Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (8): 1626-1634.doi: 10.16420/j.issn.0513-353x.2021-0441
• New Technology • Previous Articles Next Articles
WANG Haomiao1, SONG Miaoyu1, LI Xiang2, HU Chaoyang1, LU Renxiang1, WANG Xiang3, MA Huiqin1,*()
Received:
2021-05-06
Revised:
2021-08-11
Online:
2021-08-25
Published:
2021-09-06
Contact:
MA Huiqin
E-mail:hqma@cau.edu.cn
CLC Number:
WANG Haomiao, SONG Miaoyu, LI Xiang, HU Chaoyang, LU Renxiang, WANG Xiang, MA Huiqin. High Efficient Grapevine Growth Monitor and In-lane Deficiency Localization by UAV Hyperspectral Remote Sensing[J]. Acta Horticulturae Sinica, 2021, 48(8): 1626-1634.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0441
品种 Variety | 地块编号 Plot code | 定植年份 Planting year | 最小值 Min | 最大值 Max | 平均值 Average | 标准差 Standard deviation |
---|---|---|---|---|---|---|
赤霞珠Cabernet Sauvignon | 1 | 2008 | 0.351 | 0.912 | 0.733 | 0.098 |
5 | 2008 | 0.426 | 0.851 | 0.766 | 0.109 | |
马瑟兰Marselan | 2 | 2010 | 0.414 | 0.993 | 0.765 | 0.109 |
4 | 2013 | 0.422 | 0.898 | 0.741 | 0.100 | |
品丽珠Cabernet Franc | 3 | 2008 | 0.564 | 0.892 | 0.727 | 0.089 |
6 | 2008 | 0.401 | 0.863 | 0.748 | 0.088 | |
霞多丽Chardonnay | 7 | 2009 | 0.462 | 0.932 | 0.743 | 0.091 |
Table 1 NDVI remote sensing data of UAV year 2019
品种 Variety | 地块编号 Plot code | 定植年份 Planting year | 最小值 Min | 最大值 Max | 平均值 Average | 标准差 Standard deviation |
---|---|---|---|---|---|---|
赤霞珠Cabernet Sauvignon | 1 | 2008 | 0.351 | 0.912 | 0.733 | 0.098 |
5 | 2008 | 0.426 | 0.851 | 0.766 | 0.109 | |
马瑟兰Marselan | 2 | 2010 | 0.414 | 0.993 | 0.765 | 0.109 |
4 | 2013 | 0.422 | 0.898 | 0.741 | 0.100 | |
品丽珠Cabernet Franc | 3 | 2008 | 0.564 | 0.892 | 0.727 | 0.089 |
6 | 2008 | 0.401 | 0.863 | 0.748 | 0.088 | |
霞多丽Chardonnay | 7 | 2009 | 0.462 | 0.932 | 0.743 | 0.091 |
品种 Variety | 地块编号 Plot code | 最小值 Min | 最大值 Max | 平均值 Average | 标准差 Standard deviation |
---|---|---|---|---|---|
赤霞珠Cabernet Sauvignon | 1 | 0.078(-0.273) | 0.751(-0.161) | 0.435(-0.298) | 0.140(0.042) |
5 | 0.052(-0.374) | 0.731(-0.120) | 0.431(-0.335) | 0.139(0.030) | |
马瑟兰Marselan | 2 | 0.081(-0.333) | 0.753(-0.240) | 0.453(-0.312) | 0.134(0.025) |
4 | 0.061(-0.361) | 0.692(-0.206) | 0.415(-0.326) | 0.133(0.033) | |
品丽珠Cabernet Franc | 3 | 0.033(-0.531) | 0.710(-0.182) | 0.505(-0.177) | 0.139(0.050) |
6 | 0.055(-0.346) | 0.703(-0.160) | 0.414(-0.344) | 0.132(0.044) | |
霞多丽Chardonnay | 7 | 0.075(-0.387) | 0.671(-0.261) | 0.405(-0.338) | 0.131(0.040) |
Table 2 NDVI remote sensing data of early frost damage year 2020
品种 Variety | 地块编号 Plot code | 最小值 Min | 最大值 Max | 平均值 Average | 标准差 Standard deviation |
---|---|---|---|---|---|
赤霞珠Cabernet Sauvignon | 1 | 0.078(-0.273) | 0.751(-0.161) | 0.435(-0.298) | 0.140(0.042) |
5 | 0.052(-0.374) | 0.731(-0.120) | 0.431(-0.335) | 0.139(0.030) | |
马瑟兰Marselan | 2 | 0.081(-0.333) | 0.753(-0.240) | 0.453(-0.312) | 0.134(0.025) |
4 | 0.061(-0.361) | 0.692(-0.206) | 0.415(-0.326) | 0.133(0.033) | |
品丽珠Cabernet Franc | 3 | 0.033(-0.531) | 0.710(-0.182) | 0.505(-0.177) | 0.139(0.050) |
6 | 0.055(-0.346) | 0.703(-0.160) | 0.414(-0.344) | 0.132(0.044) | |
霞多丽Chardonnay | 7 | 0.075(-0.387) | 0.671(-0.261) | 0.405(-0.338) | 0.131(0.040) |
子区 Block | 均值 Average | 方差 Variance | 葡萄长势级别 Vegetative vigor |
---|---|---|---|
CS2008-1-1 | 0.733 | 0.099 | 良好Medium |
CS2008-1-2 | 0.746 | 0.091 | 良好Medium |
CS2008-1-3 | 0.751 | 0.088 | 良好Medium |
CS2008-1-4 | 0.743 | 0.096 | 良好Medium |
CS2008-1-5 | 0.739 | 0.090 | 良好Medium |
CS2008-1-6 | 0.730 | 0.092 | 良好Medium |
CS2008-5-1 | 0.656 | 0.112 | 良好Medium |
CS2008-5-2 | 0.550 | 0.120 | 良好Medium |
CS2008-5-3 | 0.626 | 0.079 | 良好Medium |
CS2008-5-4 | 0.492 | 0.089 | 一般Weak |
CS2008-5-5 | 0.741 | 0.088 | 良好Medium |
CS2008-5-6 | 0.762 | 0.076 | 优良Vigorous |
Table 3 NDVI and growth evaluation of six blocks in Cabernet Sauvignon plot CS-2008-1 and CS-2008-5 respectively(October 9,2019)
子区 Block | 均值 Average | 方差 Variance | 葡萄长势级别 Vegetative vigor |
---|---|---|---|
CS2008-1-1 | 0.733 | 0.099 | 良好Medium |
CS2008-1-2 | 0.746 | 0.091 | 良好Medium |
CS2008-1-3 | 0.751 | 0.088 | 良好Medium |
CS2008-1-4 | 0.743 | 0.096 | 良好Medium |
CS2008-1-5 | 0.739 | 0.090 | 良好Medium |
CS2008-1-6 | 0.730 | 0.092 | 良好Medium |
CS2008-5-1 | 0.656 | 0.112 | 良好Medium |
CS2008-5-2 | 0.550 | 0.120 | 良好Medium |
CS2008-5-3 | 0.626 | 0.079 | 良好Medium |
CS2008-5-4 | 0.492 | 0.089 | 一般Weak |
CS2008-5-5 | 0.741 | 0.088 | 良好Medium |
CS2008-5-6 | 0.762 | 0.076 | 优良Vigorous |
Fig. 2 Automatic identification of grape lanes with missing vines A:HSV black white image of Cabernet Sauvignon block CS2008-1-1;B:Enlarged image demonstrating the locations identified with missing vines,the parallel red lines represent the width of the lane canopy,the black area in between of the two red lines are identified with missing vines.
行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.660 | 11 | 0.625 | 21 | 0.604 | 31 | 0.599 | 41 | 0.922 | 51 | 0.652 | 61 | 0.543 | 71 | 0.612 |
2 | 0.573 | 12 | 0.631 | 22 | 0.670 | 32 | 0.726 | 42 | 0.846 | 52 | 0.581 | 62 | 0.708 | 72 | 0.757 |
3 | 0.864 | 13 | 0.803 | 23 | 0.817 | 33 | 0.764 | 43 | 0.961 | 53 | 0.630 | 63 | 0.641 | 73 | 0.662 |
4 | 0.954 | 14 | 0.729 | 24 | 0.709 | 34 | 0.864 | 44 | 0.845 | 54 | 0.643 | 64 | 0.607 | 74 | 0.689 |
5 | 0.856 | 15 | 0.663 | 25 | 0.870 | 35 | 0.949 | 45 | 0.841 | 55 | 0.597 | 65 | 0.598 | 75 | 0.633 |
6 | 0.829 | 16 | 0.662 | 26 | 0.870 | 36 | 0.912 | 46 | 0.862 | 56 | 0.692 | 66 | 0.593 | 76 | 0.811 |
7 | 0.641 | 17 | 0.657 | 27 | 0.750 | 37 | 0.685 | 47 | 0.670 | 57 | 0.583 | 67 | 0.682 | 77 | 0.756 |
8 | 0.654 | 18 | 0.777 | 28 | 0.750 | 38 | 0.650 | 48 | 0.708 | 58 | 0.503 | 68 | 0.810 | 78 | 0.709 |
9 | 0.685 | 19 | 0.817 | 29 | 0.811 | 39 | 0.915 | 49 | 0.587 | 59 | 0.502 | 69 | 0.656 | 79 | 0.668 |
10 | 0.865 | 20 | 0.852 | 30 | 0.674 | 40 | 0.787 | 50 | 0.825 | 60 | 0.509 | 70 | 0.655 | 80 | 0.661 |
Table 4 The NDVI continuity index of 80 rows of vineyard plot
行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI | 行数 Line | NDVI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.660 | 11 | 0.625 | 21 | 0.604 | 31 | 0.599 | 41 | 0.922 | 51 | 0.652 | 61 | 0.543 | 71 | 0.612 |
2 | 0.573 | 12 | 0.631 | 22 | 0.670 | 32 | 0.726 | 42 | 0.846 | 52 | 0.581 | 62 | 0.708 | 72 | 0.757 |
3 | 0.864 | 13 | 0.803 | 23 | 0.817 | 33 | 0.764 | 43 | 0.961 | 53 | 0.630 | 63 | 0.641 | 73 | 0.662 |
4 | 0.954 | 14 | 0.729 | 24 | 0.709 | 34 | 0.864 | 44 | 0.845 | 54 | 0.643 | 64 | 0.607 | 74 | 0.689 |
5 | 0.856 | 15 | 0.663 | 25 | 0.870 | 35 | 0.949 | 45 | 0.841 | 55 | 0.597 | 65 | 0.598 | 75 | 0.633 |
6 | 0.829 | 16 | 0.662 | 26 | 0.870 | 36 | 0.912 | 46 | 0.862 | 56 | 0.692 | 66 | 0.593 | 76 | 0.811 |
7 | 0.641 | 17 | 0.657 | 27 | 0.750 | 37 | 0.685 | 47 | 0.670 | 57 | 0.583 | 67 | 0.682 | 77 | 0.756 |
8 | 0.654 | 18 | 0.777 | 28 | 0.750 | 38 | 0.650 | 48 | 0.708 | 58 | 0.503 | 68 | 0.810 | 78 | 0.709 |
9 | 0.685 | 19 | 0.817 | 29 | 0.811 | 39 | 0.915 | 49 | 0.587 | 59 | 0.502 | 69 | 0.656 | 79 | 0.668 |
10 | 0.865 | 20 | 0.852 | 30 | 0.674 | 40 | 0.787 | 50 | 0.825 | 60 | 0.509 | 70 | 0.655 | 80 | 0.661 |
[1] |
Arnó J, Martínez-Casasnovas J A, Ribes-Dasi M, Rosell J R. 2009. Review. Precision viticulture:research topics,challenges,and opportunities in site-specific vineyard management. Spanish Journal of Agricultural Research, 7:779-790.
doi: 10.5424/sjar/2009074-1092 URL |
[2] |
Coops N C, Stone C A. 2005. A comparison of field-based and modelled reflectance spectra from damaged Pinus radiata foliage. Australian Journal of Botany, 53 (5):417-429.
doi: 10.1071/BT04129 URL |
[3] |
Ferrer M, Echeverría G, Pereyra G, Gonzalez-Neves G, Pan D, Mirás-Avalos J M. 2020. Mapping vineyard vigor using airborne remote sensing:relations with yield,berry composition and sanitary status under humid climate conditions. Precision Agriculture, 21:178-197.
doi: 10.1007/s11119-019-09663-9 URL |
[4] |
Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H. 2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153:9-19.
doi: 10.1016/j.agwat.2015.01.020 URL |
[5] |
Guo Y, Senthilnath J, Wu W, Zhang X, Zeng Z, Huang H. 2019. Radiometric calibration for multispectral camera of different imaging conditions mounted on a UAV platform. Sustainability, 11:978-1001
doi: 10.3390/su11040978 URL |
[6] |
Grant B G. 2017. UAV imagery analysis:challenges and opportunities. Remote Sensing, 5 (10):5006-5039.
doi: 10.3390/rs5105006 URL |
[7] |
Honkavaara E, Saari H, Kaivosoja J, Pölönen I, Hakala T, Litkey P, Mäkynen J, Pesonen L. 2013. Processing and assessment of spectrometric,stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5:5006-5039.
doi: 10.3390/rs5105006 URL |
[8] | Hu Jinghui. 2020. A study on rice productivity estimation based on UAV imaging hyperspectral remote sensing data[Ph. D. Dissertation]. Hangzhou:Zhejiang University. (in Chinese) |
胡景辉. 2020. 基于无人机成像高光谱遥感数据的水稻估产方法研究[博士论文]. 杭州: 浙江大学. | |
[9] | Huang S, Tang L, Hupy J P, Wang Y, Shao G. 2020. A commentary review on the use of normalized difference vegetation index(NDVI)in the era of popular remote sensing. Journal of Forestry Research, 5:1-6. |
[10] |
Jhan J P, Rau J Y, Haala N. 2018. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera. ISPRS Journal Photogrammetry and Remote Sensing, 137:47-60.
doi: 10.1016/j.isprsjprs.2017.12.009 URL |
[11] | Li Demei, Jean-Philippe Roby, Li Shaohua. 2006. Study on the evaluation of wine grape growth using normalized vegetation index. Acta Horticulturae Sinica, 33 (2):366-369. (in Chinese) |
李德美, Jean-Philippe Roby, 李绍华. 2006. 利用归一化植被指数评价酿酒葡萄生长状况的研究. 园艺学报, 33 (2):366-369. | |
[12] |
Loranty M, Davydov S, Kropp H, Alexander H, Mack M, Natali S, Zimov N. 2018. Vegetation indices do not capture forest cover variation in Upland Siberian larch forests. Remote Sensing, 10:1686-1700.
doi: 10.3390/rs10111686 URL |
[13] | Ma Jinping, Li Jianguo, Chen Yanzhen. 2013. Research on renovation and high yield cultivation techniques of wine grape aged park. North Horticulture,(24):43-45. (in Chinese) |
马金平, 李建国, 陈彦珍. 2013. 酿酒葡萄老龄园区改造及丰产栽培技术研究. 北方园艺,(24):43-45. | |
[14] | McVeagh P, Yule I, Grafton M. 2012. Pasture yield mapping from your groundspread truck//Currie LD,Christensen C L. Advanced Nutrient Management: Gains from the Past-Goals for the Future. Occasional Report, 25:24-29. |
[15] |
Pettorelli N, Vik J O, Mysterud A, Gaillard J M, Tucker C J, Stenseth N C. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20:503-510.
pmid: 16701427 |
[16] |
Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jędrzejewska B, Lima M, Kausrud K. 2011. The normalized difference vegetation index(NDVI):unforeseen successes in animal ecology. Climate Research, 46:15-27.
doi: 10.3354/cr00936 URL |
[17] | Primicerio J, Gay P, Aimonino D, Comba L, Gennaro. 2015. NDVI-based vigour maps production using automatic detection of vine rows in ultra-high resolution aerial images. Precision agriculture, 46:465-470. |
[18] | Qin Zhanfei, Shen Jian, Xie Baoni, Yan Lin, Chang Qingrui. 2017. Hyperspectral estimation model of rice leaf area index in Yellow River Irrigation Area. Journal of Wuhan University(Information Science Edition), 42:1166. (in Chinese) |
秦占飞, 申健, 谢宝妮, 严林, 常庆瑞. 2017. 引黄灌区水稻叶面积指数的高光谱估测模型. 武汉大学学报(信息科学版),(42):1166. | |
[19] | Ren Jianqiang, Chen Zhongxin, Zhou Qingbo, Liu Jia, Tang Huajun. 2015. Remote sensing estimation of maize yield per unit yield in the United States. MODIS vegetation index Journal of Remote Sensing, 19:568-577. (in Chinese) |
任建强, 陈仲新, 周清波, 刘佳, 唐华俊. 2015. MODIS植被指数的美国玉米单产遥感估测. 遥感学报, 19:568-577. | |
[20] |
Santesteban L G, Guillaume S, Royo J B, Tisseyre B. 2013. Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agriculture, 14:2-17.
doi: 10.1007/s11119-012-9268-3 URL |
[21] |
Shao G F, Tang L N, Liao J F. 2019. Overselling overall map accuracy misinforms about research reliability. Landscape Ecology, 34:2487-2492.
doi: 10.1007/s10980-019-00916-6 URL |
[22] | Technical Criterion for Ecosystem Status Evaluation. 2015. HJ192-2015. Beijing: China Envionment Pulishing House. (in Chinese) |
生态环境状况评价技术规范. 2015. HJ192-2015. 北京: 中国环境科学出版社. | |
[23] |
Tian J, Wang L, Li X, Gong H, Shi C, Zhong R, Liu X. 2017. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int J Appl Earth Obs Geoinf, 61:22-31.
doi: 10.1016/j.jag.2017.05.002 URL |
[24] |
Vicente-Serrano S M, Camarero J J, Olano J M, Martín-Hernández N, Peña-Gallardo M. 2016. Diverse relationships between forest growth and the normalized diference vegetation index at a global scale. Remote Sens Environ, 187:14-29.
doi: 10.1016/j.rse.2016.10.001 URL |
[25] |
Wierzbicki D. 2018. Multi-camera imaging system for UAV photogrammetry. Sensors, 18:2433-2454.
doi: 10.3390/s18082433 URL |
[26] | Wierzbicki D, Fryskowska A, Kedzierski M, Wojtkowska M, Delis P. 2018. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle. Journal Applied Remote Sensing, 12:015008. |
[27] | Wu Xiaowei, Ru Yu, Zhou Hongping. 2010. Research on UAV spraying technology. Agricultural Mechanization Studies, 32:224-228. (in Chinese) |
吴小伟, 茹煜, 周宏平. 2010. 无人机喷洒技术的研究. 农机化研究, 32:224-228. | |
[28] | Xue Xinyu, Liang Jian, Fu Ximin. 2008. Development prospect of aviation plant protection technology in China. China Agricultural Mechanization, 5:72-74. (in Chinese) |
薛新宇, 梁建, 傅锡敏. 2008. 我国航空植保技术的发展前景. 中国农机化, 5:72-74. | |
[29] | Yu Shuyi, Fu Junfan, Liu Changyuan, Guan Tianshu, Wang Hui, Liu Li. 2016. Analysis of time dynamics of grape downy mildew epidemic and its meteorological influencing factors in Shenyang area. Journal of Plant Pathology, 46:529-535. (in Chinese) |
于舒怡, 傅俊范, 刘长远, 关天舒, 王辉, 刘丽. 2016. 沈阳地区葡萄霜霉病流行时间动态及其气象影响因子分析. 植物病理学报, 46:529-535. | |
[30] | Zhang Guoquan, Li Zhanming, Li Xiangwei, Wei Weiyi. 2010. Research on color image segmentation in HSV space. Computer Engineering and Applications, 46 (26):179-181. (in Chinese) |
张国权, 李战明, 李向伟, 魏伟一. 2010. HSV空间中彩色图像分割研究. 计算机工程与应用, 46 (26):179-181. | |
[31] | Zhang Zhenwen, Chen Wu. 2011. Effects of end frost on freezing injury and yield of wine grape in northern Xinjiang. Journal of Northwest Agriculture, 20:123-128. (in Chinese) |
张振文, 陈武. 2011. 终霜冻对新疆北疆地区酿酒葡萄冻害和产量的影响. 西北农业学报, 20:123-128. | |
[32] | Zhao Xini. 2019. Grape distribution extraction and ecological and environmental quality evaluation at the eastern foot of Helan Mountain based on RS[Ph. D. Dissertation]. Yinchuan:Ningxia University. (in Chinese) |
赵希妮. 2019. 基于RS的贺兰山东麓葡萄分布提取及生态环境质量评价[博士论文]. 银川: 宁夏大学. |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | WANG Baoliang, LIU Fengzhi, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, ZHANG Yican, LI Peng, and WANG Haibo. A New Early Ripening Grape Cultivar‘Huapu Zaoyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 33-34. |
[3] | WANG Baoliang, WANG Haibo, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, WANG Zhiqiang, WANG Xiaolong, and LIU Fengzhi. A New Middle Ripening Grape Cultivar‘Huapu Huangyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 35-36. |
[4] | A Late-maturing Seedless Grape Cultivar‘Zilongzhu’. A Late-maturing Seedless Grape Cultivar‘Zilongzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 37-38. |
[5] | SHI Xiaoxin, DU Guoqiang, YANG Lili, QIAO Yuelian, HUANG Chengli, WANG Suyue, ZHAO Yuexin, WEI Xiaohui, WANG Li, and QI Xiangli. A Late-ripening Seedless Grape Cultivar‘Hongfeng Wuhe’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 39-40. |
[6] | WU Yueyan, CHEN Tianchi, WANG Liru, HAN Shanqi, and FU Tao. A New Table Grape Cultivar‘Yongzaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 41-42. |
[7] | WANG Xiaoyue, YAN Ailing, ZHANG Guojun, WANG Huiling, REN Jiancheng, LIU Zhenhua, SUN Lei, and XU Haiying, . A New Grape Cultivar‘Ruidu Wanhong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 29-30. |
[8] | WANG Yongjian, KONG Junhua, FAN Peige, LIANG Zhenchang, JIN Xiuliang, LIU Buchun, DAI Zhanwu. Grape Phenome High-throughput Acquisition and Analysis Methods:A Review [J]. Acta Horticulturae Sinica, 2022, 49(8): 1815-1832. |
[9] | WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species [J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212. |
[10] | LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress [J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. |
[11] | LIANG Chen, SUN Ruyi, XIANG Rui, SUN Yimeng, SHI Xiaoxin, DU Guoqiang, WANG Li. Genome-wide Identification of Grape GRF Family and Expression Analysis [J]. Acta Horticulturae Sinica, 2022, 49(5): 995-1007. |
[12] | LI Shasha, YU Saisai, FU Yuheng, LUO Qiangwei, XU Yan, WANG Yuejin. The Embryo Rescue and Molecular Markers are Used to Breed New Seedless,Cold-Resistant Grapes [J]. Acta Horticulturae Sinica, 2022, 49(4): 723-738. |
[13] | JIA Jin, XU Yunlong, ZHOU Jiale, YANG Xiaofen, ZHONG Yonghui, ZENG Jiwu, HONG Ni, WANG Guoping, PENG Shu’ang, DING Fang. Detection and Identification of Huanglongbing Bacteria in‘Cocktail’Grapefruit [J]. Acta Horticulturae Sinica, 2022, 49(3): 590-596. |
[14] | GUO Zijuan, HAN Bin, LIU Changjiang, YUAN Junwei, LI Minmin, YIN Yonggang, SUN Yan, JIA Nan, ZHAO Shengjian. A New Early-ripening Grape Cultivar‘Huangjinmi’with Muscat Flavor [J]. Acta Horticulturae Sinica, 2022, 49(11): 2521-2522. |
[15] | HE Yan, SUN Yanli, ZHAO Fangfang, DAI Hongjun. Effect of Exogenous Brassinolides Treatment on Sugar Metabolism of Merlot Grape Berries [J]. Acta Horticulturae Sinica, 2022, 49(1): 117-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd