Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (11): 2275-2285.doi: 10.16420/j.issn.0513-353x.2020-0933
• Original article • Previous Articles Next Articles
TANG Haixia1, GAO Rui1, WANG Zhongtang1,2,*(), ZHANG Qiong1,2,*()
Received:
2021-04-14
Revised:
2021-09-09
Published:
2021-12-02
Contact:
WANG Zhongtang,ZHANG Qiong
E-mail:sdgss213@163.com
CLC Number:
TANG Haixia, GAO Rui, WANG Zhongtang, ZHANG Qiong. High-density Genetic Linkage Map Reconstruction in Jujube Using SNP Markers[J]. Acta Horticulturae Sinica, 2021, 48(11): 2275-2285.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0933
材料 Material | 有效数据/ Gb Clean base | 碱基正确率/% Effective rate | Q20/% | Q30/% | GC含量/% GC Content |
---|---|---|---|---|---|
冬枣(♀)Dongzao | 1.52 | 99.99 | 95.92 | 90.16 | 36.29 |
金丝4号(♂)Jinsi 4 | 1.40 | 99.99 | 94.88 | 87.57 | 36.28 |
F1极大值Maximum | 0.59 | 99.99 | 95.16 | 88.83 | 36.57 |
F1极小值Minimum | 0.19 | 99.99 | 93.82 | 85.00 | 34.94 |
F1平均值Average | 0.35 | 99.99 | 94.60 | 87.27 | 35.94 |
F1 | 35.53 | — | — | — | — |
合计All | 38.45 | — | — | — | — |
Table 1 Quality evaluation sequencing data
材料 Material | 有效数据/ Gb Clean base | 碱基正确率/% Effective rate | Q20/% | Q30/% | GC含量/% GC Content |
---|---|---|---|---|---|
冬枣(♀)Dongzao | 1.52 | 99.99 | 95.92 | 90.16 | 36.29 |
金丝4号(♂)Jinsi 4 | 1.40 | 99.99 | 94.88 | 87.57 | 36.28 |
F1极大值Maximum | 0.59 | 99.99 | 95.16 | 88.83 | 36.57 |
F1极小值Minimum | 0.19 | 99.99 | 93.82 | 85.00 | 34.94 |
F1平均值Average | 0.35 | 99.99 | 94.60 | 87.27 | 35.94 |
F1 | 35.53 | — | — | — | — |
合计All | 38.45 | — | — | — | — |
样品 Sample | 比对上的序列数/Mb Mapping reads | 比对率/% Mapping rate | 平均测序深度 Average depth | 覆盖度/1× Coverage |
---|---|---|---|---|
冬枣(♀)Dongzao | 9.56 | 86.41 | 15.42 | 20.17 |
金丝4号(♂)Jinsi 4 | 8.92 | 87.58 | 16.02 | 17.98 |
F1极大值Maximum of F1 | 3.74 | 84.33 | 8.95 | 14.51 |
F1极小值Minimum of F1 | 1.25 | 88.84 | 4.83 | 8.49 |
F1合计Total of F1 | 205.53 | — | — | — |
合计All | 224.01 | — | — | — |
Table 2 Compare results of genome between parents and offspring and Ziziphus jujuba‘Dongzao’
样品 Sample | 比对上的序列数/Mb Mapping reads | 比对率/% Mapping rate | 平均测序深度 Average depth | 覆盖度/1× Coverage |
---|---|---|---|---|
冬枣(♀)Dongzao | 9.56 | 86.41 | 15.42 | 20.17 |
金丝4号(♂)Jinsi 4 | 8.92 | 87.58 | 16.02 | 17.98 |
F1极大值Maximum of F1 | 3.74 | 84.33 | 8.95 | 14.51 |
F1极小值Minimum of F1 | 1.25 | 88.84 | 4.83 | 8.49 |
F1合计Total of F1 | 205.53 | — | — | — |
合计All | 224.01 | — | — | — |
连锁群 CHR | 起始位置 Start | 结束位置 End | SNP数量 SNP-count | SNP密度/(Variants · kb-1) SNP density |
---|---|---|---|---|
NC_029679.1(LG1) | 1 | 42 390 363 | 5 924 | 0.139 |
NC_029680.1(LG2) | 1 | 27 986 743 | 3 376 | 0.121 |
NC_029681.1(LG3) | 1 | 26 737 297 | 3 521 | 0.130 |
NC_029682.1(LG4) | 1 | 30 445 767 | 3 506 | 0.115 |
NC_029683.1(LG5) | 1 | 31 365 312 | 3 343 | 0.106 |
NC_029684.1(LG6) | 1 | 25 259 912 | 3 204 | 0.126 |
NC_029685.1(LG7) | 1 | 27 644 224 | 2 827 | 0.101 |
NC_029686.1(LG8) | 1 | 23 350 829 | 2 544 | 0.108 |
NC_029687.1(LG9) | 1 | 25 348 792 | 3 975 | 0.156 |
NC_029688.1(LG10) | 1 | 20 983 256 | 2 635 | 0.126 |
NC_029689.1(LG11) | 1 | 20 703 932 | 2 638 | 0.126 |
NC_029690.1(LG12) | 1 | 19 346 091 | 2 456 | 0.126 |
平均Average | — | — | 3 329 | 0.123 |
Table 3 Distribution of SNP in genome
连锁群 CHR | 起始位置 Start | 结束位置 End | SNP数量 SNP-count | SNP密度/(Variants · kb-1) SNP density |
---|---|---|---|---|
NC_029679.1(LG1) | 1 | 42 390 363 | 5 924 | 0.139 |
NC_029680.1(LG2) | 1 | 27 986 743 | 3 376 | 0.121 |
NC_029681.1(LG3) | 1 | 26 737 297 | 3 521 | 0.130 |
NC_029682.1(LG4) | 1 | 30 445 767 | 3 506 | 0.115 |
NC_029683.1(LG5) | 1 | 31 365 312 | 3 343 | 0.106 |
NC_029684.1(LG6) | 1 | 25 259 912 | 3 204 | 0.126 |
NC_029685.1(LG7) | 1 | 27 644 224 | 2 827 | 0.101 |
NC_029686.1(LG8) | 1 | 23 350 829 | 2 544 | 0.108 |
NC_029687.1(LG9) | 1 | 25 348 792 | 3 975 | 0.156 |
NC_029688.1(LG10) | 1 | 20 983 256 | 2 635 | 0.126 |
NC_029689.1(LG11) | 1 | 20 703 932 | 2 638 | 0.126 |
NC_029690.1(LG12) | 1 | 19 346 091 | 2 456 | 0.126 |
平均Average | — | — | 3 329 | 0.123 |
父本基因型 P1 genotype | 母本基因型 P2 genotype | 标记类型和数量Type and number of exploited markers | ||
---|---|---|---|---|
基因型(P1 × P2)Genotype | 标记数量Marker numbers | 占有效标记/% Percentage | ||
lm | ll | lm × ll | 6 001 | 36.07 |
hk | hk | hk × hk | 3 038 | 18.26 |
nn | np | nn × np | 4 453 | 26.76 |
aa | bb | aa × bb | 1 670 | 10.04 |
缺失Missing | 494 | 2.97 | ||
P1 = P2 | 983 | 5.91 | ||
总计Total | 16 639 | 100.00 |
Table 4 Type and number of exploited markers
父本基因型 P1 genotype | 母本基因型 P2 genotype | 标记类型和数量Type and number of exploited markers | ||
---|---|---|---|---|
基因型(P1 × P2)Genotype | 标记数量Marker numbers | 占有效标记/% Percentage | ||
lm | ll | lm × ll | 6 001 | 36.07 |
hk | hk | hk × hk | 3 038 | 18.26 |
nn | np | nn × np | 4 453 | 26.76 |
aa | bb | aa × bb | 1 670 | 10.04 |
缺失Missing | 494 | 2.97 | ||
P1 = P2 | 983 | 5.91 | ||
总计Total | 16 639 | 100.00 |
连锁群 Linkage group | 标记数量 Number of markers | 遗传距离/cM Genetic distance | 标记间平均距离/cM Average distance between markers | ||||||
---|---|---|---|---|---|---|---|---|---|
母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | |
LG1 | 265 | 131 | 376 | 75.07 | 85.86 | 84.58 | 0.28 | 0.66 | 0.22 |
LG2 | 193 | 199 | 334 | 70.94 | 80.12 | 92.87 | 0.37 | 0.40 | 0.28 |
LG3 | 108 | 234 | 309 | 74.34 | 70.26 | 80.68 | 0.69 | 0.30 | 0.26 |
LG4 | 243 | 257 | 369 | 71.33 | 43.75 | 76.73 | 0.29 | 0.17 | 0.21 |
LG5 | 217 | 202 | 288 | 52.26 | 67.54 | 75.91 | 0.24 | 0.33 | 0.26 |
LG6 | 198 | 153 | 290 | 77.21 | 73.88 | 82.73 | 0.39 | 0.48 | 0.29 |
LG7 | 169 | 173 | 299 | 70.13 | 65.66 | 81.38 | 0.41 | 0.38 | 0.27 |
LG8 | 152 | 194 | 256 | 86.56 | 71.40 | 83.33 | 0.57 | 0.37 | 0.33 |
LG9 | 83 | 160 | 209 | 71.81 | 60.70 | 71.92 | 0.87 | 0.38 | 0.34 |
LG10 | 238 | 110 | 330 | 73.31 | 39.62 | 78.23 | 0.31 | 0.36 | 0.24 |
LG11 | 168 | 154 | 306 | 56.80 | 55.93 | 56.97 | 0.34 | 0.36 | 0.19 |
LG12 | 202 | 133 | 312 | 69.79 | 67.06 | 73.90 | 0.35 | 0.50 | 0.24 |
合计Total | 2 236 | 2 100 | 3 678 | 849.54 | 781.75 | 939.23 | — | — | — |
均值Average | — | — | — | — | — | — | 0.38 | 0.37 | 0.26 |
Table 5 Parental and integrated digital genetic linkage maps
连锁群 Linkage group | 标记数量 Number of markers | 遗传距离/cM Genetic distance | 标记间平均距离/cM Average distance between markers | ||||||
---|---|---|---|---|---|---|---|---|---|
母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | |
LG1 | 265 | 131 | 376 | 75.07 | 85.86 | 84.58 | 0.28 | 0.66 | 0.22 |
LG2 | 193 | 199 | 334 | 70.94 | 80.12 | 92.87 | 0.37 | 0.40 | 0.28 |
LG3 | 108 | 234 | 309 | 74.34 | 70.26 | 80.68 | 0.69 | 0.30 | 0.26 |
LG4 | 243 | 257 | 369 | 71.33 | 43.75 | 76.73 | 0.29 | 0.17 | 0.21 |
LG5 | 217 | 202 | 288 | 52.26 | 67.54 | 75.91 | 0.24 | 0.33 | 0.26 |
LG6 | 198 | 153 | 290 | 77.21 | 73.88 | 82.73 | 0.39 | 0.48 | 0.29 |
LG7 | 169 | 173 | 299 | 70.13 | 65.66 | 81.38 | 0.41 | 0.38 | 0.27 |
LG8 | 152 | 194 | 256 | 86.56 | 71.40 | 83.33 | 0.57 | 0.37 | 0.33 |
LG9 | 83 | 160 | 209 | 71.81 | 60.70 | 71.92 | 0.87 | 0.38 | 0.34 |
LG10 | 238 | 110 | 330 | 73.31 | 39.62 | 78.23 | 0.31 | 0.36 | 0.24 |
LG11 | 168 | 154 | 306 | 56.80 | 55.93 | 56.97 | 0.34 | 0.36 | 0.19 |
LG12 | 202 | 133 | 312 | 69.79 | 67.06 | 73.90 | 0.35 | 0.50 | 0.24 |
合计Total | 2 236 | 2 100 | 3 678 | 849.54 | 781.75 | 939.23 | — | — | — |
均值Average | — | — | — | — | — | — | 0.38 | 0.37 | 0.26 |
Fig. 2 DF-map(female),DM-map(male)and D-map(integrated)linkage group tag distribution The color depth represents the marker density on each linkage group.
连锁群 Linkage Group | 小于5 cM间距数 Number of gaps < 5 cM | 大于5 cM间距数 Number of gaps > 5 cM | 最大间距 Distance of maximum gap | ||||||
---|---|---|---|---|---|---|---|---|---|
母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | |
LG1 | 130 | 264 | 375 | 1 | 1 | 1 | 6.00 | 17.10 | 5.35 |
LG2 | 199 | 190 | 334 | 0 | 3 | 0 | 4.61 | 10.00 | 4.37 |
LG3 | 234 | 106 | 309 | 0 | 2 | 0 | 6.26 | 7.22 | 4.98 |
LG4 | 256 | 243 | 368 | 1 | 0 | 1 | 10.60 | 3.90 | 10.60 |
LG5 | 202 | 217 | 288 | 0 | 0 | 0 | 2.55 | 4.05 | 2.98 |
LG6 | 152 | 197 | 290 | 1 | 1 | 0 | 5.92 | 9.50 | 3.45 |
LG7 | 171 | 168 | 298 | 1 | 1 | 0 | 7.14 | 5.98 | 4.88 |
LG8 | 192 | 152 | 255 | 2 | 0 | 1 | 13.40 | 3.20 | 6.46 |
LG9 | 158 | 83 | 208 | 2 | 0 | 1 | 18.00 | 4.00 | 6.34 |
LG10 | 109 | 237 | 329 | 1 | 1 | 1 | 5.33 | 8.13 | 5.33 |
LG11 | 152 | 167 | 306 | 2 | 1 | 0 | 6.36 | 8.57 | 4.44 |
LG12 | 131 | 200 | 312 | 2 | 2 | 0 | 6.55 | 10.50 | 6.43 |
Table 6 Gaps of parental and integrated maps
连锁群 Linkage Group | 小于5 cM间距数 Number of gaps < 5 cM | 大于5 cM间距数 Number of gaps > 5 cM | 最大间距 Distance of maximum gap | ||||||
---|---|---|---|---|---|---|---|---|---|
母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | 母本图谱 DF-map | 父本图谱 DM-map | 整合图谱 D-map | |
LG1 | 130 | 264 | 375 | 1 | 1 | 1 | 6.00 | 17.10 | 5.35 |
LG2 | 199 | 190 | 334 | 0 | 3 | 0 | 4.61 | 10.00 | 4.37 |
LG3 | 234 | 106 | 309 | 0 | 2 | 0 | 6.26 | 7.22 | 4.98 |
LG4 | 256 | 243 | 368 | 1 | 0 | 1 | 10.60 | 3.90 | 10.60 |
LG5 | 202 | 217 | 288 | 0 | 0 | 0 | 2.55 | 4.05 | 2.98 |
LG6 | 152 | 197 | 290 | 1 | 1 | 0 | 5.92 | 9.50 | 3.45 |
LG7 | 171 | 168 | 298 | 1 | 1 | 0 | 7.14 | 5.98 | 4.88 |
LG8 | 192 | 152 | 255 | 2 | 0 | 1 | 13.40 | 3.20 | 6.46 |
LG9 | 158 | 83 | 208 | 2 | 0 | 1 | 18.00 | 4.00 | 6.34 |
LG10 | 109 | 237 | 329 | 1 | 1 | 1 | 5.33 | 8.13 | 5.33 |
LG11 | 152 | 167 | 306 | 2 | 1 | 0 | 6.36 | 8.57 | 4.44 |
LG12 | 131 | 200 | 312 | 2 | 2 | 0 | 6.55 | 10.50 | 6.43 |
连锁群 Linkage group | 锚定标记数量 Number of anchored markers | 遗传距离/cM Genetic length | 物理距离/kb Physical length | 物理距离/遗传距离/(kb · cM-1) Physical length/ genetic length |
---|---|---|---|---|
LG1 | 342 | 84.58 | 42 356.19 | 500.78 |
LG2 | 317 | 92.87 | 27 809.17 | 299.44 |
LG3 | 293 | 80.68 | 26 633.83 | 330.12 |
LG4 | 332 | 76.73 | 30 413.79 | 396.37 |
LG5 | 265 | 75.91 | 29 155.05 | 384.07 |
LG6 | 268 | 82.73 | 30 887.33 | 373.35 |
LG7 | 221 | 75.59 | 27 404.28 | 362.54 |
LG8 | 126 | 83.33 | 25 763.93 | 309.18 |
LG9 | 180 | 71.92 | 25 186.14 | 350.20 |
LG10 | 304 | 78.23 | 22 319.02 | 285.30 |
LG11 | 210 | 56.83 | 15 578.13 | 274.12 |
LG12 | 267 | 73.90 | 21 145.16 | 286.13 |
均值Average | 260 | 77.78 | 27 054.33 | 345.97 |
合计Total | 3 125.00 | 933.30 | 324 652.01 | — |
Table 7 Anchored sequenced genome scaffolds of Ziziphus jujuba‘Dongzao’with SNP markers
连锁群 Linkage group | 锚定标记数量 Number of anchored markers | 遗传距离/cM Genetic length | 物理距离/kb Physical length | 物理距离/遗传距离/(kb · cM-1) Physical length/ genetic length |
---|---|---|---|---|
LG1 | 342 | 84.58 | 42 356.19 | 500.78 |
LG2 | 317 | 92.87 | 27 809.17 | 299.44 |
LG3 | 293 | 80.68 | 26 633.83 | 330.12 |
LG4 | 332 | 76.73 | 30 413.79 | 396.37 |
LG5 | 265 | 75.91 | 29 155.05 | 384.07 |
LG6 | 268 | 82.73 | 30 887.33 | 373.35 |
LG7 | 221 | 75.59 | 27 404.28 | 362.54 |
LG8 | 126 | 83.33 | 25 763.93 | 309.18 |
LG9 | 180 | 71.92 | 25 186.14 | 350.20 |
LG10 | 304 | 78.23 | 22 319.02 | 285.30 |
LG11 | 210 | 56.83 | 15 578.13 | 274.12 |
LG12 | 267 | 73.90 | 21 145.16 | 286.13 |
均值Average | 260 | 77.78 | 27 054.33 | 345.97 |
合计Total | 3 125.00 | 933.30 | 324 652.01 | — |
Fig. 3 Collinearity analysis of D-map genetic map and physical map LG1-LG12 are the linkage group numbers of the genetic map. chr1-chr12 are the chromosome numbers of jujube genome.
[1] |
Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. 2011. A robust,simple genotyping-by-sequencing(GBS) approach for high diversity species. PLoS ONE, 6:e19379.
doi: 10.1371/journal.pone.0019379 URL |
[2] | Guo F, Yu H, Tang Z, Jiang X, Wang L, Wang X, Xu Q, Deng X. 2015. Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing. Tree Genetics & Genomes, 11:2. |
[3] | Guo Yu-xin. 1999. New jujube variety Jinsixin 4. China Fruits,(1):25-26. (in Chinese) |
郭裕新. 1999. 枣新品种--金丝新4号. 中国果树,(1):25-26. | |
[4] | Huang J, Zhang C, Zhao X, Fei Z, Wang K, Zhang Z, Pang X, Yin X, Bai Y, Sun X, Gao L, Li R, Zhang J, Li X. 2016. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees. PLoS Genetics, 12 (12):e1006433. |
[5] |
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos:an information aesthetic for comparative genomics. Genome Research, 19 (9):1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911 |
[6] |
Langmead B, Salzberg S L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9 (4):357.
doi: 10.1038/nmeth.1923 pmid: 22388286 |
[7] | Lin Ming-rui. 2017. Construction of high density genetic map of Stevia rebaudiana and selection of molecular markers[M. D. Dissertation]. Lin’an: Zhejiang Agriculture and Forestry University. (in Chinese) |
林明睿. 2017. 甜叶菊高密度遗传图谱构建及其分子标记筛选[硕士论文]. 临安: 浙江农林大学. | |
[8] | Liu Jun. 2014. Construction of SNP linkage map of‘Dongzao’בYingshanhong’[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
刘君. 2014. ‘冬枣’ב映山红’SNP遗传连锁图谱的构建[硕士论文]. 北京: 北京林业大学. | |
[9] |
Liu M J, Zhao J, Cai Q L, Liu G C, Wang J R, Zhao Z H, Liu P, Dai L, Yan G J, Wang W J, Li X S, Chen Y, Sun Y D, Liu Z G, Lin M J, Xiao J, Chen Y Y, Li X F, Wu B, Ma Y, Jian J B, Yang W, Yuan Z, Sun X C, Wei Y L, Yu L L, Zhang C, Liao S G, He R J, Guang X M, Wang Z, Zhang Y Y, Luo L H. 2014. The complex jujube genome provides insights into fruit tree biology. Nature Communications, 5:5315.
doi: 10.1038/ncomms6315 URL |
[10] | Liu Sheng-rui. 2016. High density genetic linkage map construction and identification of QTLs controlling defoliation traits in Citrus[Ph. D. Dissertation]. Wuhan:Huazhong Agricultural University, (in Chinese) |
刘升锐. 2016. 柑橘高密度遗传连锁图谱的构建及落叶性状的QTL定位[博士论文]. 武汉: 华中农业大学. | |
[11] | Lu Jin-ying. 2003. Study on hybrid identification and genetic variation of natural pollination progenies of Ziziphus jujuba Mill[Ph. D. Dissertation]. Baoding:Hebei Agricultural University, (in Chinese) |
鹿金颖. 2003. 枣自然授粉实生后代杂种鉴定及遗传变异研究[博士论文]. 保定: 河北农业大学. | |
[12] |
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The genome analysis Toolkit:a Map Reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20:1297-1303.
doi: 10.1101/gr.107524.110 URL |
[13] |
Poland J A, Brown P J, Sorrells M E, Jannink J L. 2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE, 7 (2):e32253.
doi: 10.1371/journal.pone.0032253 URL |
[14] | Qi Jing, Dong Zhen, Mao Yong-min, Shen Lianying, Zhang Yu-xing, Liu Jie, Wang Xiao-ling. 2009. Construction of dense linkage genetic map and QTL analysis of trunk diameter in Chinese jujube. Scientia Silvae Sinicae, 45 (8):44-49. (in Chinese) |
齐靖, 董祯, 毛永民, 申连英, 张玉星, 刘杰, 王晓玲. 2009. 枣高密度遗传图谱的构建与树干直径的QTL分析. 林业科学, 45 (8):44-49. | |
[15] |
Qi P, Gimode D, Saha D, Schroder S, Chakraborty D, Wang X, Dida M M, Malmberg R L, Devos K M. 2018. UGbS-Flex,a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome:finger millet as a case study. BMC Plant Biology, 18:117.
doi: 10.1186/s12870-018-1316-3 URL |
[16] |
Shao C, Niu Y, Rastas P, Liu Y, Xie Z, Li H, Wang L, Jiang Y, Tai S, Tian Y, Sakamoto T, Chen S. 2015. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder(Paralichthys olivaceus):applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Research, 22:161-170.
doi: 10.1093/dnares/dsv001 URL |
[17] | Shen Lian-ying. 2005. Construction of genetic linkage map and mapping QTLs for some traits in Chinese jujube[Ph. D. Dissertation]. Baoding:Hebei Agricultural University. (in Chinese) |
申连英. 2005. 枣(Ziziphus jujuba Mill.)遗传连锁图谱构建及性状的QTL定位研究[博士论文]. 保定: 河北农业大学. | |
[18] |
Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M, Belzile F. 2013. An improved genotyping by sequencing(GBS)approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE, 8 (1):e54603.
doi: 10.1371/journal.pone.0054603 URL |
[19] |
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W. 2013. SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE, 8:e58700.
doi: 10.1371/journal.pone.0058700 URL |
[20] | van Ooijen J W. 2018. JoinMap® 5,Software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma B.V.,Wageningen,Netherlands. |
[21] | Wang Hai-bo. 2018. Mapping QTL for traits related to water use efficiency in apple under drought stress and identification of candidate genes[Ph. D. Dissertation]. Yangling:Northwest A & F University. (in Chinese) |
王海波. 2018. 干旱条件下苹果水分利用效率相关性状的QTL定位和候选基因的筛选与鉴定[博士论文]. 杨凌: 西北农林科技大学. | |
[22] |
Wang N, Fang L, Xin H, Wang L, Li S. 2012. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biology, 12:148.
doi: 10.1186/1471-2229-12-148 URL |
[23] | Wang Si-qi. 2013. Construction of genetic linkage map of ‘Dongzao’בYingshanhong’[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
王斯琪. 2013. ‘冬枣’ב映山红’遗传连锁图谱构建[硕士论文]. 北京: 北京林业大学. | |
[24] |
Wang Z T, Zhang Z, Tang H X, Zhang Q, Zhou G F, Li X G. 2019a. High-density genetic map construction and QTL mapping of leaf and needling traits in Ziziphus jujuba Mill. Frontiers in Plant Science, 10:1424.
doi: 10.3389/fpls.2019.01424 URL |
[25] | Wang Z T, Zhang Z, Tang H X, Zhang Q, Li X G, Zhou G F. 2019b. Genetic variation in leaf characters of F1 hybrids of Chinese jujube. Scientia Horticulturae, 224:372-378. |
[26] | Wu Y, Close T J, Lonardi S. 2008. On the accurate construction of consensus genetic maps. Comput Syst Bioinformatics Conf:285-296. |
[27] | Xu Li-si. 2012. QTL Mapping of fruit traits and superior genotypes selecting in Chinese jujube(Ziziphus jujuba Mill.)[M. D. Dissertation]. Baoding: Hebei Agricultural University. (in Chinese) |
许莉斯. 2012. 枣果实性状QTL定位及优良基因型筛选研究[硕士论文]. 保定: 河北农业大学. | |
[28] |
Yu Y, Zhang X J, Yuan J B, Li F H, Chen X H, Zhao Y Z, Huang L, Zheng H K, Xiang J H. 2015. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Scientific Reports, 5:15612.
doi: 10.1038/srep15612 URL |
[29] |
Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E. 2015. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant(Prunus mume Sieb. et Zucc). DNA Research, 22 (3):183-191.
doi: 10.1093/dnares/dsv003 pmid: 25776277 |
[30] | Zhang Z, Wei T, Zhong Y, Li X, Huang J. 2016. Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology. Tree Genetics & Genomes, 12:76. |
[31] | Zhang Zhen-dong. 2016. Optimization of a high-density genetic map for Chinese jujube and QTL mapping for several important traits[M. D. Dissertation]. Beijing: Beijing Forestry University. (in Chinese) |
张振东. 2016. 枣树高密度遗传图谱优化及重要性状的QTL定位[硕士论文]. 北京: 北京林业大学. | |
[32] | Zhao J, Jian J B, Liu G N, Wang J R, Lin M J, Ming Y, Liu Z G, Chen Y Y, Liu X Y, Liu M J. 2014. Rapid SNP discovery and a RAD-based high-density linkage map in jujube(Ziziphus Mill.). PLoS ONE, 9 (10):e109850. |
[1] | YANG Zhi, ZHANG Chuanjiang, YANG Xinfang, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. Analysis of Fruit Genetic Tendency and Mixed Inheritance in Hybrid Progeny of Jujube and Wild Jujube [J]. Acta Horticulturae Sinica, 2023, 50(1): 36-52. |
[2] | CUI Jian, ZHONG Xionghui, LIU Zeci, CHEN Denghui, LI Hailong, HAN Rui, YUE Xiangqing, KANG Jungen, WANG Chao. Construction of Cabbage Chromosome Segment Substitution Lines [J]. Acta Horticulturae Sinica, 2023, 50(1): 65-78. |
[3] | HE Chengyong, ZHAO Xiaoli, XU Tengfei, GAO Dehang, LI Shifang, WANG Hongqing. Genome Sequence Analysis of Strawberry Virus 1 from Shandong Province,China [J]. Acta Horticulturae Sinica, 2023, 50(1): 153-160. |
[4] | LUO Hailin, YUAN Lei, WENG Hua, YAN Jiahui, GUO Qingyun, WANG Wenqing, MA Xinming. Identification and Analysis of Complete Genomic Sequence of Broad Bean Wilt Virus 2 Pepper Isolate in Qinghai Province [J]. Acta Horticulturae Sinica, 2023, 50(1): 161-169. |
[5] | WANG Jianxin, and MA Tingjun. A New Jujube Cultivar‘Jiayou 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 55-56. |
[6] | ZHANG Yuping, WU Yang, LU Dongye, YAO Yanwu, and PAN Qinghua. A New Jujube Cultivar‘Ping’an Huluzao’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 57-58. |
[7] | WANG Xiaoling, QIU Xiaojing, LIU Shuyi, LI Zhihui, LI Xumao, MAO Yongmin, and SHEN Lianying. A New Kernel Used Sour Jujube Cultivar‘Liyuan Zhenzhu 4’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 59-60. |
[8] | WANG Xiaoling, QIU Xiaojing, LI Xumao, LIU Shuyi, LI Zhihui, MAO Yongmin, and SHEN Lianying. ‘Liyuan Zhenzhu 8’,A New Sour Jujube Cultivar [J]. Acta Horticulturae Sinica, 2022, 49(S2): 61-62. |
[9] | WANG Xiaoling, QIU Xiaojing, LI Zhihui, LIU Shuyi, LI Xumao, MAO Yongmin, and SHEN Lianying. A New Sour Jujube Cultivar‘Liyuan Zhenzhu 10’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 63-64. |
[10] | WANG Xiaoling, QIU Xiaojing, LI Zhihui, LIU Shuyi, LI Xumao, MAO Yongmin, and SHEN Lianying. A New Sour Jujube Cultivar‘Liyuan Zhenzhu 14’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 65-66. |
[11] | ZHOU Junyong, LU Lijuan, SUN Jun, MA Fuli, LIU Mao, ZHU Shufang, and SUN Qibao, . A New Mid-late Ripening Table Cultivar of Chinese Jujube‘Gaowangzao’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 35-36. |
[12] | DING Zhijie, BAO Jinbo, ROUXIAN Guli, ZHU Tiantian, LI Xueli, MIAO Haoyu, TIAN Xinmin. Comparative Chloroplast Genome Study of Mallus servisii‘Red Delicious’and‘Golden Delicious’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1977-1990. |
[13] | YANG Xingyu, XU Linbing, WU Yuanli, QIU Diyang, FAN Linlin, HUANG Bingzhi. Genome(ABBB)Identification of a Hybrid Banana Cultivar‘Fenza 1’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1991-1997. |
[14] | XU Haifeng, WANG Zhongtang, CHEN Xin, LIU Zhiguo, WANG Lihu, LIU Ping, LIU Mengjun, ZHANG Qiong. The Analyses of Target Metabolomics in Flavonoid and Its Potential MYB Regulation Factors During Coloring Period of Winter Jujube [J]. Acta Horticulturae Sinica, 2022, 49(8): 1761-1771. |
[15] | JIANG Sisi, YUAN Jun, ZHOU Wenjun, NIU Genhua, ZHOU Junqin. Complete Chloroplast Genome Sequence and Characteristics Analysis of Carya illinoinensis [J]. Acta Horticulturae Sinica, 2022, 49(8): 1772-1784. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd