Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (9): 1743-1754.doi: 10.16420/j.issn.0513-353x.2020-0710
• Research Papers • Previous Articles Next Articles
ZHAO Xi1, ZHANG Tingting1, XING Wenting3, WANG Jian2, SONG Xiqiang2, ZHOU Yang1,**()
Received:
2021-03-04
Revised:
2021-05-07
Online:
2021-09-25
Published:
2021-09-30
Contact:
ZHOU Yang
E-mail:zhouyang@hainanu.edu.cn
CLC Number:
ZHAO Xi, ZHANG Tingting, XING Wenting, WANG Jian, SONG Xiqiang, ZHOU Yang. Genome-wide Identification and Expression Analysis Under Temperature Stress of HSP70 Gene Family in Dendrobium catenatum[J]. Acta Horticulturae Sinica, 2021, 48(9): 1743-1754.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0710
基因Gene | 上游引物(5′-3′)Forward primer | 下游引物(5′-3′)Reverse primer |
---|---|---|
ACTIN | TTGTGTTGGATTCTGGTGATGGTGT | TTTCCCGTTCTGCTGTTGTTGTGAA |
DcHSP70-1 | ACGAAAGCCCCCCTAAAAC | GCAGGTTTTGAACTGAATGGTC |
DcHSP70-2 | GTTTGGCAGCACGATAGGGTAG | GCCTATCAACCGCTCCGTATC |
DcHSP70-3 | TGGTCCCTCGTTCAAGTCCG | CCTCTGCCCCTCTGCGTTAGT |
DcHSP70-4 | GAGAACTGCCTGTGAGAGAGCG | CGGAGGCACTTCTCGACAGG |
DcHSP70-5 | CTCGTTCATTCAGGAAACCATTGTC | CAACCCTCAGATGCCCGCTA |
DcHSP70-6 | GCAGTGACAAACCCAACAAATAC | AAACAGATTTACCGAGATAGGCTTC |
DcHSP70-7 | TTCTCTACCTACTCCGACAACCAAC | CTTTTCATTAGTGATGGTGATTTTGTTC |
DcHSP70-8 | AGTTGGGCACAGTCATTGGTATT | GGTTGCCCTGGTCATTTGCT |
DcHSP70-9 | CAAGGAGCCAAACAAGGGAGT | ACACCACCCACAGTCTCAATACC |
DcHSP70-10 | TACTCCACAATCACTCGTGCCAG | CAGGCACTTCTCCACAGGTTCC |
Table 1 Primer sequences of quantitative real time PCR
基因Gene | 上游引物(5′-3′)Forward primer | 下游引物(5′-3′)Reverse primer |
---|---|---|
ACTIN | TTGTGTTGGATTCTGGTGATGGTGT | TTTCCCGTTCTGCTGTTGTTGTGAA |
DcHSP70-1 | ACGAAAGCCCCCCTAAAAC | GCAGGTTTTGAACTGAATGGTC |
DcHSP70-2 | GTTTGGCAGCACGATAGGGTAG | GCCTATCAACCGCTCCGTATC |
DcHSP70-3 | TGGTCCCTCGTTCAAGTCCG | CCTCTGCCCCTCTGCGTTAGT |
DcHSP70-4 | GAGAACTGCCTGTGAGAGAGCG | CGGAGGCACTTCTCGACAGG |
DcHSP70-5 | CTCGTTCATTCAGGAAACCATTGTC | CAACCCTCAGATGCCCGCTA |
DcHSP70-6 | GCAGTGACAAACCCAACAAATAC | AAACAGATTTACCGAGATAGGCTTC |
DcHSP70-7 | TTCTCTACCTACTCCGACAACCAAC | CTTTTCATTAGTGATGGTGATTTTGTTC |
DcHSP70-8 | AGTTGGGCACAGTCATTGGTATT | GGTTGCCCTGGTCATTTGCT |
DcHSP70-9 | CAAGGAGCCAAACAAGGGAGT | ACACCACCCACAGTCTCAATACC |
DcHSP70-10 | TACTCCACAATCACTCGTGCCAG | CAGGCACTTCTCCACAGGTTCC |
基因名称 Gene name | 基因ID Gene ID | 基因组位置 Genome location | 氨基酸长度/aa Length of amino acid | 分子量/kD Molecular weight | 等电点 Isoelectric point |
---|---|---|---|---|---|
DcHSP70-1 | LOC110096241 | NW_021318618.1:11670942..11679212 | 677 | 73.15 | 5.96 |
DcHSP70-2 | LOC110099937 | NW_021318796.1:2966318..2969515 | 646 | 70.92 | 5.30 |
DcHSP70-3 | LOC110105867 | NW_021319178.1:303111..323012 | 702 | 74.69 | 5.25 |
DcHSP70-4 | LOC110108419 | NW_021319683.1:1339434..1342555 | 647 | 71.07 | 5.17 |
DcHSP70-5 | LOC110109555 | NW_021416236.1:267770..301553 | 701 | 75.15 | 5.31 |
DcHSP70-6 | LOC110110271 | NW_021318471.1:2515516..2521212 | 675 | 72.63 | 6.18 |
DcHSP70-7 | LOC110114126 | NW_021318595.1:11412740..11416597 | 644 | 71.19 | 5.30 |
DcHSP70-8 | LOC110114354 | NW_021318608.1:56084..60615 | 633 | 73.40 | 5.19 |
DcHSP70-9 | LOC110115161 | NW_021319682.1:11684596..11689365 | 628 | 69.65 | 5.18 |
DcHSP70-10 | LOC110115835 | NW_021318777.1:646156..650108 | 647 | 71.09 | 5.12 |
Table 2 Feature analysis of HSP70 in Dendrobium catenatum
基因名称 Gene name | 基因ID Gene ID | 基因组位置 Genome location | 氨基酸长度/aa Length of amino acid | 分子量/kD Molecular weight | 等电点 Isoelectric point |
---|---|---|---|---|---|
DcHSP70-1 | LOC110096241 | NW_021318618.1:11670942..11679212 | 677 | 73.15 | 5.96 |
DcHSP70-2 | LOC110099937 | NW_021318796.1:2966318..2969515 | 646 | 70.92 | 5.30 |
DcHSP70-3 | LOC110105867 | NW_021319178.1:303111..323012 | 702 | 74.69 | 5.25 |
DcHSP70-4 | LOC110108419 | NW_021319683.1:1339434..1342555 | 647 | 71.07 | 5.17 |
DcHSP70-5 | LOC110109555 | NW_021416236.1:267770..301553 | 701 | 75.15 | 5.31 |
DcHSP70-6 | LOC110110271 | NW_021318471.1:2515516..2521212 | 675 | 72.63 | 6.18 |
DcHSP70-7 | LOC110114126 | NW_021318595.1:11412740..11416597 | 644 | 71.19 | 5.30 |
DcHSP70-8 | LOC110114354 | NW_021318608.1:56084..60615 | 633 | 73.40 | 5.19 |
DcHSP70-9 | LOC110115161 | NW_021319682.1:11684596..11689365 | 628 | 69.65 | 5.18 |
DcHSP70-10 | LOC110115835 | NW_021318777.1:646156..650108 | 647 | 71.09 | 5.12 |
[1] |
Boston R S, Viitanen P V, Vierling E. 1996. Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32(1-2):191-222.
pmid: 8980480 |
[2] |
Bukau B, Horwich A L. 1998. The HSP70 and HSP60 chaperone machines. Cell, 92(3):351-366.
pmid: 9476895 |
[3] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools - an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[4] | Chen Min-dong, Wang Bin, Zhu Hai-sheng, Wen Qing-fang. 2019. Cloning and expression analysis of CmHSP70 gene in Cucurbita moschata. Acta Botanica Boreali-Occidentalia Sinica, 39(6):1016-1023. (in Chinese) |
陈敏氡, 王彬, 朱海生, 温庆放. 2019. 中国南瓜CmHSP70基因的克隆及表达分析. 西北植物学报, 39(6):1016-1023. | |
[5] | Chen Xu, Shi Lei, Zhu Lu, Shi Jian-xin, Xu Jie. 2017. Molecular evolution characteristics and expression pattern analysis of the heat shock protein 70(HSP70)gene superfamily in plant. Genomics and Applied Biology, 36(10):4282-4294. (in Chinese) |
陈旭, 石垒, 朱璐, 石建新, 许杰. 2017. 植物HSP70蛋白家族分子进化特征及其表达模式分析. 基因组学与应用生物学, 36(10):4282-4294. | |
[6] |
Feder M E. 1999. Organismal,ecological and evolutionary aspects of heat-shock proteins and the stress response:established conclusions and unresolved issues. American Zoologist, 39(6):857-864.
doi: 10.1093/icb/39.6.857 URL |
[7] |
Fietto L G, Costa M, Cruz C D, Souza A A, Machado M A, Fontes E. 2007. Identification and in silico analysis of the citrus HSP70 molecular chaperone gene family. Genetics and Molecular Biology, 30(3):881-887.
doi: 10.1590/S1415-47572007000500017 URL |
[8] | Fu Ya-juan, Chen Xia-ting, Qiao Jie, Wang Jing, Li Wen-jing, Hou Xiao-qiang. 2020. Molecular cloning and expression characterization of Cyclophilin gene(DoCyP)in Dendrobium officinale. Acta Horticulturae Sinica, 47(3):581-589. (in Chinese) |
付亚娟, 陈霞婷, 乔洁, 王晶, 李文静, 侯晓强. 2020. 铁皮石斛亲环蛋白基因DoCyP的克隆及表达分析. 园艺学报, 47(3):581-589. | |
[9] |
Hu Xiu-li, Li Yan-hui, Yang Hai-rong, Liu Quan-jun, Li Chao-hai. 2010. Heat shock protein 70 may improve the ability of antioxidant defense induced by the combination of drought and heat in maize leaves. Acta Agronomica Sinica, 36(4):636-644. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00636 URL |
胡秀丽, 李艳辉, 杨海荣, 刘全军, 李潮海. 2010. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力. 作物学报, 36(4):636-644. | |
[10] | Jung K, Gho H, Nguyen M X, Kim S, An G. 2013. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Functional & Integrative Genomics, 13(3):391-402. |
[11] |
Krenek S, Schlegel M, Berendonk T U. 2013. Convergent evolution of heat-inducibility during subfunctionalization of the HSP70 gene family. BMC Evolutionary Biology, 13:49.
doi: 10.1186/1471-2148-13-49 URL |
[12] | Li Cui, Hou Lei, Ren Li, Zhang Ye, Zheng Yi-xiong, Wang Xing-jun. 2015. Cloning and expression analysis of AhHSP70 and AhHSF genes in Arachis hypogaea L. Shandong Agricultural Sciences, 47(4):1-7. (in Chinese) |
李翠, 侯蕾, 任丽, 张烨, 郑奕雄, 王兴军. 2015. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析. 山东农业科学, 47(4):1-7. | |
[13] | Li Hui-cong, Guo Xiu-lin, Wang Dong-mei, Li Guo-liang. 2010. Responses of HSP70 gene expression to temperature stresses in maize(Zea mays L.). Journal of Hebei Agricultural University, 33(6):12-15,25. (in Chinese) |
李慧聪, 郭秀林, 王冬梅, 李国良. 2010. 玉米热激蛋白70基因对温度胁迫的响应. 河北农业大学学报, 33(6):12-15,25. | |
[14] | Li Ya-bo, Li Ting, Han Ying-yan, Fan Shuang-xi. 2017. Cloning and function analysis of heat-shock-protein LsHsp70-2711 gene under high temperature stress in leaf lettuce(Lactuca sativa L.). Scientia Agricultura Sinica, 50(8):1486-1494. (in Chinese) |
李雅博, 李婷, 韩莹琰, 范双喜. 2017. 叶用莴苣热激蛋白基因LsHsp70-2711的克隆及高温胁迫下的功能分析. 中国农业科学, 50(8):1486-1494. | |
[15] |
Lin B L, Wang J S, Liu H C, Chen R W, Meyer Y, Barakat A, Delseny M. 2001. Genomic analysis of the HSP70 superfamily in Arabidopsis thaliana. Cell Stress & Chaperones, 6(3):201-208.
doi: 10.1379/1466-1268(2001)006<0201:GAOTHS>2.0.CO;2 URL |
[16] |
Lindquist S, Craig E A. 1988. The heat-shock proteins. Annual Review of Genetics, 22:631-677.
pmid: 2853609 |
[17] | Luo Chang, Chen Dong-liang, Cheng Xi, Huang Cong-lin. 2016. Cloning and expression of ClHSP70 and ClHSP90 gene from Chrysanthemum lavadulifolium. Acta Botanica Boreali-Occidentalia Sinica, 36(7):1321-1330. (in Chinese) |
罗昌, 陈东亮, 程曦, 黄丛林. 2016. 甘菊ClHSP70与ClHSP90基因的克隆及表达分析. 西北植物学报, 36(7):1321-1330. | |
[18] |
Parsell D A, Lindquist S. 1993. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins. Annual Review of Genetics, 27:437-496.
pmid: 8122909 |
[19] | Qi Yan, Xu Zhao-shi, Li Pan-song, Chen Ming, Li Lian-cheng, Ma You-zhi. 2013. Research progress on molecular mechanism and application of HSP70 in Plants. Journal of Plant Genetic Resources, 14(3):507-511. (in Chinese) |
齐妍, 徐兆师, 李盼松, 陈明, 李连城, 马有志. 2013. 植物热激蛋白70的分子作用机理及其利用研究进展. 植物遗传资源学报, 14(3):507-511. | |
[20] |
Ritossa F. 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 18(12):571-573.
doi: 10.1007/BF02172188 URL |
[21] |
Scafaro A P, Haynes P A, Atwell B J. 2010. Physiological and molecular changes in Oryza meridionalis Ng.,a heat-tolerant species of wild rice. Journal of Experimental Botany, 61(1):191-202.
doi: 10.1093/jxb/erp294 pmid: 19819927 |
[22] | Song Jin-hui, Ma Hai-lian, Weng Qiao-yun, Yuan Jin-cheng, Zhao Yan, Liu Ying-hui. 2017. Genome-wide identification and analysis of HSP70 gene family in maize. Journal of Nuclear Agricultural Sciences, 31(7):1245-1254. (in Chinese) |
宋晋辉, 马海莲, 瓮巧云, 袁进成, 赵艳, 刘颖慧. 2017. 玉米HSP70基因家族的全基因组鉴定与分析. 核农学报, 31(7):1245-1254. | |
[23] | Sung D Y, Guy C L. 2003. Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for Pleiotropic Consequences, 132(2):979-987. |
[24] | Wang Jing, Tan Fangjun, Liang Chengliang, Zhang Xilu, Ou Lijun, Niran Juntawong, Wang Fei, Jiao Chunhai, Zou Xuexiao, Chen Wenchao. 2020. Genome-wide identification and analysis of HSP90 gene family in pepper. Acta Horticulturae Sinica, 47(4):665-674. (in Chinese) |
王静, 谭放军, 梁成亮, 张西露, 欧立军, Niran Juntawong, 王飞, 焦春海, 邹学校, 陈文超. 2020. 辣椒热激蛋白HSP90家族基因鉴定及分析. 园艺学报, 47(4):665-674. | |
[25] | Wang Ming-qiang, Zhang Dao-yuan. 2015. Research advance of heat shock protein 70 gene family and its biological functions in plant. Genomics and Applied Biology, 34(2):421-428. (in Chinese) |
王明强, 张道远. 2015. 植物热激蛋白70基因家族及其生物学功能研究进展. 基因组学与应用生物学, 34(2):421-428. | |
[26] | Wang Rong-qing, Wan Hong-jian, Li Zhi-miao, Ye Qing-jing, Ruan Mei-ying, Zhou Guo-zhi, Yao Zhu-ping, Yang Yue-jian. 2014. Identification and phylogenetic relationships of HSP70 genes in tomato. Journal of Nuclear Agricultural Sciences, 28(3):378-385. (in Chinese) |
王荣青, 万红建, 李志邈, 叶青静, 阮美颖, 周国治, 姚祝平, 杨悦俭. 2014. 番茄HSP70基因鉴定及系统发育关系分析. 核农学报, 28(3):378-385. | |
[27] |
Xue G P, Drenth J, Mclntyre C L. 2015. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat(Triticum aestivum L.)including previously unknown Hsf targets. Journal of Experimental Botany, 66:1025-1039.
doi: 10.1093/jxb/eru462 URL |
[28] |
Zhang G Q, Xu Q, Bian C, Tsai W C, Yeh C M, Liu K W, Yoshida K, Zhang L S, Chang S B, Chen F, Shi Y, Su Y Y, Zhang Y Q, Chen L J, Yin Y, Lin M, Huang H, Deng H, Wang Z W, Zhu S L, Zhao X, Deng C, Niu S C, Huang J, Wang M, Liu G H, Yang H J, Xiao X J, Hsiao Y Y, Wu W L, Chen Y Y, Mitsuda N, Ohme-Takagi M, Luo Y B, Van de Peer Y, Liu Z J. 2016. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase,floral development and adaptive evolution. Scientific Reports, 6:19029.
doi: 10.1038/srep19029 URL |
[29] | Zhang Yu-ting, Wang Min-hua, Chen Jia-dong, Rong Jun-kang, Ding Ming-quan. 2014. Genome-wide analysis of HSP70 superfamily in Gossypium raimondii and the expression of orthologs in Gossypium hirsutum. Hereditas, 36(9):921-933. (in Chinese) |
张毓婷, 王敏华, 陈家栋, 戎均康, 丁明全. 2014. 雷蒙德氏棉HSP70基因家族的进化分析及其同源基因在陆地棉中的表达分析. 遗传, 36(9):921-933. |
[1] | REN Fei, LU Miaomiao, LIU Jixiang, CHEN Xinli, LIU Daofeng, SUI Shunzhao, and MA Jing. Expression and Adversity Resistance Analysis of a Late Embryogenesis Abundant Protein Gene CpLEA from Chimonanthus praecox [J]. Acta Horticulturae Sinica, 2023, 50(2): 359-370. |
[2] | LIN Haijiao, LIANG Yuchen, LI Ling, MA Jun, ZHANG Lu, LAN Zhenying, YUAN Zening. Exploration and Regulation Network Analysis of CBF Pathway Related Cold Tolerance Genes in Lavandula angustifolia [J]. Acta Horticulturae Sinica, 2023, 50(1): 131-144. |
[3] | ZHAO Xueyan, WANG Qi, WANG Li, WANG Fangyuan, WANG Qing, LI Yan. Comparative Transcriptome Analysis of Differential Expression in Different Tissues of Corydalis yanhusuo [J]. Acta Horticulturae Sinica, 2023, 50(1): 177-187. |
[4] | GAO Yanlong, WU Yuxia, ZHANG Zhongxing, WANG Shuangcheng, ZHANG Rui, ZHANG De, WANG Yanxiu. Bioinformatics Analysis of Apple ELO Gene Family and Its Expression Analysis Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(8): 1621-1636. |
[5] | QIU Ziwen, LIU Linmin, LIN Yongsheng, LIN Xiaojie, LI Yongyu, WU Shaohua, YANG Chao. Cloning and Functional Analysis of the MbEGS Gene from Melaleuca bracteata [J]. Acta Horticulturae Sinica, 2022, 49(8): 1747-1760. |
[6] | ZHENG Lin, WANG Shuai, LIU Yunuo, DU Meixia, PENG Aihong, HE Yongrui, CHEN Shanchun, ZOU Xiuping. Gene Cloning and Expression Analysis of NAC Gene in Citrus in Response to Huanglongbing [J]. Acta Horticulturae Sinica, 2022, 49(7): 1441-1457. |
[7] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[8] | ZHANG Kai, MA Mingying, WANG Ping, LI Yi, JIN Yan, SHENG Ling, DENG Ziniu, MA Xianfeng. Identification of HSP20 Family Genes in Citrus and Their Expression in Pathogen Infection Responses Citrus Canker [J]. Acta Horticulturae Sinica, 2022, 49(6): 1213-1232. |
[9] | LI Qiong, LI Lili, HOU Juan, LUO Renren, WANG Ruidan, HU Jianbin, HUANG Song. Advances on Mechanism of Cucurbit Crops in Response to Low- temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(6): 1382-1394. |
[10] | LIANG Chen, SUN Ruyi, XIANG Rui, SUN Yimeng, SHI Xiaoxin, DU Guoqiang, WANG Li. Genome-wide Identification of Grape GRF Family and Expression Analysis [J]. Acta Horticulturae Sinica, 2022, 49(5): 995-1007. |
[11] | XIAO Xuechen, LIU Mengyu, JIANG Mengqi, CHEN Yan, XUE Xiaodong, ZHOU Chengzhe, WU Xingjian, WU Junnan, GUO Yinsheng, YEH Kaiwen, LAI Zhongxiong, LIN Yuling. Whole-genome Identification and Expression Analysis of SNAT,ASMT and COMT Families of Melatonin Synthesis Pathway in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(5): 1031-1046. |
[12] | LIU Shangjia, L& Yao, CAO Bili, CHEN Zijing, GAO Song, XU Kun. Effects of High Temperature and Waterlogging Stress on Photosynthesis and Nitrogen Metabolism of Ginger Leaves [J]. Acta Horticulturae Sinica, 2022, 49(5): 1073-1080. |
[13] | GAO Weilin, ZHANG Liman, XUE Chaoling, ZHANG Yao, LIU Mengjun, ZHAO Jin. Expression of E-type MADS-box Genes in Flower and Fruits and Protein Interaction Analysis in Chinese Jujube [J]. Acta Horticulturae Sinica, 2022, 49(4): 739-748. |
[14] | ZHAO Hui, GENG Xingmin, WANG Lulu, XU Shida. Research on the Effect of Ethylene in Heat Resistance Mechanism of Rhododendron [J]. Acta Horticulturae Sinica, 2022, 49(3): 561-570. |
[15] | LIU Mengyu, JIANG Mengqi, CHEN Yan, ZHANG Shuting, XUE Xiaodong, XIAO Xuechen, LAI Zhongxiong, LIN Yuling. Genome-wide Identification and Expression Analysis of GDSL Esterase/Lipase Genes in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(3): 597-612. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd