Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (12): 2506-2524.doi: 10.16420/j.issn.0513-353x.2021-0558
Previous Articles Next Articles
LU Suwen(), ZHENG Xuanang, WANG Jiayang, FANG Jinggui
Received:
2021-06-11
Revised:
2021-07-29
Published:
2022-01-04
Contact:
LU Suwen
E-mail:lusuwen@njau.edu.cn
CLC Number:
LU Suwen, ZHENG Xuanang, WANG Jiayang, FANG Jinggui. Research Progress on the Metabolism of Flavonoids in Grape[J]. Acta Horticulturae Sinica, 2021, 48(12): 2506-2524.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0558
物质类别 Class | 结构单体 Monomer | 衍生物 Derivative |
---|---|---|
花青苷 Anthocyanin | 飞燕草色素Delphinidin(Dp) | 3-O-葡萄糖苷3-O-glucoside* |
矢车菊色素Cyanidin(Cy) | 3-O-(6-O-乙酰)-葡萄糖苷3-O-(6-O-acetyl)-glucoside | |
牵牛花色素Petunidin(Pt) 芍药色素Peonidin(Pn) 锦葵色素Malvidin(Mv)* | 3-O-(6-O-香豆酰)-葡萄糖苷3-O-(6-O-coumaroyl)-glucoside 3-(6-O-咖啡酰)-葡萄糖苷3-O-(6-O-caffeoyl)-glucoside | |
黄酮醇 Flavonol | 山奈酚Kaempferol | 3-O-葡萄糖苷3-O-glucoside* |
槲皮素Quercetin * | 3-O-葡萄糖苷酸3-O-glucuronide | |
杨梅素Myricetin 异鼠李素Isorhamnetin 落叶松素Laricitrin 丁香亭Syringetin | 3-O-半乳糖苷3-O-galactoside 3-O-芸香糖苷3-O-rutinoside 3-O-鼠李糖苷3-O-rhamnoside 3-(6-O-乙酰)葡萄糖苷3-(6-O-acetyl)glucoside 3-(6-O-香豆酰)葡萄糖苷3-(6-O-coumaroyl)glucoside | |
黄烷醇 Flavanol | 儿茶素Catechin(C)* 表儿茶素Epicatechin(EC) 表儿茶素没食子酸酯Epicatechin gallate(ECG) | 原花青素B1 Procyanidin B1 * 原花青素B2 Procyanidin B2 |
Table 1 The main flavonoid compounds in grapes
物质类别 Class | 结构单体 Monomer | 衍生物 Derivative |
---|---|---|
花青苷 Anthocyanin | 飞燕草色素Delphinidin(Dp) | 3-O-葡萄糖苷3-O-glucoside* |
矢车菊色素Cyanidin(Cy) | 3-O-(6-O-乙酰)-葡萄糖苷3-O-(6-O-acetyl)-glucoside | |
牵牛花色素Petunidin(Pt) 芍药色素Peonidin(Pn) 锦葵色素Malvidin(Mv)* | 3-O-(6-O-香豆酰)-葡萄糖苷3-O-(6-O-coumaroyl)-glucoside 3-(6-O-咖啡酰)-葡萄糖苷3-O-(6-O-caffeoyl)-glucoside | |
黄酮醇 Flavonol | 山奈酚Kaempferol | 3-O-葡萄糖苷3-O-glucoside* |
槲皮素Quercetin * | 3-O-葡萄糖苷酸3-O-glucuronide | |
杨梅素Myricetin 异鼠李素Isorhamnetin 落叶松素Laricitrin 丁香亭Syringetin | 3-O-半乳糖苷3-O-galactoside 3-O-芸香糖苷3-O-rutinoside 3-O-鼠李糖苷3-O-rhamnoside 3-(6-O-乙酰)葡萄糖苷3-(6-O-acetyl)glucoside 3-(6-O-香豆酰)葡萄糖苷3-(6-O-coumaroyl)glucoside | |
黄烷醇 Flavanol | 儿茶素Catechin(C)* 表儿茶素Epicatechin(EC) 表儿茶素没食子酸酯Epicatechin gallate(ECG) | 原花青素B1 Procyanidin B1 * 原花青素B2 Procyanidin B2 |
Fig. 1 The metabolic pathway of flavonoid in grape Refer to Flamini et al.,2013,Kuhn et al.,2014,Ferreira et al.,2018,Gouot et al.,2019,and so on. PAL:Phenylalanin ammonia-lyase;C4H:Cinnamate-4-hydroxylase;4CL:4-coumarate:coenzyme A ligase;CHS:Chalcone synthase;CHI:Chalcone isomerase;F3H:Flavanone 3-hydroxylase;F3'H:Flavanone 3'-hydroxylase;F3'5'H:Flavanone 3'5'-hydroxylase;DFR:Dihydroflavonol 4-reductase;ANR:Anthocyanidin reductase;LDOX:Leucoanthocyanin dioxygenase;FLS:Flavonol synthase;FNS:Flavone synthase;IFS:Isoflavone synthase;UFGT:UDP glucose:flavonoid 3-O-glucosyltransferase;OMT:O-methyltransferase;GST:glutathione S-transferase;MATE:Anthocyanin multidrug and toxic extrusion transporters;ABC:ATP-binding cassette transporter.
基因 Gene | 基因编号 Gene ID | 基因描述 Description | 碱基/bp Nucleotide base | 氨基酸 Amino acid | 分子量/ kD Molecular weight | 等电点 Isoelectric point | 外显子 Exon | 保守结构域/Pfam Conserved domains | |
---|---|---|---|---|---|---|---|---|---|
PAL | VIT_06s0004g02620 | 苯丙氨酸解氨酶 Phenylalanine ammonia lyase | 2 421 | 717 | 77.97 | 6.12 | 2 | PF00221 芳香族氨基酸裂解酶 Aromatic amino acid lyase | |
C4H | VIT_06s0004g08150 | 肉桂酸4-羟化酶 Cinnamate4-hydroxylase | 1 695 | 505 | 57.69 | 9.43 | 3 | PF00067 细胞色素P450 Cytochrome P450 | |
4CL | VIT_16s0039g02040 | 4-香豆酰CoA 连接酶 4-coumarate:CoA ligase | 1 980 | 548 | 59.49 | 5.77 | 6 | PF00501 AMP依赖的合成酶/连接酶 AMP-dependent synthetase/ ligase | |
CHS | VIT_05s0136g00260 | 查尔酮合成酶 Chalcone synthase | 1 369 | 389 | 42.60 | 6.58 | 2 | PF00195 查耳酮/芪合酶 Chalcone/stilbene synthase | |
CHI | VIT_13s0067g02870 | 查尔酮异构酶 Chalcone flavanone isomerase | 1 081 | 247 | 27.47 | 4.58 | 5 | PF02431 查尔酮异构酶 Chalcone isomerase | |
F3H | VIT_04s0023g03370 | 黄烷酮3羟化酶Flavanone 3-hydroxylase | 1 319 | 363 | 40.81 | 5.21 | 3 | PF14226 非血红素双加氧酶 Non-haem dioxygenase | |
F3'5'H | VIT_06s0009g02840 | 黄烷酮3ʹ 5ʹ羟化酶 Flavonoid 3ʹ,5ʹ-hydroxylase | 1 826 | 508 | 57.05 | 8.46 | 2 | PF00067 细胞色素P450 Cytochrome P450 | |
基因 Gene | 基因编号 Gene ID | 基因描述 Description | 碱基/bp Nucleotide base | 氨基酸 Amino acid | 分子量/ kD Molecular weight | 等电点 Isoelectric point | 外显子 Exon | 保守结构域/Pfam Conserved domains | |
F3'H | VIT_17s0000g07200 | 黄烷酮3ʹ羟化酶 Flavonoid 3ʹ-hydroxylase | 1 774 | 451 | 50.28 | 8.14 | 4 | PF00067 细胞色素P450 Cytochrome P450 | |
DFR | VIT_18s0001g12800 | 二氢黄酮醇4-还原酶Dihydroflavonol 4-reductase | 1 435 | 375 | 41.94 | 6.75 | 6 | PF01370 NAD依赖的差向异构酶/脱水酶NAD-dependent epimerase / dehydratase | |
LAR | VIT_17s0000g04150 | 无色花色素还原酶 Leucoanthocyanidin reductase | 1 364 | 358 | 38.70 | 4.83 | 5 | PF05368 NmrA类似结构域 NmrA-like domain | |
ANR | VIT_02s0025g01260 | 花色素还原酶 Anthocyanidin reductase | 1 334 | 342 | 37.88 | 5.01 | 5 | PF01370 NAD依赖的差向异构酶/脱水酶NAD-dependent epimerase / dehydratase | |
LDOX | VIT_02s0025g04720 | 无色花色素双加氧酶 Leucoanthocyanidin dioxgenase | 1 298 | 355 | 40.19 | 5.69 | 2 | PF14226 非血红素双加氧酶 Non-haem dioxygenase | |
FLS | VIT_18s0001g03490 | 黄酮醇合酶 Flavonol synthase | 1 015 | 335 | 38.39 | 6.66 | 3 | PF14226 非血红素双加氧酶N端结构域Non-haem dioxygenase N-terminal domain | |
UFGT | VIT_16s0039g02230 | UDP-葡萄糖:类黄酮-3-O-葡萄糖基转移酶 UDP-glucose:flavonoid 3-O-glucosyltransferase | 1 435 | 456 | 50.03 | 6.19 | 2 | PF00201 UDP-葡萄糖醛酸基/葡糖基转移酶UDP-glucuronosyl / UDP-glucosyltransferase | |
OMT | VIT_01s0010g03510 | O-甲基转移酶 O-methyltransferase | 876 | 235 | 26.50 | 7.13 | 5 | PF01596 I类硫腺苷甲硫氨酸依赖的 O-甲基转移酶 Class I-like SAM-dependent O-methyltransferase | |
AT | VIT_03s0017g00870 | 花色苷酰基转移酶 Anthocyanin-glucoside-acyltransferase | 1 284 | 427 | 47.50 | 7.65 | 1 | PF02458 转移酶Transferase | |
GST | VIT_04s0079g00690 | 谷胱甘肽-S-转移酶 Glutathione S-transferase | 831 | 213 | 24.22 | 5.69 | 3 | PF00043 谷胱甘肽转移酶 Glutathione S-transferase | |
MATE | VIT_16s0050g00900 | MATE-type转运子 AnthoMATE(AM)transporter | 1 589 | 489 | 53.49 | 6.12 | 7 | PF01554 多药和毒性化合物外排转运蛋白Multi antimicrobial extrusion protein | |
ABC | VIT_16s0050g02480 | ABC转运蛋白 ABC transporter | 4 990 | 1 480 | 164.81 | 6.80 | 12 | PF00664 ABC转运子1型 ABC transporter type 1 |
Table 2 Basic information on key structural genes involved in flavonoid biosynthesis in grape
基因 Gene | 基因编号 Gene ID | 基因描述 Description | 碱基/bp Nucleotide base | 氨基酸 Amino acid | 分子量/ kD Molecular weight | 等电点 Isoelectric point | 外显子 Exon | 保守结构域/Pfam Conserved domains | |
---|---|---|---|---|---|---|---|---|---|
PAL | VIT_06s0004g02620 | 苯丙氨酸解氨酶 Phenylalanine ammonia lyase | 2 421 | 717 | 77.97 | 6.12 | 2 | PF00221 芳香族氨基酸裂解酶 Aromatic amino acid lyase | |
C4H | VIT_06s0004g08150 | 肉桂酸4-羟化酶 Cinnamate4-hydroxylase | 1 695 | 505 | 57.69 | 9.43 | 3 | PF00067 细胞色素P450 Cytochrome P450 | |
4CL | VIT_16s0039g02040 | 4-香豆酰CoA 连接酶 4-coumarate:CoA ligase | 1 980 | 548 | 59.49 | 5.77 | 6 | PF00501 AMP依赖的合成酶/连接酶 AMP-dependent synthetase/ ligase | |
CHS | VIT_05s0136g00260 | 查尔酮合成酶 Chalcone synthase | 1 369 | 389 | 42.60 | 6.58 | 2 | PF00195 查耳酮/芪合酶 Chalcone/stilbene synthase | |
CHI | VIT_13s0067g02870 | 查尔酮异构酶 Chalcone flavanone isomerase | 1 081 | 247 | 27.47 | 4.58 | 5 | PF02431 查尔酮异构酶 Chalcone isomerase | |
F3H | VIT_04s0023g03370 | 黄烷酮3羟化酶Flavanone 3-hydroxylase | 1 319 | 363 | 40.81 | 5.21 | 3 | PF14226 非血红素双加氧酶 Non-haem dioxygenase | |
F3'5'H | VIT_06s0009g02840 | 黄烷酮3ʹ 5ʹ羟化酶 Flavonoid 3ʹ,5ʹ-hydroxylase | 1 826 | 508 | 57.05 | 8.46 | 2 | PF00067 细胞色素P450 Cytochrome P450 | |
基因 Gene | 基因编号 Gene ID | 基因描述 Description | 碱基/bp Nucleotide base | 氨基酸 Amino acid | 分子量/ kD Molecular weight | 等电点 Isoelectric point | 外显子 Exon | 保守结构域/Pfam Conserved domains | |
F3'H | VIT_17s0000g07200 | 黄烷酮3ʹ羟化酶 Flavonoid 3ʹ-hydroxylase | 1 774 | 451 | 50.28 | 8.14 | 4 | PF00067 细胞色素P450 Cytochrome P450 | |
DFR | VIT_18s0001g12800 | 二氢黄酮醇4-还原酶Dihydroflavonol 4-reductase | 1 435 | 375 | 41.94 | 6.75 | 6 | PF01370 NAD依赖的差向异构酶/脱水酶NAD-dependent epimerase / dehydratase | |
LAR | VIT_17s0000g04150 | 无色花色素还原酶 Leucoanthocyanidin reductase | 1 364 | 358 | 38.70 | 4.83 | 5 | PF05368 NmrA类似结构域 NmrA-like domain | |
ANR | VIT_02s0025g01260 | 花色素还原酶 Anthocyanidin reductase | 1 334 | 342 | 37.88 | 5.01 | 5 | PF01370 NAD依赖的差向异构酶/脱水酶NAD-dependent epimerase / dehydratase | |
LDOX | VIT_02s0025g04720 | 无色花色素双加氧酶 Leucoanthocyanidin dioxgenase | 1 298 | 355 | 40.19 | 5.69 | 2 | PF14226 非血红素双加氧酶 Non-haem dioxygenase | |
FLS | VIT_18s0001g03490 | 黄酮醇合酶 Flavonol synthase | 1 015 | 335 | 38.39 | 6.66 | 3 | PF14226 非血红素双加氧酶N端结构域Non-haem dioxygenase N-terminal domain | |
UFGT | VIT_16s0039g02230 | UDP-葡萄糖:类黄酮-3-O-葡萄糖基转移酶 UDP-glucose:flavonoid 3-O-glucosyltransferase | 1 435 | 456 | 50.03 | 6.19 | 2 | PF00201 UDP-葡萄糖醛酸基/葡糖基转移酶UDP-glucuronosyl / UDP-glucosyltransferase | |
OMT | VIT_01s0010g03510 | O-甲基转移酶 O-methyltransferase | 876 | 235 | 26.50 | 7.13 | 5 | PF01596 I类硫腺苷甲硫氨酸依赖的 O-甲基转移酶 Class I-like SAM-dependent O-methyltransferase | |
AT | VIT_03s0017g00870 | 花色苷酰基转移酶 Anthocyanin-glucoside-acyltransferase | 1 284 | 427 | 47.50 | 7.65 | 1 | PF02458 转移酶Transferase | |
GST | VIT_04s0079g00690 | 谷胱甘肽-S-转移酶 Glutathione S-transferase | 831 | 213 | 24.22 | 5.69 | 3 | PF00043 谷胱甘肽转移酶 Glutathione S-transferase | |
MATE | VIT_16s0050g00900 | MATE-type转运子 AnthoMATE(AM)transporter | 1 589 | 489 | 53.49 | 6.12 | 7 | PF01554 多药和毒性化合物外排转运蛋白Multi antimicrobial extrusion protein | |
ABC | VIT_16s0050g02480 | ABC转运蛋白 ABC transporter | 4 990 | 1 480 | 164.81 | 6.80 | 12 | PF00664 ABC转运子1型 ABC transporter type 1 |
转录因子家族 TF family | 基因 Gene | 基因编号 Gene ID | 蛋白编号 Protein ID | Ensemble编号 Ensemble ID | 调控方式 Regulative way | 参考文献 Reference |
---|---|---|---|---|---|---|
MYB | MYBA1 | AB097923 | BAD18977 | VIT_ 02s0033g00410 | 激活UFGT、CHS3、LDOX、3AT,促进花青苷合成Activates the expression of UFGT,CHS3,LDOX and 3AT,to promote anthocyanin synthesis | Kobayashi et al., |
MYBA2 | AB097924 | BAD18978 | VIT_ 02s0033g00390 | 激活UFGT、CHS3、LDOX,促进花青苷合成Activates the expression of UFGT,CHS3,LDOX and 3AT,to promote anthocyanin synthesis | Kobayashi et al., | |
MYBA3 | AB097925 | BAD18979 | VIT_ 02s0033g00450 | 未知Unknown | Kobayashi et al., | |
MYBPA1 | AM259485 | CAJ90831 | VIT_ 15s0046g00170 | 激活ANR、LAR1、F3'5'H、LDOX、CHI,不激活UFGT,促进种子和果实发育早期原花青素合成Activates the expression of ANR, LAR1,F3'5'H,LDOX and CHI,but not UFGT,to promote proanthocyanidin synthesis in seed and early fruit development | Bogs et al., | |
MYBPA2 | EU919682 | ACK56131 | VIT_ 11s0016g01310 | 激活ANR、LAR1,促进果实原花青素合成Activates the expression of ANR and LAR1,to promote proanthocyanidin synthesis in fruit | Terrier et al., | |
MYBPAR | AB911341 | BAP39802 | VIT_ 11s0016g01300 | 激活ANR、LAR1、LAR2、CHS3、F3'5'H、GT1、SCP、MATE,不激活UFGT,促进果实原花青素合成Activates the expression of ANR,LAR1,LAR2,CHS3,F3'5'H,GT1,SCP and MATE,but not UFGT,to promote proanthocyanidin synthesis in fruit | Koyama et al., | |
MYB5a | AY555190 | AAS68190 | VIT_ 08s0007g07230 | 与AtEGL3(bHLH蛋白)互作,激活LAR1、CHI、F3'5'H、ANS,促进花青苷、黄酮醇和原花青素合成Interacts with AtEGL3(a bHLH protein)and activates the expression of LAR1,CHI,F3'5'Hand ANS,to promote the synthesis of anthocyanin,flavonol,and procyanidin | Deluc et al., | |
转录因子家族 TF family | 基因 Gene | 基因编号 Gene ID | 蛋白编号 Protein ID | Ensemble编号 Ensemble ID | 调控方式 Regulative way | 参考文献 Reference |
MYB5b | AY899404 | AAX51291 | VIT_ 06s0004g00570 | 与AtEGL3(bHLH蛋白)互作,激活ANR、LAR1、CHI、F3'5'H、ANS,促进花青苷、黄酮醇和原花青素合成Interacts with AtEGL3(a bHLH protein)and activates the expression of ANR,LAR1,CHI,F3'5'H and ANS,to promote the synthesis of anthocyanin,flavonol,and procyanidin | Deluc et al., | |
MYBF1 | GQ423422 | ACV81697 | VIT_ 07s0005g01210 | 激活CHS、CHI、FLS,促进黄酮醇合成Activates the expression of CHS,CHI and FLS,to promote flavonol synthesis | Czemmel et al. | |
MYB4 | EF113078 | ABL61515 | VIT_ 01s0011g04760 | 抑制花青素合成 Inhibits anthocyanin synthesis | Cavallini et al., | |
MYBC2-L1 | JX050227 | AFX64995 | VIT_ 01s0011g04760 | 抑制花青素和原花青素合成Inhibits the synthesis of anthocyanin and proanthocyanin | Cavallini et al., | |
MYBC2-L2 | GQ903730 | ACX50288 | VIT_ 17s0000g02660 | 抑制花青素合成 Inhibits anthocyanin synthesis | Zhu et al., | |
MYBC2-L3 | KM046932 | AIP98385 | VIT_ 14s0006g01620 | 抑制花青素和原花青素合成Inhibits the synthesis of anthocyanin and proanthocyanin | Cavallini et al., | |
MYB86 | XM_ 002280991 | XP_ 002281027 | VIT_ 207s0005g02480 | 上调LAR表达来促进原花青素合成,下调ANS和UFGT的表达来抑制花青素生物合成Activates the expression of LAR to promote proanthocyanin synthesis and suppresses the expression of ANS and UFGT to inhibit anthocyanin biosynthesis | Cheng et al., | |
bHLH | MYC1 | EU447172 | ACC68685 | VIT_ 07s0104g00090 | 与MYB5a、MYB5b、MYBA1/A2、MYBPA1互作,激活UFGT、ANR、CHI,促进花青素和原花青素合成 Interacts with MYB5a,MYB5b,MYBA1/A2,MYBPA1 and activates the expression of UFGT,ANR and CHI,to promote the synthesis of anthocyanin and procyanidin | Hichri et al., |
MYCA1 | ABM92332 | EF193002 | VIT_ 15s0046g02560 | 可能参与花青素和原花青素合成调控Possibility regulates the synthesis of anthocyanin and proanthocyanin | Matus et al., | |
WD40 | WDR1 | ABF66625 | DQ517913 | VIT_ 16s0098g00870 | 可能参与花青素合成调控Possibility regulates the synthesis of anthocyanin | Matus et al., |
WDR2 | ABF66626 | DQ517914 | VIT_ 14s0068g00660 | 未知Unknown | Matus et al., | |
WKRY | WKRY26 | KF356359 | AGX85877 | VIT_ 08s0040g03070 | 与MYB5a互作,激活CHI以及液泡酸化相关基因PH1和PH5表达,参与调节液泡运输和类黄酮生物合成,在原花青素沉积中起特殊作用Interacts with MYB5a,activates the expression of CHI,PH1 and PH5 genes related to vacuole acidification,and participates in the regulation of vacuole transport and flavonoid biosynthesis,playing a special role in procyanidin deposition | Amato et al., |
bZIP | HY5 | KF356359 | AGX85877 | VIT_ 04s0008g05210 | 响应UVB,参与黄酮醇合成调控 Responses to UVB and participates in the regulation of flavonol synthesis | Loyola et al. |
HYH | KJ423106 | AHX24181 | VIT_ 05s0020g01090 | 响应UVB,参与黄酮醇合成调控 Responses to UVB and participates in the regulation of flavonol synthesis | Loyola et al. | |
bZIPC22 | KX073969 | ANA53138 | VIT_ 07s0005g01450 | 响应UVB,参与黄酮醇合成调控 Responses to UVB and participates in the regulation of flavonol synthesis | Malacarne et al., | |
BBX | BBX44 | XM_ 002262959 | XP_002262995 | VIT_ 00s0347g00030 | 抑制HY5表达,抑制光诱导的花青苷合成Suppresses the expression of HY5 to inhibit light-induced anthocyanin synthesis | Liu et al., |
Table 3 Known transcription factors involved in the flavonoid biosynthesis in grape
转录因子家族 TF family | 基因 Gene | 基因编号 Gene ID | 蛋白编号 Protein ID | Ensemble编号 Ensemble ID | 调控方式 Regulative way | 参考文献 Reference |
---|---|---|---|---|---|---|
MYB | MYBA1 | AB097923 | BAD18977 | VIT_ 02s0033g00410 | 激活UFGT、CHS3、LDOX、3AT,促进花青苷合成Activates the expression of UFGT,CHS3,LDOX and 3AT,to promote anthocyanin synthesis | Kobayashi et al., |
MYBA2 | AB097924 | BAD18978 | VIT_ 02s0033g00390 | 激活UFGT、CHS3、LDOX,促进花青苷合成Activates the expression of UFGT,CHS3,LDOX and 3AT,to promote anthocyanin synthesis | Kobayashi et al., | |
MYBA3 | AB097925 | BAD18979 | VIT_ 02s0033g00450 | 未知Unknown | Kobayashi et al., | |
MYBPA1 | AM259485 | CAJ90831 | VIT_ 15s0046g00170 | 激活ANR、LAR1、F3'5'H、LDOX、CHI,不激活UFGT,促进种子和果实发育早期原花青素合成Activates the expression of ANR, LAR1,F3'5'H,LDOX and CHI,but not UFGT,to promote proanthocyanidin synthesis in seed and early fruit development | Bogs et al., | |
MYBPA2 | EU919682 | ACK56131 | VIT_ 11s0016g01310 | 激活ANR、LAR1,促进果实原花青素合成Activates the expression of ANR and LAR1,to promote proanthocyanidin synthesis in fruit | Terrier et al., | |
MYBPAR | AB911341 | BAP39802 | VIT_ 11s0016g01300 | 激活ANR、LAR1、LAR2、CHS3、F3'5'H、GT1、SCP、MATE,不激活UFGT,促进果实原花青素合成Activates the expression of ANR,LAR1,LAR2,CHS3,F3'5'H,GT1,SCP and MATE,but not UFGT,to promote proanthocyanidin synthesis in fruit | Koyama et al., | |
MYB5a | AY555190 | AAS68190 | VIT_ 08s0007g07230 | 与AtEGL3(bHLH蛋白)互作,激活LAR1、CHI、F3'5'H、ANS,促进花青苷、黄酮醇和原花青素合成Interacts with AtEGL3(a bHLH protein)and activates the expression of LAR1,CHI,F3'5'Hand ANS,to promote the synthesis of anthocyanin,flavonol,and procyanidin | Deluc et al., | |
转录因子家族 TF family | 基因 Gene | 基因编号 Gene ID | 蛋白编号 Protein ID | Ensemble编号 Ensemble ID | 调控方式 Regulative way | 参考文献 Reference |
MYB5b | AY899404 | AAX51291 | VIT_ 06s0004g00570 | 与AtEGL3(bHLH蛋白)互作,激活ANR、LAR1、CHI、F3'5'H、ANS,促进花青苷、黄酮醇和原花青素合成Interacts with AtEGL3(a bHLH protein)and activates the expression of ANR,LAR1,CHI,F3'5'H and ANS,to promote the synthesis of anthocyanin,flavonol,and procyanidin | Deluc et al., | |
MYBF1 | GQ423422 | ACV81697 | VIT_ 07s0005g01210 | 激活CHS、CHI、FLS,促进黄酮醇合成Activates the expression of CHS,CHI and FLS,to promote flavonol synthesis | Czemmel et al. | |
MYB4 | EF113078 | ABL61515 | VIT_ 01s0011g04760 | 抑制花青素合成 Inhibits anthocyanin synthesis | Cavallini et al., | |
MYBC2-L1 | JX050227 | AFX64995 | VIT_ 01s0011g04760 | 抑制花青素和原花青素合成Inhibits the synthesis of anthocyanin and proanthocyanin | Cavallini et al., | |
MYBC2-L2 | GQ903730 | ACX50288 | VIT_ 17s0000g02660 | 抑制花青素合成 Inhibits anthocyanin synthesis | Zhu et al., | |
MYBC2-L3 | KM046932 | AIP98385 | VIT_ 14s0006g01620 | 抑制花青素和原花青素合成Inhibits the synthesis of anthocyanin and proanthocyanin | Cavallini et al., | |
MYB86 | XM_ 002280991 | XP_ 002281027 | VIT_ 207s0005g02480 | 上调LAR表达来促进原花青素合成,下调ANS和UFGT的表达来抑制花青素生物合成Activates the expression of LAR to promote proanthocyanin synthesis and suppresses the expression of ANS and UFGT to inhibit anthocyanin biosynthesis | Cheng et al., | |
bHLH | MYC1 | EU447172 | ACC68685 | VIT_ 07s0104g00090 | 与MYB5a、MYB5b、MYBA1/A2、MYBPA1互作,激活UFGT、ANR、CHI,促进花青素和原花青素合成 Interacts with MYB5a,MYB5b,MYBA1/A2,MYBPA1 and activates the expression of UFGT,ANR and CHI,to promote the synthesis of anthocyanin and procyanidin | Hichri et al., |
MYCA1 | ABM92332 | EF193002 | VIT_ 15s0046g02560 | 可能参与花青素和原花青素合成调控Possibility regulates the synthesis of anthocyanin and proanthocyanin | Matus et al., | |
WD40 | WDR1 | ABF66625 | DQ517913 | VIT_ 16s0098g00870 | 可能参与花青素合成调控Possibility regulates the synthesis of anthocyanin | Matus et al., |
WDR2 | ABF66626 | DQ517914 | VIT_ 14s0068g00660 | 未知Unknown | Matus et al., | |
WKRY | WKRY26 | KF356359 | AGX85877 | VIT_ 08s0040g03070 | 与MYB5a互作,激活CHI以及液泡酸化相关基因PH1和PH5表达,参与调节液泡运输和类黄酮生物合成,在原花青素沉积中起特殊作用Interacts with MYB5a,activates the expression of CHI,PH1 and PH5 genes related to vacuole acidification,and participates in the regulation of vacuole transport and flavonoid biosynthesis,playing a special role in procyanidin deposition | Amato et al., |
bZIP | HY5 | KF356359 | AGX85877 | VIT_ 04s0008g05210 | 响应UVB,参与黄酮醇合成调控 Responses to UVB and participates in the regulation of flavonol synthesis | Loyola et al. |
HYH | KJ423106 | AHX24181 | VIT_ 05s0020g01090 | 响应UVB,参与黄酮醇合成调控 Responses to UVB and participates in the regulation of flavonol synthesis | Loyola et al. | |
bZIPC22 | KX073969 | ANA53138 | VIT_ 07s0005g01450 | 响应UVB,参与黄酮醇合成调控 Responses to UVB and participates in the regulation of flavonol synthesis | Malacarne et al., | |
BBX | BBX44 | XM_ 002262959 | XP_002262995 | VIT_ 00s0347g00030 | 抑制HY5表达,抑制光诱导的花青苷合成Suppresses the expression of HY5 to inhibit light-induced anthocyanin synthesis | Liu et al., |
[1] | Amato A, Cavallini E, Zenoni S, Finezzo L, Begheldo M, Ruperti B, Tornielli G B. 2017. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynthesis. Frontiers in Plant Science, 7:1979. |
[2] |
Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y. 2008. Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theoretical and Applied Genetics, 117:1009-1019.
doi: 10.1007/s00122-008-0840-1 URL |
[3] | Azuma A, Kono A, Sato A. 2020. Simple DNA marker system reveals genetic diversity of MYB genotypes that determine skin color in grape genetic resources. Tree Genetics & Genomes, 16:29. |
[4] |
Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 236:1067-1080.
doi: 10.1007/s00425-012-1650-x URL |
[5] |
Bogs J, Downey M O, Harvey J S, Ashton A R, Tanner G J, Robinson S P. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology, 139:652-663.
doi: 10.1104/pp.105.064238 URL |
[6] |
Bogs J, Jaffe F W, Takos A M, Walker A R, Robinson S P. 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology, 143:1347-1361.
doi: 10.1104/pp.106.093203 URL |
[7] |
Boss P K, Davies C, Robinson S P. 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiology, 111:1059-1066.
pmid: 12226348 |
[8] |
Cáceres-Mella A, Talaverano M I, Villalobos-González L, Ribalta-Pizarro C, Pastenes C. 2017. Controlled water deficit during ripening affects proanthocyanidin synthesis,concentration and composition in Cabernet Sauvignon grape skins. Plant Physiology and Biochemistry, 117:34-41.
doi: S0981-9428(17)30172-9 pmid: 28587991 |
[9] |
Carbonell-Bejerano P, Diago M-P, Martínez-Abaigar J, Martínez-Zapater J M, Tardáguila J, Núñez-Olivera E. 2014. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biology, 14:1-16.
doi: 10.1186/1471-2229-14-1 URL |
[10] |
Castellarin S D, Gaspero G D, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon A F, Testolin R. 2006. Colour variation in red grapevines(Vitis vinifera L.):genomic organisation,expression of flavonoid 3′-hydroxylase,flavonoid 3′, 5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics, 7:1-17.
doi: 10.1186/1471-2164-7-1 URL |
[11] |
Castellarin S D, Matthews M A, Di Gaspero G, Gambetta G A. 2007. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227:101-112.
pmid: 17694320 |
[12] |
Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. 2010. Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis, 23:699-705.
doi: 10.1016/j.jfca.2010.03.017 URL |
[13] |
Cavallini E, Matus J T, Finezzo L, Zenoni S, Loyola R, Guzzo F, Schlechter R, Ageorges A, Arce-Johnson P, Tornielli G B. 2015. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology, 167:1448-1470.
doi: 10.1104/pp.114.256172 pmid: 25659381 |
[14] |
Chen H, Yang J, Deng X, Lei Y, Xie S, Guo S, Ren R, Li J, Zhang Z, Xu T. 2020. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon(Vitis vinifera L.)growing on alkaline soil and wine chromatic characteristics. Food Chemistry, 314:126182.
doi: 10.1016/j.foodchem.2020.126182 URL |
[15] |
Chen W K, Bai X J, Cao M M, Cheng G, Cao X J, Guo R R, Wang Y, He L, Yang X H, He F, Duan C Q, Wang J. 2017. Dissecting the variations of ripening progression and flavonoid metabolism in grape berries grown under double cropping system. Frontiers in Plant Science, 8:1912.
doi: 10.3389/fpls.2017.01912 URL |
[16] | Cheng J, Yu K, Shi Y, Wang J, Duan C. 2021. Transcription factor VviMYB 86 oppositely regulates proanthocyanidin and anthocyanin biosynthesis in grape berries. Frontiers in Plant Science,11. |
[17] |
Cho M J, Howard L R, Prior R L, Clark J R. 2004. Flavonoid glycosides and antioxidant capacity of various blackberry,blueberry and red grape genotypes determined by high‐performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84 (13):1771-1782.
doi: 10.1002/(ISSN)1097-0010 URL |
[18] |
Conn S, Curtin C, Bézier A, Franco C, Zhang W. 2008. Purification,molecular cloning,and characterization of glutathione S-transferases(GSTs)from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 59:3621-3634.
doi: 10.1093/jxb/ern217 URL |
[19] |
Crupi P, Palattella D, Corbo F, Clodoveo M L, Masi G, Caputo A R, Battista F, Tarricone L. 2021. Effect of pre-harvest inactivated yeast treatment on the anthocyanin content and quality of table grapes. Food Chemistry, 337:128006.
doi: 10.1016/j.foodchem.2020.128006 URL |
[20] |
Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris N N, Walker A R, Robinson S P, Bogs J. 2009. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology, 151:1513-1530.
doi: 10.1104/pp.109.142059 pmid: 19741049 |
[21] |
de Beer D, Joubert E, Gelderblom W C, Manley M. 2005. Antioxidant activity of South African red and white cultivar wines and selected phenolic compounds:In vitro inhibition of microsomal lipid peroxidation. Food Chemistry, 90:569-577.
doi: 10.1016/j.foodchem.2004.04.015 URL |
[22] |
Delgado R, Martín P, Del Álamo M, González M R. 2004. Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. Journal of the Science of Food and Agriculture, 84:623-630.
doi: 10.1002/(ISSN)1097-0010 URL |
[23] |
Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J P, Merillon J M, Hamdi S. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology, 140:499-511.
doi: 10.1104/pp.105.067231 URL |
[24] |
Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F. 2008. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiology, 147:2041-2053.
doi: 10.1104/pp.108.118919 URL |
[25] | Downey M O, Harvey J S, Robinson S P. 2004. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape & Wine Research, 10:55-73. |
[26] |
El-Kereamy A, Chervin C, Roustan J P, Cheynier V, Bouzayen M. 2003. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum, 119:175-182.
doi: 10.1034/j.1399-3054.2003.00165.x URL |
[27] |
El Kereamy A, Chervin C, Souquet J-M, Moutounet M, Monje M-C, Nepveu F, Mondies H, Ford C M, van Heeswijck R, Roustan J-P. 2002. Ethanol triggers grape gene expression leading to anthocyanin accumulation during berry ripening. Plant Science, 163:449-454.
doi: 10.1016/S0168-9452(02)00142-5 URL |
[28] |
Falcone Ferreyra M L, Rius S P, Casati P. 2012. Flavonoids:biosynthesis,biological functions,and biotechnological applications. Frontiers in Plant Science, 3:222.
doi: 10.3389/fpls.2012.00222 pmid: 23060891 |
[29] |
Falginella L, Castellarin S D, Testolin R, Gambetta G A, Morgante M,Di Gaspero G. 2010. Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage. BMC Genomics, 11:562.
doi: 10.1186/1471-2164-11-562 pmid: 20939908 |
[30] |
Ferreira V, Pinto-Carnide O, Arroyo-Garcia R, Castro I. 2018. Berry color variation in grapevine as a source of diversity. Plant Physiology and Biochemistry, 132:696-707.
doi: S0981-9428(18)30359-0 pmid: 30146416 |
[31] |
Flamini R, Mattivi F, Rosso M D, Arapitsas P, Bavaresco L. 2013. Advanced knowledge of three important classes of grape phenolics:anthocyanins,stilbenes and flavonols. International Journal of Molecular Sciences, 14:19651-19669.
doi: 10.3390/ijms141019651 URL |
[32] |
Francisco R M, Regalado A, Ageorges A, Burla B J, Bassin B, Eisenach C, Zarrouk O, Vialet S, Marlin T, Chaves M M, Martinoia E, Nagy R. 2013. ABCC1,an ATP binding cassette protein from grape berry,transports anthocyanidin 3-O-Glucosides. Plant Cell, 25:1840-1854.
doi: 10.1105/tpc.112.102152 URL |
[33] |
Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K. 2006. Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Bioscience Biotechnology Biochemistry, 70:632-638.
doi: 10.1271/bbb.70.632 URL |
[34] |
Gao S, Ma W, Lyu X, Cao X, Yao Y. 2020. Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries. BMC Plant Biology, 20:1-15.
doi: 10.1186/s12870-019-2170-7 URL |
[35] |
Georgiev V, Ananga A, Tsolova V. 2014. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6:391-415.
doi: 10.3390/nu6010391 pmid: 24451310 |
[36] |
Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin S D, Schubert A. 2016. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiology and Biochemistry, 101:23-32.
doi: S0981-9428(16)30014-6 pmid: 26851572 |
[37] |
Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A. 2011. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant Journal, 67:960-970.
doi: 10.1111/tpj.2011.67.issue-6 URL |
[38] |
González-SanJosé M L, Diez C. 1992. Relationship between anthocyanins and sugars during the ripening of grape berries. Food Chemistry, 43:193-197.
doi: 10.1016/0308-8146(92)90172-X URL |
[39] |
Goto-Yamamoto N, Wan G H, Masaki K, Kobayashi S. 2002. Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Science, 162:867-872.
doi: 10.1016/S0168-9452(02)00042-0 URL |
[40] |
Gouot J C, Smith J P, Holzapfel B P, Walker A R, Barril C. 2019. Grape berry flavonoids:A review of their biochemical responses to high and extreme high temperatures. Journal of Experimental Botany, 70:397-423.
doi: 10.1093/jxb/ery392 URL |
[41] |
Guan L, Li J H, Fan P G, Chen S, Fang J B, Li S H, Wu B H. 2012. Anthocyanin accumulation in various organs of a teinturier cultivar(Vitis vinifera L.)during the growing season. American Journal of Enology and Viticulture, 63:177-184.
doi: 10.5344/ajev.2011.11063 URL |
[42] |
Gutiérrez-Gamboa G, Garde-Cerdán T, Martínez-Lapuente L, Costa B S D, Rubio-Bretón P, Pérez-Álvarez E P. 2020. Phenolic composition of Tempranillo Blanco(Vitis vinifera L.)grapes and wines after biostimulation via a foliar seaweed application. Journal of the Science of Food and Agriculture, 100:825-835.
doi: 10.1002/jsfa.10094 pmid: 31646642 |
[43] | Harris N, Luczo J, Robinson S P, Walker A. 2013. Transcriptional regulation of the three grapevine chalcone synthase genes and their role in flavonoid synthesis in Shiraz. Australian Journal of Grape & Wine Research, 19:221-229. |
[44] | He Lei, Pan Qiuhong,. 2016. Research progress on hormone regulation of flavonoid metabolism in grape fruits. Journal of Tropical Biology, 7:522-529. (in Chinese) |
何磊, 潘秋红. 2016. 激素调控葡萄果实类黄酮代谢的研究进展. 热带生物学报, 7:522-529. | |
[45] |
Hichri I, Heppel S C, Pillet J, Leon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J. 2010. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Molecular Plant, 3:509-523.
doi: 10.1093/mp/ssp118 pmid: 20118183 |
[46] |
Hu Li, Peng Wenting, Lu Haocheng, Wang Jun. 2020. Analysis on differences in flavonoids and aroma compounds of different wine grape varieties. Food Science, 41:9. (in Chinese)
doi: 10.1111/jfds.1976.41.issue-1 URL |
胡丽, 彭文婷, 卢浩成, 王军. 2020. 不同酿酒葡萄果实类黄酮及香气物质差异分析. 食品科学, 41:9. | |
[47] |
Jeong S, Goto-Yamamoto N, Hashizume K, Esaka M. 2006. Expression of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Science, 170:61-69.
doi: 10.1016/j.plantsci.2005.07.025 URL |
[48] | Jeong S, Goto-Yamamoto N, Hashizume K, Esaka M. 2008. Expression of multi-copy flavonoid pathway genes coincides with anthocyanin,flavonol and flavan-3-ol accumulation of grapevine. Vitis, 47:135-140. |
[49] |
Jeong S T, Goto-Yamamoto N, Kobayashi S, Esaka M. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science, 167:247-252.
doi: 10.1016/j.plantsci.2004.03.021 URL |
[50] |
Jiu S, Guan L, Leng X, Zhang K, Haider M S, Yu X, Zhu X, Zheng T, Ge M, Wang C, Jia H, Shangguan L, Zhang C, Tang X, Abdullah M, Javed H U, Han J, Dong Z, Fang J. 2021. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA 2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape(Vitis spp.)skin coloration. Plant Biotechnology Journal,doi: org/10.1111/pbi.13543.
doi: org/10.1111/pbi.13543 |
[51] |
Kobayashi S, Goto-Yamamoto N, Hirochika H. 2004. Retrotransposon-induced mutations in grape skin color. Science, 304:982.
pmid: 15143274 |
[52] |
Kong J, Wu J, Guan L, Hilbert G, Delrot S, Fan P, Liang Z, Wu B, Matus J T, Gomès E. 2021. Metabolite analysis reveals distinct spatio-temporal accumulation of anthocyanins in two teinturier variants of cv.‘Gamay’grapevines(Vitis vinifera L.). Planta, 253:1-18.
doi: 10.1007/s00425-020-03501-3 URL |
[53] |
Koyama K, Ikeda H, Poudel P R, Goto-Yamamoto N. 2012. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 78:54-64.
doi: 10.1016/j.phytochem.2012.02.026 URL |
[54] |
Koyama K, Numata M, Nakajima I, Goto-Yamamoto N, Matsumura H, Tanaka N. 2014. Functional characterization of a new grapevine MYB transcription factor and regulation of proanthocyanidin biosynthesis in grapes. Journal of Experimental Botany, 65:4433-4449.
doi: 10.1093/jxb/eru213 URL |
[55] |
Koyama R, Roberto S R, de Souza R T, Borges W F S, Anderson M, Waterhouse A L, Cantu D, Fidelibus M W, Blanco-Ulate B. 2018. Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in Vitis vinifera × Vitis labrusca table grapes in a subtropical region. Frontiers in Plant Science,doi: 10.3389/fpls.2018.00323.
doi: 10.3389/fpls.2018.00323 |
[56] |
Kuhn N, Guan L, Dai Z W, Wu B H, Lauvergeat V, Gomes E, Li S H, Godoy F, Arce-Johnson P, Delrot S. 2014. Berry ripening:recently heard through the grapevine. Journal of Experimental Botany, 65:4543-4559.
doi: 10.1093/jxb/ert395 URL |
[57] | Leng F, Cao J, Ge Z, Wang Y, Zhao C, Wang S, Li X, Zhang Y, Sun C. 2020. Transcriptomic analysis of root restriction effects on phenolic metabolites during grape berry development and ripening. Journal of Agricultural & Food Chemistry, 68:9090-9099. |
[58] |
Liang Z, Owens C L, Zhong G Y, Cheng L. 2011. Polyphenolic profiles detected in the ripe berries of Vitis vinifera germplasm. Food Chemistry, 129:940-950.
doi: 10.1016/j.foodchem.2011.05.050 URL |
[59] |
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. 2021. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape(Vitis vinifera L.). Planta 253:114.
doi: 10.1007/s00425-021-03618-z URL |
[60] |
Loyola R, Herrera D, Mas A, Wong D C, Holl J, Cavallini E, Amato A, Azuma A, Ziegler T, Aquea F, Castellarin S D, Bogs J, Tornielli G B, Pena-Neira A, Czemmel S, Alcalde J A, Matus J T, Arce-Johnson P. 2016. The photomorphogenic factors UV-B RECEPTOR 1,ELONGATED HYPOCOTYL 5,and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. Journal of Experimental Botany, 67:5429-5445.
doi: 10.1093/jxb/erw307 URL |
[61] | Luo Jianming. 2017. Inhibitory effects and mechanism of grape pomace phenolic compounds on breast cancer in vitro[Ph. D. Dissertation]. Beijing: China Agricultural University. (in Chinese) |
罗剑鸣. 2017. 葡萄皮渣酚类化合物体外抑制乳腺癌的功效及机理[博士论文]. 北京: 中国农业大学. | |
[62] |
Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C. 2016. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany, 67:3509-3522.
doi: 10.1093/jxb/erw181 pmid: 27194742 |
[63] | Martinez-Luscher J, Chen C C L, Brillante L, Kurtural S K. 2017. Partial solar radiation exclusion with color shade nets reduces the degradation of organic acids and flavonoids of grape berry(Vitis vinifera L.). Journal of Agricultural & Food Chemistryistry, 65:10693-10702. |
[64] |
Martins V, Billet K, Garcia A, Lanoue A, Gerós H. 2020. Exogenous calcium deflects grape berry metabolism towards the production of more stilbenoids and less anthocyanins. Food Chemistry, 313:126123.
doi: 10.1016/j.foodchem.2019.126123 URL |
[65] | Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R. 2006. Metabolite profiling of grape:flavonols and anthocyanins. Journal of Agricultural & Food Chemistry, 54:7692-7702. |
[66] |
Matus J T, Loyola R, Vega A, Pena-Neira A, Bordeu E, Arce-Johnson P, Alcalde J A. 2009. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 60:853-867.
doi: 10.1093/jxb/ern336 URL |
[67] |
Matus J T, Poupin M J, Canon P, Bordeu E, Alcalde J A, Arce-Johnson P. 2010. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.). Plant Molecular Biology, 72:607-620.
doi: 10.1007/s11103-010-9597-4 pmid: 20112051 |
[68] |
Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. 2007. Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58:1935-1945.
doi: 10.1093/jxb/erm055 URL |
[69] | Mori K, Saito H, Goto-Yamamoto N, Kitayama M, Kobayashi S, Sugaya S, Gemma H, Hashizume K. 2005. Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot Noir grapes. Vitis, 44:161. |
[70] |
Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T. 2010. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). Plant Cell, 22:2856-2871.
doi: 10.1105/tpc.110.074625 URL |
[71] |
Ortega-Regules A, Romero-Cascales I, López-Roca J M, Ros-García J M, Gómez-Plaza E. 2006. Anthocyanin fingerprint of grapes:environmental and genetic variations. Journal of the Science of Food and Agriculture, 86:1460-1467.
doi: 10.1002/(ISSN)1097-0010 URL |
[72] |
Pérez-Díaz J R, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S. 2016. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology, 90:63-76.
doi: 10.1007/s11103-015-0394-y pmid: 26497001 |
[73] |
Poudel P R, Azuma A, Kobayashi S, Koyama K, Goto-Yamamoto N. 2021. VvMYBAs induce expression of a series of anthocyanin biosynthetic pathway genes in red grapes(Vitis vinifera L.). Scientia Horticulturae, 283:110121.
doi: 10.1016/j.scienta.2021.110121 URL |
[74] |
Poudel P R, Koyama K, Goto-Yamamoto N. 2020. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries(Vitis vinifera L.). Molecular Biology Reports, 47:3501-3510.
doi: 10.1007/s11033-020-05440-4 pmid: 32306142 |
[75] |
Renaud S, de Lorgeril M. 1992. Wine,alcohol,platelets,and the French paradox for coronary heart disease. Lancet, 339:1523-1526.
pmid: 1351198 |
[76] | Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Walker R P, Famiani F, Castellarin S D. 2021. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario-a review. Frontiers in Plant Science, 12:262. |
[77] |
Rinaldo A R, Cavallini E, Jia Y, Moss S M, McDavid D A, Hooper L C, Robinson S P, Tornielli G B, Zenoni S, Ford C M. 2015. A grapevine anthocyanin acyltransferase,transcriptionally regulated by VvMYBA,can produce most acylated anthocyanins present in grape skins. Plant Physiology, 169:1897-1916.
doi: 10.1104/pp.15.01255 pmid: 26395841 |
[78] |
Savoi S, Wong D C J, Degu A, Herrera J C, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin S D. 2017. Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites,structural genes,and transcriptional regulators in developing grape berries(Vitis vinifera L.)exposed to water deficit. Frontiers in Plant Science,doi: 10.3389/fpls.2017.01124.
doi: 10.3389/fpls.2017.01124 |
[79] |
Singh R K, Martins V, Soares B, Castro I, Falco V. 2020. Chitosan application in vineyards(Vitis vinifera L. cv. Tinto Cão)induces accumulation of anthocyanins and other phenolics in berries,mediated by modifications in the transcription of secondary metabolism genes. International Journal of Molecular Sciences, 21:306.
doi: 10.3390/ijms21010306 URL |
[80] |
Sivilotti P, Falchi R, Vanderweide J, Sabbatini P, Bubola M, Vanzo A, Lisjak K, Peterlunger E, Herrera J C. 2020. Yield reduction through cluster or selective berry thinning similarly modulates anthocyanins and proanthocyanidins composition in Refosco dal peduncolo rosso(Vitis vinifera L.)grapes. Scientia Horticulturae, 264:109166.
doi: 10.1016/j.scienta.2019.109166 URL |
[81] |
Soares S, Brandão E, Mateus N,de Freitas V. 2017. Sensorial properties of red wine polyphenols:astringency and bitterness. Critical Reviews in Food Science Nutrition, 57:937-948.
doi: 10.1080/10408398.2014.946468 URL |
[82] |
Sun L, Li S, Jiang J, Tang X, Fan X, Zhang Y, Liu J, Liu C. 2020a. New quantitative trait locus(QTLs)and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC Plant Biology, 20:1-13.
doi: 10.1186/s12870-019-2170-7 URL |
[83] |
Sun L, Li S, Tang X, Fan X, Zhang Y, Jiang J, Liu J, Liu C. 2020b. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape‘Red Globe’(V. vinifera L.). Gene, 728:144284.
doi: 10.1016/j.gene.2019.144284 URL |
[84] |
Sun Xin, Han Jian, Fang Jinggui, Shang Guan, Ling fei, Wang Xicheng, Song Changnian, Li Xiaoying. 2012. Important research progress of coloring molecular mechanisms in grape berry. Plant Physiology Journal, 48:333-342. (in Chinese)
doi: 10.1111/ppl.1980.48.issue-2 URL |
孙欣, 韩键, 房经贵, 上官凌飞, 王西成, 宋长年, 李晓颖. 2012. 葡萄浆果着色分子机理的重要研究进展. 植物生理学报, 48:333-342. | |
[85] | Tarara J M, Lee J, Spayd S E, Scagel C F. 2008. Berry temperature and solar radiation alter acylation,proportion,and concentration of anthocyanin in Merlot grapes. American Journal of Enology and Viticulture, 59:235-247. |
[86] |
Terrier N, Torregrosa L, Ageorges A, Vialet S, Verries C, Cheynier V, Romieu C. 2009. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiology, 149:1028-1041.
doi: 10.1104/pp.108.131862 pmid: 19098092 |
[87] | This P, Lacombe T, Cadle-Davidson M, Owens C L. 2007. Wine grape(Vitis vinifera L.)color associates with allelic variation in the domestication gene VvmybA1. Theoretical & Applied Genetics, 114:723-730. |
[88] |
Torres N, Martínez-Lüscher J, Porte E, Yu R, Kaan Kurtural S. 2021. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine(Vitis vinifera L.)berry and wine chemistry in warm climates. Food Chemistry, 343:128447.
doi: 10.1016/j.foodchem.2020.128447 URL |
[89] |
Tyagi K, Maoz I, Kochanek B, Sela N, Lerno L, Ebeler S E, Lichter A. 2021. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research, 8:51.
doi: 10.1038/s41438-021-00488-0 URL |
[90] |
Vergara A E, Díaz K, Carvajal R, Espinoza L, Alcalde J A, Pérez-Donoso A G. 2018. Exogenous applications of brassinosteroids improve color of red table grape(Vitis vinifera L. cv.“Redglobe”)berries. Frontiers in Plant Science, 9:363.
doi: 10.3389/fpls.2018.00363 pmid: 29681907 |
[91] |
Walker A R, Lee E, Bogs J, McDavid D A, Thomas M R, Robinson S P. 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant Journal, 49:772-785.
doi: 10.1111/tpj.2007.49.issue-5 URL |
[92] | Wang Huixian, Jiang Huixia, Wang Rengcai, Ouyang Jianwen, Xiong Xingyao. 2005. A review of studies on grape seed oil and proanthocyanidins. Journal of Fruit Science, 22:542-547. (in Chinese) |
王辉宪, 姜晖霞, 王仁才, 欧阳建文, 熊兴耀. 2005. 葡萄子油及原花色素研究与开发利用. 果树学报, 22:542-547. | |
[93] |
Xi Z M, Zhang Z W, Huo S S, Luan L Y, Gao X, Ma L N, Fang Y L. 2013. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chemistry, 141:3056-3065.
doi: 10.1016/j.foodchem.2013.05.137 URL |
[94] |
Xie S, Lei Y, Chen H, Li J, Chen H, Zhang Z. 2020. R2R3-MYB transcription factors regulate anthocyanin biosynthesis in grapevine vegetative tissues. Frontiers in Plant Science, 11:527.
doi: 10.3389/fpls.2020.00527 URL |
[95] |
Xu W, Dubos C, Lepiniec L C. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science, 20:176-185.
doi: 10.1016/j.tplants.2014.12.001 URL |
[96] |
Yan Y, Song C, Falginella L, Castellarin S D. 2020. Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in‘Merlot’(Vitis vinifera L.)grapes during ripening. Frontiers in Plant Science, 11:1095.
doi: 10.3389/fpls.2020.01095 URL |
[97] |
Yang C Q, Sha G Y, Wei T, Ma B Q, Li C Y, Li P M, Zou Y J, Xu L F, Ma F W. 2021. Linkage map and QTL mapping of red flesh locus in apple using a R1R1 × R6R6 population. Horticultural Plant Journal, 7 (5):393-400.
doi: 10.1016/j.hpj.2020.12.008 URL |
[98] |
Yang M, Wang L, Belwal T, Zhang X, Lu H, Chen C, Li L. 2020. Exogenous melatonin and abscisic acid expedite the flavonoids biosynthesis in grape berry of Vitis vinifera cv. Kyoho. Molecules, 25:12.
doi: 10.3390/molecules25010012 URL |
[99] | Yonekura-Sakakibara K, Nakayama T, Yamazaki M, Saito K. 2008. Modification and stabilization of anthocyanins. Anthocyanins:Springer,169-190. |
[100] |
Zhang C M, Hao Y J. 2020. Advances in genomic,transcriptomic,and metabolomic analyses of fruit quality in fruit crops. Horticultural Plant Journal, 6 (6):361-371.
doi: 10.1016/j.hpj.2020.11.001 URL |
[101] |
Zhang K, Li W, Ju Y, Wang X, Sun X, Fang Y, Chen K. 2021. Transcriptomic and metabolomic basis of short-and long-term post-harvest UV-C application in regulating grape berry quality development. Foods, 10:625.
doi: 10.3390/foods10030625 URL |
[102] | Zheng Y, Li J, Xin H, Wang N, Guan L, Wu B H, Li S. 2013. Anthocyanin profile and gene expression in berry skin of two red Vitis vinifera grape cultivars that are sunlight dependent versus sunlight independent. Australian Journal of Grape & Wine Research, 19:238-248. |
[103] |
Zheng Y, Tian L, Liu H, Pan Q, Zhan J, Huang W. 2009. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regulation, 58:251-260.
doi: 10.1007/s10725-009-9373-0 URL |
[104] | Zhu M, Yu J, Xu Y, Yang G. 2021. Effect of girdling on anthocyanin content and quality of spine grape berries. Journal of Plant Growth Regulation:1-9. |
[105] |
Zhu Z, Li G, Liu L, Zhang Q, Han Z, Chen X, Li B. 2018. A R2R3-MYB transcription factor,VvMYBC2L2,functions as a transcriptional repressor of anthocyanin biosynthesis in grapevine (Vitis vinifera L.). Molecules,doi: 10.3390/molecules24010092.
doi: 10.3390/molecules24010092 |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | YE Zimao, SHEN Wanxia, LIU Mengyu, WANG Tong, ZHANG Xiaonan, YU Xin, LIU Xiaofeng, and ZHAO Xiaochun, . Effect of R2R3-MYB Transcription Factor CitMYB21 on Flavonoids Biosynthesis in Citrus [J]. Acta Horticulturae Sinica, 2023, 50(2): 250-264. |
[3] | GE Shibei, ZHANG Xuening, HAN Wenyan, LI Qingyun, LI Xin. Research Progress on Plant Flavonoids Biosynthesis and Their Anti-stress Mechanism [J]. Acta Horticulturae Sinica, 2023, 50(1): 209-224. |
[4] | WANG Baoliang, LIU Fengzhi, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, ZHANG Yican, LI Peng, and WANG Haibo. A New Early Ripening Grape Cultivar‘Huapu Zaoyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 33-34. |
[5] | WANG Baoliang, WANG Haibo, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, WANG Zhiqiang, WANG Xiaolong, and LIU Fengzhi. A New Middle Ripening Grape Cultivar‘Huapu Huangyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 35-36. |
[6] | A Late-maturing Seedless Grape Cultivar‘Zilongzhu’. A Late-maturing Seedless Grape Cultivar‘Zilongzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 37-38. |
[7] | SHI Xiaoxin, DU Guoqiang, YANG Lili, QIAO Yuelian, HUANG Chengli, WANG Suyue, ZHAO Yuexin, WEI Xiaohui, WANG Li, and QI Xiangli. A Late-ripening Seedless Grape Cultivar‘Hongfeng Wuhe’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 39-40. |
[8] | WU Yueyan, CHEN Tianchi, WANG Liru, HAN Shanqi, and FU Tao. A New Table Grape Cultivar‘Yongzaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 41-42. |
[9] | WANG Xiaoyue, YAN Ailing, ZHANG Guojun, WANG Huiling, REN Jiancheng, LIU Zhenhua, SUN Lei, and XU Haiying, . A New Grape Cultivar‘Ruidu Wanhong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 29-30. |
[10] | WANG Yongjian, KONG Junhua, FAN Peige, LIANG Zhenchang, JIN Xiuliang, LIU Buchun, DAI Zhanwu. Grape Phenome High-throughput Acquisition and Analysis Methods:A Review [J]. Acta Horticulturae Sinica, 2022, 49(8): 1815-1832. |
[11] | WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species [J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212. |
[12] | LU Tao, YU Hongjun, LI Qiang, JIANG Weijie. Effects of Leaf and Fruit Quantity Regulation on Growth,Fruit Quality and Yield of Tomato [J]. Acta Horticulturae Sinica, 2022, 49(6): 1261-1274. |
[13] | LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress [J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. |
[14] | LIANG Chen, SUN Ruyi, XIANG Rui, SUN Yimeng, SHI Xiaoxin, DU Guoqiang, WANG Li. Genome-wide Identification of Grape GRF Family and Expression Analysis [J]. Acta Horticulturae Sinica, 2022, 49(5): 995-1007. |
[15] | LI Shasha, YU Saisai, FU Yuheng, LUO Qiangwei, XU Yan, WANG Yuejin. The Embryo Rescue and Molecular Markers are Used to Breed New Seedless,Cold-Resistant Grapes [J]. Acta Horticulturae Sinica, 2022, 49(4): 723-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd