z, Adrián V, Marco T, Isabel M, María I P, Ignacio R S, Antonio L, Detlef W, Juan A G, Javier P A. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39 (8):1033-1037.
doi: 10.1038/ng2079 URL |
[20] |
Ketting R F. 2010. MicroRNA biogenesis and function. An overview. Advances in Experimental Medicine and Biology, 700:1-14.
pmid: 21627025 |
[21] |
Kim Wanhui, Ahn H J, Chiou T J, Ahn J H. 2011. The role of the miR399-PHO 2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Molecules and Cells, 32 (1):83-88.
doi: 10.1007/s10059-011-1043-1 pmid: 21533549 |
[22] |
Kunz H H, Häusler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge U I, Schneider A. 2010. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biology, 12:115-128.
doi: 10.1111/j.1438-8677.2010.00349.x URL |
[23] | Li Chenjing, Niu Jianxin, Pei Maosong, Cao Fujun, Quan Shaowen. 2016. Cloning and identification of novel miRNA genes related to calyx persistence in Korla Fragrant Pear. Acta Horticulturae Sinica, 43 (9):1803-1815. (in Chinese) |
李陈静, 牛建新, 裴茂松, 曹福军, 全绍文. 2016. 库尔勒香梨9个新miRNA克隆鉴定. 园艺学报, 43(9):1803-1815. | |
[24] | Li Zongmei. 2013. Identification and characterization of a novel hydroxycinnamoyl transferase from the Physcomitrella patens and the regulation of P. patens HCT[M. D. Dissertation]. Wuhan;Huazhong Agricultural University. (in Chinese) |
李宗梅. 2013. 小立碗藓羟基肉桂酰酰基转移酶基因功能及调控研究初探[硕士论文]. 武汉: 华中农业大学. | |
[25] | Liu M J, Wang J R, Wang L L, Liu P, Zhao J, Zhao Z H, Yao S R, Stănică Florin, Liu Z G, Wang L X, Ao C W, Dai L, Li X S, Zhao X, Jia C X. 2020. The historical and current research progress on jujube-a superfruit for the future. Horticulture Research, 7 (1):1683-1698. |
[26] | Liu M J, Zhao J, Cai Q L, Liu G C, Wang J R, Zhao Z H, Liu P, Dai L, Yan G J, Wang W J, Li X S, Chen Y, Sun Y D, Liu Z G, Lin M J, Xiao J, Chen Y Y, Li X F, Wu B, Ma Y, Jian J B, Yang W, Yuan Z, Sun X C, Wei Y L, Yu L L, Zhang C, Liao S G, He R J, Guang X M, Wang Z, Zhang Y Y, Luo L H. 2014. The complex jujube genome provides insights into fruit tree biology. Nature Communications, 5 (1):1309-1324. |
[27] | Liu Weihua, Lin Yuling, Lin Zhengchun, Ni Shanshan, Lai Zhongxiong. 2018. Analysis of evolution and molecular characteristics of miR172 family members in plants. Chinese Journal of Tropical Crops, 39 (3):525-533. (in Chinese) |
刘炜婳, 林玉玲, 林争春, 倪珊珊, 赖钟雄. 2018. 植物miR172家族成员进化与分子特性分析. 热带作物学报, 39 (3):525-533. | |
[28] | Luo Hongyu, Yang Jiangwei, Feng Ya, Zhang Huanhuan, Liu Shengyan, Zhang Ning, Si Huaijun. 2021. The effect of Stu-miR156 silencing by STTM technology on potato lateral root development. Acta Horticulturae Sinica, 48 (3):531-538. (in Chinese) |
罗红玉, 杨江伟, 冯亚, 张欢欢, 刘升燕, 张宁, 司怀军. 2021. STTM 技术沉默马铃薯Stu-miR156 对其侧根发育的影响. 园艺学报, 48 (3):531-538. | |
[29] |
Ma J Y, Zhao P, Liu S B, Yang Q, Guo H H. 2020. The Control of developmental phase transitions by microRNAs and their targets in seed plants. International Journal of Molecular Sciences, 21 (6):1971.
doi: 10.3390/ijms21061971 URL |
[30] | Ma Li, Zhou Li, Xu Hang, Quan Shaowen, Yang Jieping, Niu LJianxini. 2019. Evolutionary characteristics and the expression patterns of miR159 gene family in‘Kuerlexiangli’pear. Journal of Fruit Science, 36 (1):1-10. (in Chinese) |
马丽, 周丽, 徐航, 全绍文, 杨洁萍, 牛建新. 2019. ‘库尔勒香梨’miR159家族成员进化特性及表达分析. 果树学报, 36 (1):1-10. | |
[31] |
Martin R C, Asahina M, Liu Popu, Kristof J R, Coppersmith J L, Pluskota W E, Bassel G W, Goloviznina N A, Nguyen T T, Martínez A C, Arun Kumar M B, Pupel P, Nonogaki H. 2010. The microRNA156 and microRNA 172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Science Research, 20 (2):79-87.
doi: 10.1017/S0960258510000085 URL |
[32] |
Meng J, Yang J, Peng M D, Liu X L, He H B. 2020a. Genome-wide characterization,evolution,and expression analysis of the Leucine-Rich Repeat Receptor-Like Protein Kinase(LRR-RLK)gene family in Medicago truncatula. Life, 10 (176):176.
doi: 10.3390/life10090176 URL |
[33] |
Meng X W, Li Y, Yuan Y, Zhang Y, Li H T, Zhao J, Liu M J. 2020b. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research, 7 (1):13-19.
doi: 10.1038/s41438-019-0236-1 URL |
[34] |
Mi S J, Cai T, Hu Y G, Chen Y M, Hodges E, Ni F R, Wu L, Li S, Zhou H Y, Long C Z, Chen S, Hannon G J, Qi Y J. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 133 (1):116-127.
doi: 10.1016/j.cell.2008.02.034 URL |
[35] |
Milo J A, Hajime S. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and Its APETALA2-Like target Genes. The Plant Cell, 15:2730-2741
doi: 10.1105/tpc.016238 URL |
[36] |
Rubenach A J S, Hecht V, Vander Schoor J K, Liew L C, Aubert G, Burstin J, Weller J L. 2017. EARLY FLOWERING 3 redundancy fine-tunes photoperiod sensitivity. Plant Physiology, 173 (4):2253-2264.
doi: 10.1104/pp.16.01738 pmid: 28202598 |
[37] |
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. 2003. Dissection of floral induction pathways using global expression analysis. Development, 130 (24):6001-6012.
doi: 10.1242/dev.00842 URL |
[38] | Shuai Minmin. 2018. Advances of GIGANTEA and CONSTANS,the key genes of flowering in photoperiod pathway[M. D. Dissertation]. Lin’an:Zhejiang A & F University. (in Chinese) |
帅敏敏. 2018. 光周期途径成花关键基因GIGANTEA和CONSTANS的进化机制[硕士论文]. 临安: 浙江农林大学. | |
[39] | Shuai Minmin, Zhang Qixiang, Huang Youjun. 2019. Evolution of the flowering time gene CONSTANS in a photoperiod pathway. Journal of Zhejiang A & F University, 36 (1):7-13. (in Chinese) |
帅敏敏, 张启香, 黄有军. 2019. 光周期途径成花关键基因CONSTANS的进化机制. 浙江农林大学学报, 36 (1):7-13. | |
[40] |
Spanudakis E, Jackson S. 2014. The role of microRNAs in the control of flowering time. Journal of experimental botany, 65 (2):365-380.
doi: 10.1093/jxb/ert453 pmid: 24474808 |
[41] | Teng Yunlong, Li Chunmin, Zhang Xinzhong, Chen Dongmei, Zeng Guangjuan, Zhao Yongbo, Dong Wenxuan. 2009. SDS-PAGE analysis of phase-transition-related proteins in buds of apple trees. Journal of Fruit Science, 26 (3):375-378. (in Chinese) |
滕云龙, 李春敏, 张新忠, 陈东玫, 曾广娟, 赵永波, 董文轩. 2009. 苹果实生树嫩芽阶段转变相关蛋白质的SDS-PAGE分析. 果树学报, 26 (3):375-378. | |
[42] |
Wang L K, Feng Z X, Wang X, Wang X W, Zhang X G. 2010. DEGseq;an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26 (1):136-138.
doi: 10.1093/bioinformatics/btp612 URL |
[43] |
Wen M, Shen Y, Shi S H, Tang T. 2012. miREvo;an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13 (1):140.
doi: 10.1186/1471-2105-13-140 URL |
[44] |
Wu G, Park M Y, Conway S R, Wang J W, Weigel D, Poethig R S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 138 (4):750-759.
doi: 10.1016/j.cell.2009.06.031 URL |
[45] |
Xu Zihan, Hu Fengrong. 2020. Research progress of miR172 in plant development and regulation. Biotechnology Bulletin, 36 (8):173-184. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0181 |
徐子涵, 胡凤荣. 2020. miR172参与植物发育调控的研究进展. 生物技术通报, 36 (8):173-184.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0181 |
|
[46] |
Yang L L, Xu M L, Koo Y, He J,Poethig R Scott. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife, 2:e00260.
doi: 10.7554/eLife.00260 URL |
[47] | Yu S, Cao L, Zhou C M, Zhang T Q, Lian H, Sun Y, Wu J Q, Huang J R, Wang G D, Wang J W. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife, 2:17. |
[48] |
Yu S, Lian H, Wang J W. 2015. Plant developmental transitions;the role of microRNAs and sugars. Current Opinion in Plant Biology, 27:1-7.
doi: 10.1016/j.pbi.2015.05.009 URL |
[49] |
Zhang C, Xian Z Q, Huang W, Li Z G. 2015. Evidence for the biological function of miR403 in tomato development. Scientia Horticulturae, 197:619-626.
doi: 10.1016/j.scienta.2015.10.027 URL |
[50] | Zhao Guomiao. 2019. Studies on the miRNA regulation mechanism of heteromorphic leaf development in Populus euphratica[Ph. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
赵国淼. 2019. 胡杨异形叶发育的miRNA调控机制研究[博士论文]. 北京: 北京林业大学. | |
[51] | Zhao Hang. 2020. Molecular mechanism of Arabidopsis NF-YA 8 in regulating juvenile-to-adult transition and flowering time[Ph. D. Dissertation]. Tai'an: Shandong Agricultural University. (in Chinese) |
赵航. 2020. 拟南芥NF-YA8调控幼年向成年阶段转型及开花时间的分子机理研究[博士论文]. 泰安: 山东农业大学. | |
[52] | Zhao Jianguo, Cui Jiawen, Jin Biao. 2015. Research advances of developmental changes of juvenile to adult transition in woody plants. Plant Physiology Journal, 51 (11):1765-1774. (in Chinese) |
赵建国, 崔佳雯, 金飚. 2015. 树木幼年向成年转变的发育调控机制研究进展. 植物生理学报, 51 (11);1765-1774. | |
[53] |
Zheng C F, Ye M X, Sang M G, Wu R L. 2019a. A regulatory network for miR156-SPL module in Arabidopsis thaliana. International Journal of Molecular Sciences, 20 (24):6166.
doi: 10.3390/ijms20246166 URL |
[54] |
Zheng G H, Wei W, Li Y P, Kan L J, Wang F X, Zhang X, Li F, Liu Z C, Kang C Y. 2019b. Conserved and novel roles of miR164-CUC 2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist, 224 (1):480-492.
doi: 10.1111/nph.v224.1 URL |
[1] | HAN Shuai, WU Jie, ZHANG Heqing, XI Yadong. Identification and Sequence Analysis of Tomato Spotted Wilt Orthotospovirus Infecting Lettuce in Sichuan [J]. Acta Horticulturae Sinica, 2022, 49(9): 2007-2016. |
[2] | LIANG Qin, ZHANG Yanhui, KANG Kaiquan, LIU Jinhang, LI Liang, FENG Yu, WANG Chao, YANG Chao, LI Yongyu. Molecular Evolution of MiR168 Family and Their Expression Profiling During Dormancy of Pyrus pyrifolia [J]. Acta Horticulturae Sinica, 2022, 49(5): 958-972. |
[3] | GAO Weilin, ZHANG Liman, XUE Chaoling, ZHANG Yao, LIU Mengjun, ZHAO Jin. Expression of E-type MADS-box Genes in Flower and Fruits and Protein Interaction Analysis in Chinese Jujube [J]. Acta Horticulturae Sinica, 2022, 49(4): 739-748. |
[4] | GUO Xuemin, WANG Xinrui, WANG Yingying, LI Zheng, MIAO Ningning, WANG Zhaojun. Anatomical Observation on the Tortuousness of Ziziphus jujuba var. tortuosa Branches [J]. Acta Horticulturae Sinica, 2021, 48(9): 1653-1664. |
[5] | XIN Haiqing, ZHOU Junyong, SUN Yaoxing, MU Wenlei, YANG Jian, MA Fuli, SUN Jun, XUE Zhengrong, LU Lijuan, SUN Qibao. Differences in the Pericarp Structure and the Expression of Expansin Genes After Irrigation Between Easily Cracked and Resistant Jujube [J]. Acta Horticulturae Sinica, 2021, 48(9): 1785-1793. |
[6] | ZHANG Xiaoyi, HONG Yuhui, ZHANG Yuanyuan, LUAN Yushi. Preliminary Study on the Role of sly-miR166b and Its Target Genes in Tomato Resistance to Late Blight [J]. Acta Horticulturae Sinica, 2021, 48(8): 1595-1604. |
[7] | LI Linlin1,JIN Hua1,LIU Sichao3,ZOU Jixiang1,and LI Tianlai2,*. Expressied Analysis of miRNA with Tomato JA Deficient Mutant Reponse to Botrytis cinerea Infection [J]. ACTA HORTICULTURAE SINICA, 2020, 47(7): 1323-1334. |
[8] | QIU Xiaojun, TAN Qunyun, XIAO Qingming, MEI Shiyong, and ZHANG Jifang. Pathogen Identification of Virus Disease and Evaluation for Germplasm Disease Resistance in Radish [J]. Acta Horticulturae Sinica, 2020, 47(10): 1947-1955. |
[9] | ZHU Zaobing,YU Xiaqing*,ZHAI Yufei,WANG Panqiao,ZHAO Qinzheng,LI Ji,LOU Qunfeng,and CHEN Jinfeng*. Cloning and Functional Analysis of microRNA171 in Cucumber [J]. ACTA HORTICULTURAE SINICA, 2019, 46(5): 864-876. |
[10] | ZHANG Yanping1,2,*,LIU Zhaokun3,ZHU Xudong4,WANG Chen4,LI Qingkui1,YUAN Weiming1,and LOU Xiaoming1. Identification of miR160a and Its Target Gene ARFs in Peach Fruit and the Response Analysis of IAA [J]. ACTA HORTICULTURAE SINICA, 2019, 46(4): 613-622. |
[11] | MA Xinrui,LI Liang,LIU Jinhang,YANG Mengjie,CHEN Jie,LIANG Qin,WU Shaohua*,and LI Yongyu*. Identification and Differentially Expressed Analysis of microRNA Associated with Dormancy of Pear Flower Buds [J]. ACTA HORTICULTURAE SINICA, 2018, 45(11): 2089-2105. |
[12] | XU Yuanyuan1,ZHU Shiping1,LIU Xiaona1,LI Qingping2,and ZHAO Xiaochun1,*. Effects of Grafting on MicroRNAs Expression in Citrus [J]. ACTA HORTICULTURAE SINICA, 2017, 44(7): 1263-1274. |
[13] | YAN Ming-Ke, XU Qiang, LIU Chun-Yan, ZHANG Qiong, YAO Xiao-Hong. Preliminary Investigation on Sex Differentiation of Actinidia chinensis by High-throughput microRNAs Sequencing [J]. ACTA HORTICULTURAE SINICA, 2015, 42(7): 1260-1272. |
[14] | SONG Chang-nian;JIA Qi-dong;WANG Chen;LI Fei;ZHANG Zhen;and FANG Jing-gui;. Computational Identification and Analysis of the Putative microRNAs in 32 Fruit Crops [J]. ACTA HORTICULTURAE SINICA, 2010, 37(6): 869-879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd