Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (12): 2336-2348.doi: 10.16420/j.issn.0513-353x.2020-0973
Previous Articles Next Articles
ZHANG Xiaonan, YU Xin(), YE Zimao, LIU Xiaofeng, ZHU Yansong, YANG Shengnan, WANG Xu, LIU Mengyu, ZHAO Xiaochun(
)
Received:
2021-05-10
Revised:
2021-06-16
Published:
2022-01-04
Contact:
YU Xin,ZHAO Xiaochun
E-mail:xin@cric.cn;zhaoxiaochun@cric.cn
CLC Number:
ZHANG Xiaonan, YU Xin, YE Zimao, LIU Xiaofeng, ZHU Yansong, YANG Shengnan, WANG Xu, LIU Mengyu, ZHAO Xiaochun. Ease of Peeling and Its Relationship with Cell Wall Polysaccharides in Mandarin Fruit[J]. Acta Horticulturae Sinica, 2021, 48(12): 2336-2348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0973
编码蛋白 Encoding protein | 基因 Gene ID | 目的片段长度/nt Amplicon length | 引物(5′-3′) Primer sequence |
---|---|---|---|
Ciclev10025866m/ β-actin | 102 | F:CCAAGCAGCATGAAGATCAA;R:ATCTGCTGGAAGGTGCTGAG | |
木聚糖酶Xylanase | Ciclev10028089m | 165 | F:TTGCTGCCAACTTCACAAGC;R:GAAACCTCACCTTGCGCTTG |
Ciclev10028121m | 248 | F:TTGTGTAGGGTCTGCTGCTG;R:CTCCACTTCCATCTGCTGCA | |
Ciclev10000171m | 158 | F:TCAGGACTGGATTGCAGCAG;R:TTTCCGAACACAGCCCAGTT | |
木聚糖酶抑制蛋白 | Ciclev10005000m | 221 | F:TGGAACGAAGGTCAGCACTG;R:CGTAGATTTTCCACACGCGG |
Xylanase inhibitor | Ciclev10007187m | 161 | F:GATGTGTCGTGTCTGGGGTT;R:TTGTCGCAAACTGTTCGCTG |
Ciclev10005127m | 115 | F:AGGGTTTAATGGGTCAGCGG;R:GCACACCACCTCCTCATTCA | |
Ciclev10006689m | 124 | F:CCAGCAGTGCCTCAGATTGA;R:CTCCACCGTCCACAAAACCT | |
Ciclev10006962m | 130 | F:TTGCAAAGGGTGTTACGGGT;R:CCGTTGGCTTTGGTAGAGGA | |
纤维素酶Cellulase | Ciclev10000600m | 112 | F:CTGGTCCTGACAAGCACGAT;R:CCTGACAAAGCCACAAGTGC |
Ciclev10019301m | 181 | F:AACTGGCTGGGGAATGACTG;R:CTGAACATTCCGGGAGCCTT | |
Ciclev10020376m | 210 | F:CTGGACTTTGTGGTGGCAGA;R:GATTCTCGTCAGCACTGCCT | |
Ciclev10031098m | 112 | F:AAGCACGTTGGAAAACCAGC;R:TGCCATTGTCTGCCTTCGAT | |
多聚半乳糖醛酸酶活性亚基 | Ciclev10027523m | 196 | F:GTGCAAACCAGACTTCAGCTG;R:GACCCGTAAGCTTCCCAACA |
Polygalacturonase | Ciclev10019941m | 114 | F:CGGGATTTCGAGTGGTGTGA;R:TCCATGTTCTCAACGGGCAA |
active subunit | Ciclev10004942m | 218 | F:AGCGAAATGTCTGGTGGCAT;R:GGGAGTGCATCAGGGTCAAA |
Ciclev10020162m | 172 | F:TTCCGGAATTGCAGTTGGGA;R:CTTGCGCGCGTTTTCCATAT | |
多聚半乳糖醛酸酶抑 | Ciclev10014467m | 150 | F:CGCTTTTGAGTGTTGGTGGG;R:CTTCCACTCCTGCCCCTAGA |
制蛋白PG inhibitor | Ciclev10019113m | 150 | F:GATTTTCCCACAGGCAAGCG;R:CCTCATCCATCTCTCGGTGC |
Ciclev10000484m | 208 | F:CTTTCTCTCCGGTCAGCCTC;R:AGGTGCTGCAGGAATTGTGT | |
果胶裂解酶 | Ciclev10004783m | 125 | F:AAGGGCTGGAACTGGAGATC;R:ATGGAGGAAGACTTGGCTCC |
Pectate lyase | Ciclev10020423m | 191 | F:GGACAAGAACATGCAAGCCA;R:TGTCAGGGGCAGCAAATCTA |
Ciclev10019202m | 203 | F:ATGTTGTTAGCGACCCAGGG;R:GATGCAAGCACCATTGGCAA | |
果胶甲酯酶 | Ciclev10010616m | 172 | F:TCTCTCGCGTTGTCTTTGCT;R:TCAGTGAGTTCCCTAGCCCA |
Pectin methyl esterase | Ciclev10031872m | 174 | F:CTTGGGCAGAGCATGGAAGA;R:TCAACCCTCTCAGCTGGACT |
Ciclev10012239m | 137 | F:TGGGAATGGAGGGACAGGAT;R:TCTCGTTCTCCACTTTGCCC | |
Ciclev10027321m | 173 | F:CATTGAAGGCTCGGTCGACT;R:GAGCACCTGACCCTGTAACC | |
果胶甲酯酶抑制蛋白 | Ciclev10007806m | 109 | F:CCGGTAGCAGGAATGTGGTT;R:CCCGCCGTGTTTTGAAATGT |
Pectin methyl esterase | Ciclev10007940m | 103 | F:CTGGCACGGGACCTAACAAT;R:AGCTGCATCTGAACAAGGCT |
inhibitor | Ciclev10007964m | 146 | F:CGACATCTACGGGACCATCG;R:AGAAGCCCGTGTTTTGTCCA |
Ciclev10014888m | 123 | F:CGCCAATTCTACCGCAACTG;R:AGTGTTCTTTTGGCCGCCTA |
Table 1 Primers used in this study
编码蛋白 Encoding protein | 基因 Gene ID | 目的片段长度/nt Amplicon length | 引物(5′-3′) Primer sequence |
---|---|---|---|
Ciclev10025866m/ β-actin | 102 | F:CCAAGCAGCATGAAGATCAA;R:ATCTGCTGGAAGGTGCTGAG | |
木聚糖酶Xylanase | Ciclev10028089m | 165 | F:TTGCTGCCAACTTCACAAGC;R:GAAACCTCACCTTGCGCTTG |
Ciclev10028121m | 248 | F:TTGTGTAGGGTCTGCTGCTG;R:CTCCACTTCCATCTGCTGCA | |
Ciclev10000171m | 158 | F:TCAGGACTGGATTGCAGCAG;R:TTTCCGAACACAGCCCAGTT | |
木聚糖酶抑制蛋白 | Ciclev10005000m | 221 | F:TGGAACGAAGGTCAGCACTG;R:CGTAGATTTTCCACACGCGG |
Xylanase inhibitor | Ciclev10007187m | 161 | F:GATGTGTCGTGTCTGGGGTT;R:TTGTCGCAAACTGTTCGCTG |
Ciclev10005127m | 115 | F:AGGGTTTAATGGGTCAGCGG;R:GCACACCACCTCCTCATTCA | |
Ciclev10006689m | 124 | F:CCAGCAGTGCCTCAGATTGA;R:CTCCACCGTCCACAAAACCT | |
Ciclev10006962m | 130 | F:TTGCAAAGGGTGTTACGGGT;R:CCGTTGGCTTTGGTAGAGGA | |
纤维素酶Cellulase | Ciclev10000600m | 112 | F:CTGGTCCTGACAAGCACGAT;R:CCTGACAAAGCCACAAGTGC |
Ciclev10019301m | 181 | F:AACTGGCTGGGGAATGACTG;R:CTGAACATTCCGGGAGCCTT | |
Ciclev10020376m | 210 | F:CTGGACTTTGTGGTGGCAGA;R:GATTCTCGTCAGCACTGCCT | |
Ciclev10031098m | 112 | F:AAGCACGTTGGAAAACCAGC;R:TGCCATTGTCTGCCTTCGAT | |
多聚半乳糖醛酸酶活性亚基 | Ciclev10027523m | 196 | F:GTGCAAACCAGACTTCAGCTG;R:GACCCGTAAGCTTCCCAACA |
Polygalacturonase | Ciclev10019941m | 114 | F:CGGGATTTCGAGTGGTGTGA;R:TCCATGTTCTCAACGGGCAA |
active subunit | Ciclev10004942m | 218 | F:AGCGAAATGTCTGGTGGCAT;R:GGGAGTGCATCAGGGTCAAA |
Ciclev10020162m | 172 | F:TTCCGGAATTGCAGTTGGGA;R:CTTGCGCGCGTTTTCCATAT | |
多聚半乳糖醛酸酶抑 | Ciclev10014467m | 150 | F:CGCTTTTGAGTGTTGGTGGG;R:CTTCCACTCCTGCCCCTAGA |
制蛋白PG inhibitor | Ciclev10019113m | 150 | F:GATTTTCCCACAGGCAAGCG;R:CCTCATCCATCTCTCGGTGC |
Ciclev10000484m | 208 | F:CTTTCTCTCCGGTCAGCCTC;R:AGGTGCTGCAGGAATTGTGT | |
果胶裂解酶 | Ciclev10004783m | 125 | F:AAGGGCTGGAACTGGAGATC;R:ATGGAGGAAGACTTGGCTCC |
Pectate lyase | Ciclev10020423m | 191 | F:GGACAAGAACATGCAAGCCA;R:TGTCAGGGGCAGCAAATCTA |
Ciclev10019202m | 203 | F:ATGTTGTTAGCGACCCAGGG;R:GATGCAAGCACCATTGGCAA | |
果胶甲酯酶 | Ciclev10010616m | 172 | F:TCTCTCGCGTTGTCTTTGCT;R:TCAGTGAGTTCCCTAGCCCA |
Pectin methyl esterase | Ciclev10031872m | 174 | F:CTTGGGCAGAGCATGGAAGA;R:TCAACCCTCTCAGCTGGACT |
Ciclev10012239m | 137 | F:TGGGAATGGAGGGACAGGAT;R:TCTCGTTCTCCACTTTGCCC | |
Ciclev10027321m | 173 | F:CATTGAAGGCTCGGTCGACT;R:GAGCACCTGACCCTGTAACC | |
果胶甲酯酶抑制蛋白 | Ciclev10007806m | 109 | F:CCGGTAGCAGGAATGTGGTT;R:CCCGCCGTGTTTTGAAATGT |
Pectin methyl esterase | Ciclev10007940m | 103 | F:CTGGCACGGGACCTAACAAT;R:AGCTGCATCTGAACAAGGCT |
inhibitor | Ciclev10007964m | 146 | F:CGACATCTACGGGACCATCG;R:AGAAGCCCGTGTTTTGTCCA |
Ciclev10014888m | 123 | F:CGCCAATTCTACCGCAACTG;R:AGTGTTCTTTTGGCCGCCTA |
Fig. 3 Contents of cell wall polysaccharides in the flavedo and albedo of the mandarin fruit The same letters indicate the insignificant difference(P > 0.05).
Fig. 4 Activities of enzymes related to cell wall polysaccharide degradation in the flavedo and albedo of the mandarin fruit The same letters indicate the insignificant difference(P > 0.05).
皮层 Peel | 剥皮性 Ease of peeling | 细胞壁总干物质 Cell wall material | 纤维素 Cellulose | 半纤维素 Hcellulose | 原果胶 Protopectin | 水溶性果胶 Water soluble pectin | 螯合剂溶性果胶 CDTA-soluble pectin |
---|---|---|---|---|---|---|---|
黄皮层 | 粘力Adherence | 0.89** | 0.83** | 0.91** | 0.84** | 0.79** | 0.89** |
Flavedo | 硬度Firmness | 0.94** | 0.84** | 0.97** | 0.95** | 0.86** | 0.90** |
白皮层 | 粘力Adherence | 0.83** | 0.79** | 0.94** | 0.82** | 0.61* | 0.47 |
Albedo | 硬度Firmness | 0.82** | 0.63* | 0.93** | 0.89** | 0.73** | 0.46 |
皮层 | 剥皮性 Ease of peeling | 纤维素酶 Cellulase | 木聚糖酶 Xylanase | 果胶酶 Pectase | 多聚半乳糖醛酸酶 Polygalacturonase | 果胶裂解酶 Pectate lyase | 果胶甲酯酶 Pectin methyl esterase |
黄皮层 | 粘力Adherence | -0.69** | -0.68** | -0.70** | -0.75** | -0.78** | -0.46 |
Flavedo | 硬度Firmness | -0.70** | -0.74** | -0.75** | -0.78** | -0.76** | -0.50 |
白皮层 | 粘力Adherence | -0.21 | -0.79** | -0.73** | -0.85** | -0.73** | -0.53 |
Albedo | 硬度Firmness | 0 | -0.78** | -0.79** | -0.85** | -0.80** | -0.48 |
Table 2 Correlations between the ease of peeling and some indexes related to cell wall polysaccharose in the flavedo and albedo
皮层 Peel | 剥皮性 Ease of peeling | 细胞壁总干物质 Cell wall material | 纤维素 Cellulose | 半纤维素 Hcellulose | 原果胶 Protopectin | 水溶性果胶 Water soluble pectin | 螯合剂溶性果胶 CDTA-soluble pectin |
---|---|---|---|---|---|---|---|
黄皮层 | 粘力Adherence | 0.89** | 0.83** | 0.91** | 0.84** | 0.79** | 0.89** |
Flavedo | 硬度Firmness | 0.94** | 0.84** | 0.97** | 0.95** | 0.86** | 0.90** |
白皮层 | 粘力Adherence | 0.83** | 0.79** | 0.94** | 0.82** | 0.61* | 0.47 |
Albedo | 硬度Firmness | 0.82** | 0.63* | 0.93** | 0.89** | 0.73** | 0.46 |
皮层 | 剥皮性 Ease of peeling | 纤维素酶 Cellulase | 木聚糖酶 Xylanase | 果胶酶 Pectase | 多聚半乳糖醛酸酶 Polygalacturonase | 果胶裂解酶 Pectate lyase | 果胶甲酯酶 Pectin methyl esterase |
黄皮层 | 粘力Adherence | -0.69** | -0.68** | -0.70** | -0.75** | -0.78** | -0.46 |
Flavedo | 硬度Firmness | -0.70** | -0.74** | -0.75** | -0.78** | -0.76** | -0.50 |
白皮层 | 粘力Adherence | -0.21 | -0.79** | -0.73** | -0.85** | -0.73** | -0.53 |
Albedo | 硬度Firmness | 0 | -0.78** | -0.79** | -0.85** | -0.80** | -0.48 |
Fig. 5 The relative expression levels of some genes related to cell wall polysaccharide degradation in the flavedo and albedo of the mandarin fruit 141,176,211 are the days after petal fall.
[1] |
Agusti M, Almela V, Aznar M, Elotmani M, Pons J. 1994. Satsuma Mandarine fruit size increased by 2,4-DP. HortScience, 29 (4):279-281.
doi: 10.21273/HORTSCI.29.4.279 URL |
[2] | Albersheim P, Darvill A G, O'Neill M A, Schols H A, Voragen A G J. 1996. An hypothesis:The same six polysaccharides are components of the primary cell walls of all higher plants. Pectins and Pectinases,Progress in Biotechnology, 14:47-55. |
[3] |
Brummell D A. 2006. Cell wall disassembly in ripening fruit. Functional Plant Biology, 33 (2):103-119.
doi: 10.1071/FP05234 pmid: 32689218 |
[4] |
Brummell D A, Dal Cin V, Crisosto C H, Labavitch J M. 2004. Cell wall metabolism during maturation,ripening and senescence of peach fruit. Journal of Experimental Botany, 55 (405):2029-2039.
pmid: 15286150 |
[5] |
Champa W A H, Gunasekera N, Wilson W S, Hewajulige I G N, Weerasinghe W M S S K, Kumara B A M S. 2020. Postharvest treatment of Cinnamon(Cinnamomum zeylanicum)bark oil and hexanal incorporated bio-wax maintains quality and extends marketable life of lime(Citrus aurantifolia Swingle). International Journal of Fruit Science, 20 (1):76-88.
doi: 10.1080/15538362.2019.1597823 URL |
[6] |
Cosgrove D J. 2016. Plant cell wall extensibility:connecting plant cell growth with cell wall structure,mechanics,and the action of wallmodifying enzymes. Journal of Experimental Botany, 67:463-476.
doi: 10.1093/jxb/erv511 pmid: 26608646 |
[7] | Daher F B, Braybrook S A. 2015. How to let go:pectin and plant cell adhesion. Frontiers in Plant Science, 6:523. |
[8] | Fujii H, Kita M, Shimada T, Endo T, Omura M. 2003. Expressed sequence tags from citrus albedo at the initiation stage of rind peeling. Bulletin of the National Institute of Fruit Tree Science, 2:127-144. |
[9] |
Goldenberg L, Yaniv Y, Kaplunov T, Doron-Faigenboim A, Porat R, Carmi N. 2014. Genetic diversity among mandarins in fruit-quality traits. Journal of Agricultural and Food Chemistry, 62 (21):4938-4946.
doi: 10.1021/jf5002414 pmid: 24828369 |
[10] |
Goldenberg L, Yaniv Y, Porat R, Carmi N. 2018. Mandarin fruit quality:a review. Journal of the Science of Food and Agriculture, 98 (1):18-26.
doi: 10.1002/jsfa.8495 pmid: 28631804 |
[11] |
Goudeau D, Uratsu S L, Inoue K, Dasilva F G, Leslie A, Cook D, Reagan R L, Dandekar A M. 2008. Tuning the orchestra:selective gene regulation and orange fruit quality. Plant Science, 174 (3):310-320.
doi: 10.1016/j.plantsci.2007.11.017 URL |
[12] |
Katsiferis T, Zogzas N, Karathanos V T. 2008. Mechanical properties and structure of unripe oranges during processing of“spoon sweets”. Journal of Food Engineering, 89 (2):149-155.
doi: 10.1016/j.jfoodeng.2008.04.014 URL |
[13] |
Kita M, Hisada S, Endo-Inagaki T, Omura M, Moriguchi T. 2000. Changes in the levels of mRNAs for putative cell growth-related genes in the albedo and flavedo during citrus fruit development. Plant Cell Reports, 19 (6):582-587.
doi: 10.1007/s002990050777 pmid: 30754821 |
[14] |
McDonald R E, Greany P D, Shaw P E, McCollum T G. 1997. Preharvest applications of gibberellic acid delay senescence of Florida grapefruit. Journal of Horticultural Science, 72 (3):461-468.
doi: 10.1080/14620316.1997.11515534 URL |
[15] |
Minamikawa M F, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S, Yoshioka T, Imai A, Hamada H, Hayashi T, Matsumoto S, Katayose Y, Toyoda A, Fujiyama A, Nakamura Y, Shimizu T, Iwata H. 2017. Genome-wide association study and genomic prediction in citrus:Potential of genomics-assisted breeding for fruit quality traits. Scientific Reports, 7 (1):4721.
doi: 10.1038/s41598-017-05100-x pmid: 28680114 |
[16] |
Muramatsu N, Takahara T, Ogata T, Kojima K. 1999. Changes in rind firmness and cell wall polysaccharides during citrus fruit development and maturation. HortScience, 34 (1):79-81.
doi: 10.21273/HORTSCI.34.1.79 URL |
[17] | Pose S, Paniagua C, Matas A J, Gunning A P, Morris V J, Quesada M A, Mercado J A. 2019. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science & Technology, 87:47-58. |
[18] |
Rui Y, Dinneny J R. 2020. A wall with integrity:surveillance and maintenance of the plant cell wall under stress. New Phytologist, 225:1428-1439.
doi: 10.1111/nph.v225.4 URL |
[19] |
Saberi B, Golding J B, Marques J R, Pristijono P, Chockchaisawasdee S, Scarlett C J, Stathopoulos C E. 2018. Application of biocomposite edible coatings based on pea starch and guar gum on quality,storability and shelf life of‘Valencia’oranges. Postharvest Biology and Technology, 137:9-20.
doi: 10.1016/j.postharvbio.2017.11.003 URL |
[20] |
Saffer A M. 2018. Expanding roles for pectins in plant development. Journal of Integrative Plant Biology, 60 (10):910-923.
doi: 10.1111/jipb.v60.10 URL |
[21] |
Sato K, Ikoma Y. 2017. Improvement in handpicking efficiency of Satsuma Mandarin fruit with combination treatments of gibberellin,prohydrojasmon and ethephon. Horticulture Journal, 86 (3):283-290.
doi: 10.2503/hortj.OKD-003 URL |
[22] |
Shi Z J, Yang H Y, Jiao J Y, Wang F, Lu Y Y, Deng J. 2019. Effects of graft copolymer of chitosan and salicylic acid on reducing rot of postharvest fruit and retarding cell wall degradation in grapefruit during storage. Food Chemistry, 283:92-100.
doi: 10.1016/j.foodchem.2018.12.078 URL |
[23] |
Silva-Sanzana C, Celiz-Balboa J, Garzo E, Marcus S E, Parra-Rojas J P, Rojas B, Olmedo P, Rubilar M A, Rios I, Chorbadjian R A, Fereres A, Knox P, Saez-Aguayoa S, Blanco-Herrera F. 2019. Pectin methylesterases modulate plant homogalacturonan status in defenses against the aphid Myzus persicae. Plant Cell, 31 (8):1913-1929.
doi: 10.1105/tpc.19.00136 |
[24] | Simons T, Sivertsen H, Guinard J X. 2018. Mapping the preferences of adult and child consumers for California-grown Mandarins. HortScience, 53 (7):1029-U138. |
[25] |
Singh K K, Reddy B S. 2006. Post-harvest physico-mechanical properties of orange peel and fruit. Journal of Food Engineering, 73 (2):112-120.
doi: 10.1016/j.jfoodeng.2005.01.010 URL |
[26] |
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H. 2004. Toward a systems approach to understanding plant cell walls. Science, 306:2206-2211.
pmid: 15618507 |
[27] | Yang Weihai, Zeng Hui, Zou Minghong, Lu Chaozhong, Huang Xuming. 2011. An overview of the roles of cell wall modification in fruit pericarp cracking. Chinese Journal of Tropical Crops, 32 (10):1995-1999. (in Chinese) |
杨为海, 曾辉, 邹明宏, 陆超忠, 黄旭明. 2011. 裂果发生与果皮细胞壁修饰的关系研究进展. 热带作物学报, 32 (10):1995-1999. | |
[28] |
Yu X, Zhang X N, Jiang D, Zhu S P, Cao L, Liu X F, Shen W X, Zhao W T, Zhao X C. 2021. Genetic diversity of the ease of peeling in mandarins. Scientia Horticulturae, 278:109852.
doi: 10.1016/j.scienta.2020.109852 URL |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[3] | ZHANG Qiuyue, LIU Changlai, YU Xiaojing, YANG Jiading, FENG Chaonian. Screening of Reference Genes for Differentially Expressed Genes in Pyrus betulaefolia Plant Under Salt Stress by qRT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. |
[4] | LI Yamei, MA Fuli, ZHANG Shanqi, HUANG Jinqiu, CHEN Mengting, ZHOU Junyong, SUN Qibao, SUN Jun. Optimization of Jujube Callus Transformation System and Application of ZjBRC1 in Regulating ZjYUCCA Expression [J]. Acta Horticulturae Sinica, 2022, 49(4): 749-757. |
[5] | WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng. Identification and Expression Analysis of Genes Related to DNA Methylation in Chrysanthemum × morifolium and C. nankingense [J]. Acta Horticulturae Sinica, 2022, 49(4): 827-840. |
[6] | ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu. Transcriptome Analysis of the Molecular Mechanism of Saline-alkali Stress Response in Malus halliana Leaves [J]. Acta Horticulturae Sinica, 2022, 49(2): 237-251. |
[7] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[8] | SU Yanli, GAO Xiaoming, YANG Jian, WANG Long, WANG Suke, ZHANG Xiangzhan, XUE Huabai. Dynamic Changes of Browning Degree,Phenolics Contents and Related Enzyme Activities During Pear Fruit Development [J]. Acta Horticulturae Sinica, 2022, 49(11): 2304-2312. |
[9] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[10] | HOU Tianze, YI Shuangshuang, ZHANG Zhiqun, WANG Jian, LI Chonghui. Selection and Validation of Reference Genes for RT-qPCR in Phalaenopsis- type Dendrobium Hybrid [J]. Acta Horticulturae Sinica, 2022, 49(11): 2489-2501. |
[11] | ZHOU Tie, PAN Bin, LI Feifei, MA Xiaochuan, TANG Mengjing, LIAN Xuefei, CHANG Yuanyuan, CHEN Yuewen, LU Xiaopeng. Effects of Drought Stress at Enlargement Stage on Fruit Quality Formation of Satsuma Mandarin and the Law of Water Absorption and Transportation in Tree After Re-watering [J]. Acta Horticulturae Sinica, 2022, 49(1): 11-22. |
[12] | HE Yan, SUN Yanli, ZHAO Fangfang, DAI Hongjun. Effect of Exogenous Brassinolides Treatment on Sugar Metabolism of Merlot Grape Berries [J]. Acta Horticulturae Sinica, 2022, 49(1): 117-128. |
[13] | LI Maofu, YANG Yuan, WANG Hua, FAN Youwei, SUN Pei, JIN Wanmei. Identification and Analysis of Self Incompatibility S-RNase in Rose [J]. Acta Horticulturae Sinica, 2022, 49(1): 157-165. |
[14] | QI Xiliang, LIU Congli, SONG Lulu, LI Ming. Functional Analysis of Sucrose-phosphate Synthase Genes(SPS)in Sweet Cherry [J]. Acta Horticulturae Sinica, 2021, 48(8): 1446-1456. |
[15] | YAO Fuwen, WANG Meige, SONG Chunhui, SONG Shangwei, JIAO Jian, WANG Miaomiao, WANG Kun, BAI Tuanhui, ZHENG Xianbo. Identification and Expression Analysis of HSP90 Gene Family Under High Temperature Stress in Apple [J]. Acta Horticulturae Sinica, 2021, 48(5): 849-859. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd