Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (9): 1768-1784.doi: 10.16420/j.issn.0513-353x.2019-0986
• Research Papers • Previous Articles Next Articles
LIN Shengnan, LIU Jiewei, ZHANG Xiaoni, BAO Manzhu, FU Xiaopeng*()
Received:
2021-04-09
Revised:
2021-05-26
Online:
2021-09-25
Published:
2021-09-30
Contact:
FU Xiaopeng
E-mail:fuxiaopeng@mail.hzau.edu.cn
CLC Number:
LIN Shengnan, LIU Jiewei, ZHANG Xiaoni, BAO Manzhu, FU Xiaopeng. Genome-wide Identification and Expression Analysis of WRKY Gene Family in Dianthus caryophyllus[J]. Acta Horticulturae Sinica, 2021, 48(9): 1768-1784.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2019-0986
基因 Gene | 组 Group | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
DcaWRKY11 | Ⅱ-d | CCCGACCCTATACAGCAAGTC | CCATCTCCCTCTTCATCCCC |
DcaWRKY13 | Ⅱ-e | CGTTGTCGTTGTCGCAGTTT | TGATTCAACAGGTTTGAGGGGA |
DcaWRKY15 | Ⅱ-a | AGATTACTCGTGTCGCTGTTCG | TCTGTGTTCTCTACTCCGATCAA |
DcaWRKY22 | Ⅲ | CAAGGGACCCAAGGACACAT | AGAATGGGCAAAATGGGAATGA |
DcaWRKY23 | Ⅱ-b | ACCCGGCCTTTGCTGATACC | GCCGCCGTGAAATTAGGGTC |
DcaWRKY31 | Ⅱ-c | TACAAAGACAAGGGCGCGAA | TGCAAAAGACCGTCATCCCT |
DcaWRKY39 | Ⅰ | CCTAGACCGTTTGTGTCGCT | ACCCGCTTCAGTGATGTCTT |
DcaGAPDH | — | CGGAAAGTTGACTGGTATGGC | CATCCTCGGTGTAGCCCAAAAT |
Table 1 The primers used in this study
基因 Gene | 组 Group | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer |
---|---|---|---|
DcaWRKY11 | Ⅱ-d | CCCGACCCTATACAGCAAGTC | CCATCTCCCTCTTCATCCCC |
DcaWRKY13 | Ⅱ-e | CGTTGTCGTTGTCGCAGTTT | TGATTCAACAGGTTTGAGGGGA |
DcaWRKY15 | Ⅱ-a | AGATTACTCGTGTCGCTGTTCG | TCTGTGTTCTCTACTCCGATCAA |
DcaWRKY22 | Ⅲ | CAAGGGACCCAAGGACACAT | AGAATGGGCAAAATGGGAATGA |
DcaWRKY23 | Ⅱ-b | ACCCGGCCTTTGCTGATACC | GCCGCCGTGAAATTAGGGTC |
DcaWRKY31 | Ⅱ-c | TACAAAGACAAGGGCGCGAA | TGCAAAAGACCGTCATCCCT |
DcaWRKY39 | Ⅰ | CCTAGACCGTTTGTGTCGCT | ACCCGCTTCAGTGATGTCTT |
DcaGAPDH | — | CGGAAAGTTGACTGGTATGGC | CATCCTCGGTGTAGCCCAAAAT |
Fig. 2 Analysis of DcaWRKY protein evolution A. Gene structure;B. Conserved domain;C:Protein conserved motif;D:The sequences of protein conserved motif.
元件名称 Element name | 保守序列 Consensus sequence | 生物学功能 Biological function | 基因名称 Gene name | 来源 Source |
---|---|---|---|---|
A-box | CCGTCC | 顺式作用调节元件 cis-acting regulatory element | DcaWRKY16,33,35,39,41,42,48 | 香芹 Petroselinum crispum |
CAAT-box | CCAAT | 启动子和增强子区常见的顺式作用元件 Common cis-acting element in promoter and enhancer regions | DcaWRKY1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,53 | 拟南芥 Arabidopsis thaliana |
G-box | TACGTG | 参与光响应的顺式调控元件 cis-acting regulatory element involved in light responsiveness | DcaWRKY1,3,10,12,13,15,17,18,20,21,26,30,32,33,41,42,43,44,49,50 | 拟南芥 Arabidopsis thaliana |
ABRE | ACGTG | 参与脱落酸反应的顺式作用元件 cis-acting element involved in the abscisic acid responsiveness | DcWRKY1,2,3,8,9,10,12,13,15,17,18,20,21,22,24,26,27,29,30,32,34,36,43,44,46,49,50,53 | 拟南芥 Arabidopsis thaliana |
LTR | CCGAAA | 参与低温反应的顺式作用元件 cis-acting element involved in low-temperature responsiveness | DcaWRKY1,3,5,8,9,10,11,12,14,15,16,17,19, 22,25,27,32,36,39,40,43,44,47,49,51 | 大麦 Hordeum vulgare |
ARE | AAACCA | 厌氧诱导所必需的顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction | DcaWRKY1,2,3,5,6,7,8,9,10,12,13,14,17,18,19,21,23,25,27,31,32,35,36,37,38,42,43,44,45,46,47,48,49,50 | 玉米 Zea mays |
TC-rich repeats | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 cis-acting element involved in defense and stress responsiveness | DcaWRKY1,7,15,17,19,22,23,29,32,33,40,45,49 | 烟草 Nicotiana tabacum |
GCN4_ motif | TGAGTCA | 参与胚乳表达的顺式调控元件 cis-regulatory element involved in endosperm expression | DcaWRKY4,6,11,15,17,21,30,36,38,48,49 | 水稻 Oryza sativa |
CGTCA- motif | CGTCA | 参与MeJA反应的顺式调控元件 cis-acting regulatory element involved in the MeJA-responsiveness | DcaWRKY3,5,6,7,8,9,10,11,14,15,16,17,18,19,20,22,24,26,27,29,30,34,35,38,39,40,41,45,46,48,49,51,53 | 大麦 Hordeum vulgare |
WUN- motif | AAATTTCCT | 损伤反应元件 Wound-responsive element | DcaWRKY18,28 | 芸薹 Brassica oleracea |
TCA- element | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness | DcaWRKY3,4,12,13,15,16,18,25,28,32,40,41,43,48,51 | 烟草 Nicotiana tabacum |
RY-element | CATGCATG | 参与种子特异性调控的顺式调控元件 cis-acting regulatory element involved in seed-specific regulation | DcaWRKY43 | 向日葵 Helianthus annuus |
AuxRR- core | GGTCCAT | 参与生长素反应的顺式调控元件 cis-acting regulatory element involved in auxin responsiveness | DcaWRKY12,13,15,16,23,24,39,40,51,53 | 烟草 Nicotiana tabacum |
MSA-like | TCCAACGGT | 参与细胞周期调控的顺式作用元件 cis-acting element involved in cell cycle regulation | DcaWRKY6,17,49 | 长春花 Catharanthus roseus |
Table 3 Functional analysis of the cis-acting element on the promoter of DcaWRKY
元件名称 Element name | 保守序列 Consensus sequence | 生物学功能 Biological function | 基因名称 Gene name | 来源 Source |
---|---|---|---|---|
A-box | CCGTCC | 顺式作用调节元件 cis-acting regulatory element | DcaWRKY16,33,35,39,41,42,48 | 香芹 Petroselinum crispum |
CAAT-box | CCAAT | 启动子和增强子区常见的顺式作用元件 Common cis-acting element in promoter and enhancer regions | DcaWRKY1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,53 | 拟南芥 Arabidopsis thaliana |
G-box | TACGTG | 参与光响应的顺式调控元件 cis-acting regulatory element involved in light responsiveness | DcaWRKY1,3,10,12,13,15,17,18,20,21,26,30,32,33,41,42,43,44,49,50 | 拟南芥 Arabidopsis thaliana |
ABRE | ACGTG | 参与脱落酸反应的顺式作用元件 cis-acting element involved in the abscisic acid responsiveness | DcWRKY1,2,3,8,9,10,12,13,15,17,18,20,21,22,24,26,27,29,30,32,34,36,43,44,46,49,50,53 | 拟南芥 Arabidopsis thaliana |
LTR | CCGAAA | 参与低温反应的顺式作用元件 cis-acting element involved in low-temperature responsiveness | DcaWRKY1,3,5,8,9,10,11,12,14,15,16,17,19, 22,25,27,32,36,39,40,43,44,47,49,51 | 大麦 Hordeum vulgare |
ARE | AAACCA | 厌氧诱导所必需的顺式作用调节元件 cis-acting regulatory element essential for the anaerobic induction | DcaWRKY1,2,3,5,6,7,8,9,10,12,13,14,17,18,19,21,23,25,27,31,32,35,36,37,38,42,43,44,45,46,47,48,49,50 | 玉米 Zea mays |
TC-rich repeats | GTTTTCTTAC | 参与防御和应激反应的顺式作用元件 cis-acting element involved in defense and stress responsiveness | DcaWRKY1,7,15,17,19,22,23,29,32,33,40,45,49 | 烟草 Nicotiana tabacum |
GCN4_ motif | TGAGTCA | 参与胚乳表达的顺式调控元件 cis-regulatory element involved in endosperm expression | DcaWRKY4,6,11,15,17,21,30,36,38,48,49 | 水稻 Oryza sativa |
CGTCA- motif | CGTCA | 参与MeJA反应的顺式调控元件 cis-acting regulatory element involved in the MeJA-responsiveness | DcaWRKY3,5,6,7,8,9,10,11,14,15,16,17,18,19,20,22,24,26,27,29,30,34,35,38,39,40,41,45,46,48,49,51,53 | 大麦 Hordeum vulgare |
WUN- motif | AAATTTCCT | 损伤反应元件 Wound-responsive element | DcaWRKY18,28 | 芸薹 Brassica oleracea |
TCA- element | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 cis-acting element involved in salicylic acid responsiveness | DcaWRKY3,4,12,13,15,16,18,25,28,32,40,41,43,48,51 | 烟草 Nicotiana tabacum |
RY-element | CATGCATG | 参与种子特异性调控的顺式调控元件 cis-acting regulatory element involved in seed-specific regulation | DcaWRKY43 | 向日葵 Helianthus annuus |
AuxRR- core | GGTCCAT | 参与生长素反应的顺式调控元件 cis-acting regulatory element involved in auxin responsiveness | DcaWRKY12,13,15,16,23,24,39,40,51,53 | 烟草 Nicotiana tabacum |
MSA-like | TCCAACGGT | 参与细胞周期调控的顺式作用元件 cis-acting element involved in cell cycle regulation | DcaWRKY6,17,49 | 长春花 Catharanthus roseus |
Fig. 4 Analysis of expression patterns of the DcaWRKY gene family members during adventitious root formation in carnation stem cuttings 1,2 and 3 represent three biological replicates.
[1] |
Balakrishnan S, Gao S, Lercher M J, Hu S, Chen W H. 2019. Evolview v3:a webserver for visualization,annotation,and management of phylogenetic trees. Nucleic Acids Research, 47(W1):W270-W275.
doi: 10.1093/nar/gkz357 |
[2] |
Cai C, Niu E, Du H, Zhao L, Feng Y, Guo W. 2014. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton. The Crop Journal, 2:87-101.
doi: 10.1016/j.cj.2014.03.001 URL |
[3] | Chen P, Liu Q. 2019. Genome-wide characterization of the WRKY gene family in cultivated strawberry(Fragaria × ananassa Duch.)and the importance of several group Ⅲ members in continuous cropping. Scientific Reports, 9:1-12. |
[4] |
Chen X, Chen R, Wang Y, Wu C, Huang J. 2019. Genome-wide identification of WRKY transcription factors in Chinese jujube(Ziziphus jujuba Mill.)and their involvement in fruit developing,ripening,and abiotic stress. Genes, 10:360.
doi: 10.3390/genes10050360 URL |
[5] | Devaiah B N, Karthikeyan A S, Raghothama K G. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143(4):89-1801. |
[6] | Diao Wei-ping, Wang Shu-bin, Liu Jin-bing, Pan Bao-gui, Guo Guang-jun, Ge Wei. 2015. Genome-wide analysis of the WRKY transcription factor family in pepper. Acta Horticulturae Sinica, 42(11):2183-2196. (in Chinese) |
刁卫平, 王述彬, 刘金兵, 潘宝贵, 郭广君, 戈伟. 2015. 辣椒全基因组WRKY转录因子的分析. 园艺学报, 42(11):2183-2196. | |
[7] | Garrido G, Arnao M B, Acosta M, Sánchez-Bravo J. 2003. Polar transport of indole-3-acetic acid in relation to rooting in carnation cuttings:influence of cold storage duration and cultivar. Biologia Plantarum, 47(4):481-485. |
[8] |
Guo C, Guo R, Xu X, Gao M, Li X, Song J, Zheng Y, Wang X. 2014. Evolution and expression analysis of the grape(Vitis vinifera L.)WRKY gene family. Journal of Experimental Botany, 65(6):1513-1528.
doi: 10.1093/jxb/eru007 URL |
[9] |
He Z, Zhang H, Gao S, Lercher M J, Chen W H, Hu S. 2016. Evolview v2:an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research, 44(W1):W236-W241.
doi: 10.1093/nar/gkw370 URL |
[10] |
Huang X, Li K, Xu X, Yao Z, Jin C, Zhang S. 2015. Genome-wide analysis of WRKY transcription factors in white pear(Pyrus bretschneideri)reveals evolution and patterns under drought stress. BMC genomics, 16(1):1-14.
doi: 10.1186/1471-2164-16-1 URL |
[11] |
Ishiguro S, Nakamura K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics MGG, 244(6):563-571.
doi: 10.1007/BF00282746 URL |
[12] |
Janiak A, Kwasniewski M, Sowa M, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Szarejko I. 2019. Insights into barley root transcriptome under mild drought stress with an emphasis on gene expression regulatory mechanisms. International Journal of Molecular Sciences, 20(24):6139.
doi: 10.3390/ijms20246139 URL |
[13] |
Jiang C, Shen Q J, Wang B, He B, Xiao S, Chen L, Yu T, Ke X, Zhong Q, Fu J, Chen Y, Wang L, Yin F, Zhang D, Ghidan W, Huang X, Cheng Z. 2017. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress. PLoS One, 12(11):e0188742.
doi: 10.1371/journal.pone.0188742 URL |
[14] |
Justamante M S, Acosta-Motos J R, Cano A, Villanova J, Birlanga V, Albacete A, Cano E Á, Acosta M, Pérez-Pérez J M. 2019. Integration of phenotype and hormone data during adventitious rooting in carnation(Dianthus caryophyllus L.)stem cuttings. Plants, 8(7):226.
doi: 10.3390/plants8070226 URL |
[15] |
Li D, Liu P, Yu J, Wang L, Dossa K, Zhang Y, Zhou R, Wei X, Zhang X. 2017. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biology, 17(1):1-19.
doi: 10.1186/s12870-016-0951-9 URL |
[16] | Li Xiaoying, Xu Hongxia, Chen Junwei. 2019. Identification and expression analysis of WRKY transcription factors in Eriobotrya japonica. Acta Horticulturae Sinica, 46(5):939-954. (in Chinese) |
李晓颖, 徐红霞, 陈俊伟. 2019. 枇杷WRKY转录因子鉴定与表达分析. 园艺学报, 46(5):939-954. | |
[17] |
Li M Y, Xu Z S, Tian C, Huang Y, Wang F, Xiong A S. 2016. Genomic identification of WRKY transcription factors in carrot(Daucus carota)and analysis of evolution and homologous groups for plants. Scientific Reports, 6(1):1-17.
doi: 10.1038/s41598-016-0001-8 URL |
[18] |
Liu C, Xie T, Chen C, Luan A, Long J, Li C, Ding Y, He Y. 2017. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple(Ananas comosus). BMC Genomics, 18(1):1-16.
doi: 10.1186/s12864-016-3406-7 URL |
[19] |
Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. 2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Frontiers in Plant Science, 9:1979.
doi: 10.3389/fpls.2018.01979 URL |
[20] |
Nan H, Gao L. 2019. Genome-wide analysis of WRKY genes and their response to hormone and mechanic stresses in carrot. Frontiers in Genetics, 10:363.
doi: 10.3389/fgene.2019.00363 URL |
[21] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. 2010. WRKY transcription factors. Trends in Plant Science, 15(5):247-258.
doi: 10.1016/j.tplants.2010.02.006 URL pmid: 20304701 |
[22] |
Tan X L, Fan Z Q, Li L L, Wu Y, Kuang J F, Lu W J, Chen J Y. 2016. Molecular characterization of a leaf senescence-related transcription factor BRWRKY75 of chinese flowering cabbage. Horticultural Plant Journal, 2(5):272-278.
doi: 10.1016/j.hpj.2017.01.003 URL |
[23] |
van Verk M C, Pappaioannou D, Neeleman L, Bol J F, Linthorst H J M. 2008. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiology, 146(4):1983-1995.
doi: 10.1104/pp.107.112789 URL |
[24] |
Villacorta-Martín C, Sánchez-García A B, Villanova J, Cano A, Pérez-Pérez J M. 2015. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics, 16(1):1-18.
doi: 10.1186/1471-2164-16-1 URL |
[25] |
Wang P, Xu X, Tang Z, Zhang W, Huang X Y, Zhao F J. 2018. OsWRKY28 regulates phosphate and arsenate accumulatio,root system architecture and fertility in rice. Frontiers in Plant Science, 9:1330.
doi: 10.3389/fpls.2018.01330 URL |
[26] |
Wang Z, Feng R, Zhang X, Su Z, Wei J, Liu J. 2019. Characterization of the Hippophae rhamnoides WRKY gene family and functional analysis of the role of the HrWRKY21 gene in resistance to abiotic stresses. Genome, 62(10):689-703.
doi: 10.1139/gen-2019-0024 URL |
[27] | Waqas M, Azhar M T, Rana I A, Azeem F, Ali M A, Nawaz M A, Chung G, Atif R M. 2019. Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea(Cicer arietinum L.)reveal their role in abiotic stress-responses. Genes & Genomics, 41(4):467-481. |
[28] |
Xie Z, Zhang Z L, Zou X, Huang J, Ruas P, Thompson D, Shen Q. J. 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology, 137(1):176-189.
doi: 10.1104/pp.104.054312 URL |
[29] |
Xu H, Watanabe K A, Zhang L, Shen Q J. 2016. WRKY transcription factor genes in wild rice Oryza nivara. DNA Research, 23(4):311-323.
doi: 10.1093/dnares/dsw025 URL |
[30] | Xu Rui-rui, Zhang Shi-zhong, Cao Hui, Shu Huai-rui. 2012. Bioinformatics analysis of WRKY transcription factor genes family in apple. Acta Horticulturae Sinica, 39(10):2049-2060. (in Chinese) |
许瑞瑞, 张世忠, 曹慧, 束怀瑞. 2012. 苹果WRKY转录因子家族基因生物信息学分析. 园艺学报, 39(10):2049-2060. | |
[31] |
Yue H, Chang X, Zhi Y, Wang L, Xing G, Song W, Nie X. 2019. Evolution and identification of the WRKY gene family in quinoa(Chenopodium quinoa). Genes, 10(2):131.
doi: 10.3390/genes10020131 URL |
[32] |
Zhang H, Gao S, Lercher M J, Hu S, Chen W H. 2012. EvolView,an online tool for visualizing,annotating and managing phylogenetic trees. Nucleic Acids Research, 40(W1):569-572.
doi: 10.1093/nar/gkr753 URL |
[33] |
Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. 2008. Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21,and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6(5):486-503.
doi: 10.1111/pbi.2008.6.issue-5 URL |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | WANG Rui, HONG Wenjuan, LUO Hua, ZHAO Lina, CHEN Ying, and WANG Jun, . Construction of SSR Fingerprints of Pomegranate Cultivars and Male Parent Identification of Hybrids [J]. Acta Horticulturae Sinica, 2023, 50(2): 265-278. |
[3] | ZHANG Xin, QI Yanxiang, ZENG Fanyun, WANG Yanwei, XIE Peilan, XIE Yixian, and PENG Jun. Functional Analysis of Dicer-like Genes in Fusarium oxysporum f. sp. cubense Race 4 [J]. Acta Horticulturae Sinica, 2023, 50(2): 279-294. |
[4] | REN Fei, LU Miaomiao, LIU Jixiang, CHEN Xinli, LIU Daofeng, SUI Shunzhao, and MA Jing. Expression and Adversity Resistance Analysis of a Late Embryogenesis Abundant Protein Gene CpLEA from Chimonanthus praecox [J]. Acta Horticulturae Sinica, 2023, 50(2): 359-370. |
[5] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[6] | WANG Mengmeng, SUN Deling, CHEN Rui, YANG Yingxia, ZHANG Guan, LÜ Mingjie, WANG Qian, XIE Tianyu, NIU Guobao, SHAN Xiaozheng, TAN Jin, and YAO Xingwei, . Construction and Evaluation of Cauliflower Core Collection [J]. Acta Horticulturae Sinica, 2023, 50(2): 421-431. |
[7] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[8] | YANG Zhi, ZHANG Chuanjiang, YANG Xinfang, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. Analysis of Fruit Genetic Tendency and Mixed Inheritance in Hybrid Progeny of Jujube and Wild Jujube [J]. Acta Horticulturae Sinica, 2023, 50(1): 36-52. |
[9] | HU Jingyu, QUE Kaijuan, MIAO Tianli, WU Shaozheng, WANG Tiantian, ZHANG Lei, DONG Xian, JI Pengzhang, DONG Jiahong. Identification of Tomato Spotted Wilt Orthotospovirus Infecting Iris tectorum [J]. Acta Horticulturae Sinica, 2023, 50(1): 170-176. |
[10] | ZHAO Xueyan, WANG Qi, WANG Li, WANG Fangyuan, WANG Qing, LI Yan. Comparative Transcriptome Analysis of Differential Expression in Different Tissues of Corydalis yanhusuo [J]. Acta Horticulturae Sinica, 2023, 50(1): 177-187. |
[11] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
[12] | OU Kefang, SUN Hongbing, ZHAO Lekang, and DUAN Qingming. A New Waterlily Cultivar‘Yunjin Niangniang’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 217-218. |
[13] | SHAO Guirong, ZHU Bin, LIN Xiao, CAO Ping, FANG Yong, CUI Tian, JIANG Peng, LIN Yongming, LIN Kui, and LIN Zhitao. A New Pakchoi Cultivar‘Jinpin 008’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 69-70. |
[14] | XU Xiaoping, CAO Qingying, CAI Roudi, GUAN Qingxu, ZHANG Zihao, CHEN Yukun, XU HAN, LIN Yuling, LAI Zhongxiong. Gene Cloning and Expression Analysis of miR408 and Its Target DlLAC12 in Globular Embryo Development and Abiotic Stress in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(9): 1866-1882. |
[15] | WANG Sha, ZHANG Xinhui, ZHAO Yujie, LI Bianbian, ZHAO Xueqing, SHEN Yu, DONG Jianmei, YUAN Zhaohe. Cloning and Functional Analysis of PgMYB111 Related to Anthocyanin Synthesis in Pomegranate [J]. Acta Horticulturae Sinica, 2022, 49(9): 1883-1894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd