Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (8): 1446-1456.doi: 10.16420/j.issn.0513-353x.2020-0630
• Research Papers • Previous Articles Next Articles
QI Xiliang, LIU Congli, SONG Lulu, LI Ming()
Received:
2020-12-10
Revised:
2021-04-26
Online:
2021-08-25
Published:
2021-09-06
Contact:
LI Ming
E-mail:liming06@caas.cn
CLC Number:
QI Xiliang, LIU Congli, SONG Lulu, LI Ming. Functional Analysis of Sucrose-phosphate Synthase Genes(SPS)in Sweet Cherry[J]. Acta Horticulturae Sinica, 2021, 48(8): 1446-1456.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0630
引物名称 Primer name | 序列(5′-3′) Sequence | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|---|
PavSPSA1-F | ATGGCGAGCAACGATTGGATAAAC | PavSPSA1-J-F | CAGGTTCATGCCCCGCATGGTGA |
PavSPSA1-R | CTACGTCTTGACAACTCCGAGTT | PavSPSA1-J-R | ATTGTGGATGCCTTGGTTTGC |
PavSPSA2-F | ATGGCGGGAAACGACTGGGTGAAC | PavSPSA2-J-F | GAGGCAGCAGCTTATGGTCTACCT |
PavSPSA2-R | CTACCGCTTGAGAATCCCTAGT | PavSPSA2-J-R | CTTGTCCTTCCCTGCTGCCTCA |
PavSPSB-F | ATTTGGCATCTTACCCGTAAGAAG | PavSPSB-J-F | ATGAAGGAGGTGGAAATAAGCTGCT |
PavSPSB-R | TCACATTCGAGCAGCAGATTTAGAG | PavSPSB-J-R | AGTACATTGGATGGCAACGCAG |
PavSPSC-F | ATGGCGGGAAACGACTGGTTAAACAG | PavSPSC-J-F | GAGATTCTGATACAGGTGGTCAGGT |
PavSPSA1-q-F | GCAAACCAAGGCATCCACAAT | PavSPSC-J-R | AGCTCCTCAGCCTCGATCCTCTTC |
PavSPSA1-q-R | GAACCCTACAGAGCCTTCAGT | PaNCED1-F | CATGTCGGAGGACGACTTGCCGT |
PavSPSA2-q-F | TGAGGCAGCAGGGAAGGACAAG | PaNCED1-R | GCGCCGTCTGGAGAGACGTGGA |
PavSPSA2-q-R | AGCCCCAACGGACATACAGATACC | PaPG1-F | ATCACCTTCCGCATTGCTG |
PavSPSB-q-F | GGCTTGCTTGTGGACCCTCAT | PaPG1-R | TCACCTTAATGTTGTTGGAG |
PavSPSB-q-R | AGCAGCTTATTTCCACCTCCTTC | PaXYL1-F | ACAACTGGAACGGTGTCGAT |
PavSPSC-q-F | ACCCCACCACCCGCTTTCA | PaXYL1-R | TCCTGGTGTAATGTTGCTCG |
PavSPSC-q-R | GACCCTCGCCATTGCCTACG | PaPL-1-F | GATGGTCGCTTCTATGTTGTCA |
PavSPSA2-RNAi-F | AGTAAGGTTACCGAATTCTGAGGCAGCAGGGAAGGACAAG | PaPL-1-R | TGAGATGGAGAGCTCCTCACC |
PavSPSA2-RNAi-R | GAGCTCGGTACCGGTACCAGCCCCAACGGACATACAGATACC | PaPAL-F | GCCTCACCAGGCAACAAGAGCA |
PavSPSB-RNAi-F | AGTAAGGTTACCGAATTCGGCTTGCTTGTGGACCCTCAT | PaPAL-R | TCTGGCCATCTGGTCCAACAGC |
PavSPSB-RNAi-R | GAGCTCGGTACCGGTACCAGCAGCTTATTTCCACCTCCTTCAT | PaCHS-F | GTATGTGCGAGTACATGGCA |
PavSPSC-RNAi-F | AGTAAGGTTACCGAATTCACCCCACCACCCGCTTTCA | PaCHS-R | GCTTAGTGAGCTGATAGTC |
PavSPSC-RNAi-R | GAGCTCGGTACCGGTACCGACCCTCGCCATTGCCTACG | PaDFR-F | CTGCACCGGAGTGTTCCATGT |
Histone2-F | GGTGTGCTTCCGCAGATAA | PaDFR-R | CTGGTGCTCTTCGACGTTCAC |
Histone2-R | TCCTCCTTGGGTGGTGAAT | PaANS-F | ATCTCCGATGAGCTCATGG |
PaANS-R | CTCAATGTAATCAGCAGGTG |
Table 1 Primers used in this study
引物名称 Primer name | 序列(5′-3′) Sequence | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|---|
PavSPSA1-F | ATGGCGAGCAACGATTGGATAAAC | PavSPSA1-J-F | CAGGTTCATGCCCCGCATGGTGA |
PavSPSA1-R | CTACGTCTTGACAACTCCGAGTT | PavSPSA1-J-R | ATTGTGGATGCCTTGGTTTGC |
PavSPSA2-F | ATGGCGGGAAACGACTGGGTGAAC | PavSPSA2-J-F | GAGGCAGCAGCTTATGGTCTACCT |
PavSPSA2-R | CTACCGCTTGAGAATCCCTAGT | PavSPSA2-J-R | CTTGTCCTTCCCTGCTGCCTCA |
PavSPSB-F | ATTTGGCATCTTACCCGTAAGAAG | PavSPSB-J-F | ATGAAGGAGGTGGAAATAAGCTGCT |
PavSPSB-R | TCACATTCGAGCAGCAGATTTAGAG | PavSPSB-J-R | AGTACATTGGATGGCAACGCAG |
PavSPSC-F | ATGGCGGGAAACGACTGGTTAAACAG | PavSPSC-J-F | GAGATTCTGATACAGGTGGTCAGGT |
PavSPSA1-q-F | GCAAACCAAGGCATCCACAAT | PavSPSC-J-R | AGCTCCTCAGCCTCGATCCTCTTC |
PavSPSA1-q-R | GAACCCTACAGAGCCTTCAGT | PaNCED1-F | CATGTCGGAGGACGACTTGCCGT |
PavSPSA2-q-F | TGAGGCAGCAGGGAAGGACAAG | PaNCED1-R | GCGCCGTCTGGAGAGACGTGGA |
PavSPSA2-q-R | AGCCCCAACGGACATACAGATACC | PaPG1-F | ATCACCTTCCGCATTGCTG |
PavSPSB-q-F | GGCTTGCTTGTGGACCCTCAT | PaPG1-R | TCACCTTAATGTTGTTGGAG |
PavSPSB-q-R | AGCAGCTTATTTCCACCTCCTTC | PaXYL1-F | ACAACTGGAACGGTGTCGAT |
PavSPSC-q-F | ACCCCACCACCCGCTTTCA | PaXYL1-R | TCCTGGTGTAATGTTGCTCG |
PavSPSC-q-R | GACCCTCGCCATTGCCTACG | PaPL-1-F | GATGGTCGCTTCTATGTTGTCA |
PavSPSA2-RNAi-F | AGTAAGGTTACCGAATTCTGAGGCAGCAGGGAAGGACAAG | PaPL-1-R | TGAGATGGAGAGCTCCTCACC |
PavSPSA2-RNAi-R | GAGCTCGGTACCGGTACCAGCCCCAACGGACATACAGATACC | PaPAL-F | GCCTCACCAGGCAACAAGAGCA |
PavSPSB-RNAi-F | AGTAAGGTTACCGAATTCGGCTTGCTTGTGGACCCTCAT | PaPAL-R | TCTGGCCATCTGGTCCAACAGC |
PavSPSB-RNAi-R | GAGCTCGGTACCGGTACCAGCAGCTTATTTCCACCTCCTTCAT | PaCHS-F | GTATGTGCGAGTACATGGCA |
PavSPSC-RNAi-F | AGTAAGGTTACCGAATTCACCCCACCACCCGCTTTCA | PaCHS-R | GCTTAGTGAGCTGATAGTC |
PavSPSC-RNAi-R | GAGCTCGGTACCGGTACCGACCCTCGCCATTGCCTACG | PaDFR-F | CTGCACCGGAGTGTTCCATGT |
Histone2-F | GGTGTGCTTCCGCAGATAA | PaDFR-R | CTGGTGCTCTTCGACGTTCAC |
Histone2-R | TCCTCCTTGGGTGGTGAAT | PaANS-F | ATCTCCGATGAGCTCATGG |
PaANS-R | CTCAATGTAATCAGCAGGTG |
基因名称 Gene name | cDNA/ bp | 氨基酸 Amino acid | GenBank登录号 ID in GenBank | 染色体位置 Chromosome location | 拟南芥同源基因 Homologous gene in Arabidopsis | |
---|---|---|---|---|---|---|
TAIR位置 Locus in TAIR | 氨基酸相似度/% Similarity of amino acid | |||||
PavSPSA1 | 3 174 | 1 057 | XM_021953379.1 | Chr7:18 650 177 ~ 18 655 575 | AtSPS1F(At5g20280) | 77.69 |
PavSPSA2 | 3 180 | 1 059 | XM_021966658.1 | Chr1:35 009 999 ~ 35 016 230 | AtSPS2F(At5g11110) | 71.36 |
PavSPSB | 2 844 | 947 | XM_021946233.1 | chrUn:91 085 245 ~ 91 090 791 | AtSPS3F(At1g04920) | 67.35 |
PavSPSC | 3 072 | 1 023 | XM_021957268.1 | Chr8:324 800 ~ 330 670 | AtSPS4F(At4g10120) | 72.10 |
Table 2 Information of sucrose-phosphate synthase(SPS)genes identified in sweet cherry
基因名称 Gene name | cDNA/ bp | 氨基酸 Amino acid | GenBank登录号 ID in GenBank | 染色体位置 Chromosome location | 拟南芥同源基因 Homologous gene in Arabidopsis | |
---|---|---|---|---|---|---|
TAIR位置 Locus in TAIR | 氨基酸相似度/% Similarity of amino acid | |||||
PavSPSA1 | 3 174 | 1 057 | XM_021953379.1 | Chr7:18 650 177 ~ 18 655 575 | AtSPS1F(At5g20280) | 77.69 |
PavSPSA2 | 3 180 | 1 059 | XM_021966658.1 | Chr1:35 009 999 ~ 35 016 230 | AtSPS2F(At5g11110) | 71.36 |
PavSPSB | 2 844 | 947 | XM_021946233.1 | chrUn:91 085 245 ~ 91 090 791 | AtSPS3F(At1g04920) | 67.35 |
PavSPSC | 3 072 | 1 023 | XM_021957268.1 | Chr8:324 800 ~ 330 670 | AtSPS4F(At4g10120) | 72.10 |
Fig. 4 Effect of silencing of PavSPSA1,PavSPSA2,PavSPSB,and PavSPSC in sweet cherry fruits on anthocyanin and ABA Statistically significant differences between means were determined using one-way analysis of variance(ANOVA)at the 1% significance level. ?? indicates significant differences P-value < 0.01. The same below.
Fig. 5 Effect of silencing of PavSPSA1,PavSPSA2,PavSPSB and PavSPSC in sweet cherry fruits on soluble sugar content (sucrose,fructose and glucose)and fruit firmness
Fig. 6 Changes of expression levels of PavNCED1,PavANS,PavDFR,PavCHS,PavPAL,PavPG1,PavXYL1 and PavPL1 in PavSPSA1-,PavSPSA2-,PavSPSB- and PavSPSC-silencing sweet cherry fruit PaNCED1(9-cis-epoxycarotenoid dioxygenase,Pav_sc0003135.1_g490.1.mk),PavANS(anthocyanidin synthase,Pav_sc0000107.1_g100.1.mk),PavDFR(dihydro flavonol 4-reductase,Pav_sc0002208.1_g840.1.mk),PavCHS(Chalcone synthase,Pav_sc0000045.1_g280.1.mk),PavPAL(phenylalanine ammonia-lyase,Pav_co4071347.1_g010.1.mk),PavPG1(polygalacturonase,Pav_sc0000557.1_g320.1.br),PavXYL1(β-D-xylosidase,Pav_sc0001014.1_g030.1.mk),PavPL1(Pectate lyase 1,Pav_sc0000207.1_g1250.1.mk).
[1] |
Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furban R T, Lunn J E. 2004. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiology, 135 (3):1753-1764.
pmid: 15247374 |
[2] |
Cheng G W, Breen P J. 1991. Activity of phenylalanine ammonia-lyase(Pal)and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116 (5):865-869.
doi: 10.21273/JASHS.116.5.865 URL |
[3] |
Fu D Q, Zhu B Z, Zhu H L, Jiang W B, Luo Y B. 2005. Virus-induced gene silencing in tomato fruit. The Plant Journal, 43 (2):299-308.
doi: 10.1111/tpj.2005.43.issue-2 URL |
[4] |
Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, Ohto C, Terao T, Ohsugi R. 2014. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rice,OsSPS1,shows the importance of sucrose synthesis in pollen germination. Plant Science, 225:102-106.
doi: 10.1016/j.plantsci.2014.05.018 URL |
[5] |
Huang D L, Qin C X, Gui Y Y, Zhao L H, Chen Z L, Wang M, Sun Y, Liao Q, Li Y R, Lakshmanan P. 2017. Role of the SPS gene families in the regulation of sucrose accumulation in sugarcane. Sugar Tech, 19 (2):117-124.
doi: 10.1007/s12355-016-0454-x URL |
[6] |
Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, Wang B, Cui L, Fang J. 2016. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnology Journal, 14 (10):2045-2065.
doi: 10.1111/pbi.2016.14.issue-10 URL |
[7] |
Jia H, Wang Y, Sun M, Li B, Han Y, Zhao Y, Li X, Ding N, Li C, Ji W, Jia W. 2013. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytologist, 198 (2):453-465.
doi: 10.1111/nph.2013.198.issue-2 URL |
[8] |
Jiang Y, Guo W, Zhu H, Ruan Y L, Zhang T. 2012. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal, 10 (3):301-312.
doi: 10.1111/pbi.2012.10.issue-3 URL |
[9] |
Langenkämper G, Fung R W, Newcomb R D, Atkinson R G, Gardner R C, Macrae E A. 2002. Sucrose phosphate synthase genes in plants belong to three different families. Journal of Molecular Evolution, 54 (3):322-332.
URL pmid: 11847558 |
[10] |
Kelley D S, Adkins Y, Laugero K D. 2018. A review of the health benefits of cherries. Nutrients, 10 (3):368.
doi: 10.3390/nu10030368 URL |
[11] |
Komatsu A, Takanokura Y, Akihama T, Omura M. 1996. Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit(Citrus unshiu Marc.). Molecular and General Genetics, 252 (3):346-351.
pmid: 8842155 |
[12] |
Li B, Xie Z, Zhang A, Xu W, Zhang C, Liu Q, Liu C, Wang S. 2010. Tree growth characteristics and flower bud differentiation of sweet cherry (Prunus avium L.)under different climate conditions in China. Horticultural Science, 37 (1):6-13.
doi: 10.17221/HORTSCI URL |
[13] | Li Fu-peng, Qin Xao-wei, Wu Bao-duo, Zhao Xi-zhu, Wang Hua, Zhu Zi-hui, Lai Jian-xiong. 2015. Phylogeny and expression profile of the sucrose phosphate synthase gene family in cacao(Theobroma cacao L.). Chinese Journal of Tropical Crops, 36 (9):1608-1613. (in Chinese) |
李付鹏, 秦晓威, 伍宝朵, 赵溪竹, 王华, 朱自慧, 赖剑雄. 2015. 可可蔗糖磷酸合成酶基因家族进化及组织表达分析. 热带作物学报, 36 (9):1608-1613. | |
[14] | Li Hui-xia, Zhu Ling-cheng, Zhang Zhao, Ma Feng-wang, Li Ming-jun. 2017. Expression analysis of apple sucrose synthase gene families and their relationship with sucrose accumulation in apple. Journal of Northwest Botanical Sciences, 37 (5):872-878. (in Chinese) |
李会霞, 祝令成, 张钊, 马锋旺, 李明军. 2017. 苹果中磷酸蔗糖合酶家族基因的表达特性及其与蔗糖含量的关系. 西北植物学报, 37 (5):872-878. | |
[15] | Lü Jia-hong, Wang Ying-zhen, Cheng Rui, Wang Guo-ming, Zhang Shao-ling, Wu Jun, Zhang Hu-ping. 2018. Genome-wide identification and expression analysis of sucrose synthase(SUS)and sucrose phosphate synthase(SPS)gene families in pear. Acta Horticulturae Sinica, 45 (3):421-435. (in Chinese) |
吕佳红, 王英珍, 程瑞, 王国明, 张绍铃, 吴俊, 张虎平. 2018. 梨蔗糖合成相关酶SUS和SPS基因家族的鉴定与表达分析. 园艺学报, 45 (3):421-435. | |
[16] |
Lunn J E, MacRae E. 2003. New complexities in the synthesis of sucrose. Current Opinion in Plant Biology, 6 (3):208-214.
doi: 10.1016/S1369-5266(03)00033-5 URL |
[17] |
Lutfiyya L L, Xu N, Robert L D, Morrell J A, Miller P W, Duff S M. 2007. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. Journal of Plant Physiology, 164 (7):923-933.
pmid: 16876912 |
[18] |
McCune L M, Kubota C, Stendell-Hollis N R, Thomson C A. 2010. Cherries and health:a review. Critical Reviews in Food Science and Nutrition, 51 (1):1-12.
doi: 10.1080/10408390903001719 URL |
[19] |
Nemati F, Ghanati F, Gavlighi H A, Sharifi M. 2018. Comparison of sucrose metabolism in wheat seedlings during drought stress and subsequent recovery. Biologia Plantarum, 62 (3):595-599.
doi: 10.1007/s10535-018-0792-5 URL |
[20] | Qi Xi-liang, Li Ming, Liu Cong-li, Song Lu-lu. 2018. Construction of TRV-mediated Virus Induced Gene Silencing(VIGS)system in sweet cherry Fruit. Journal of Fruit Science, 35 (11):1309-1315.. (in Chinese) |
齐希梁, 李明, 刘聪利, 宋露露. 2018. TRV介导欧洲甜樱桃果实VIGS体系的建立. 果树学报, 35 (11):1309-1315. | |
[21] | Solís-Guzmán M G, Argüello-Astorga G, López-Bucio J, Ruiz-Herrera L F, López-Meza J E, Sánchez-Calderón L, Carreón-Abud Y, Martínez-Trujillo M. 2017. Arabidopsis thaliana sucrose phosphate synthase(SPS)genes are expressed differentially in organs and tissues,and their transcription is regulated by osmotic stress. Gene Expression Patterns, 25:92-101. |
[22] |
Verma A K, Upadhyay S K, Verma P C, Solomon S, Singh S B. 2011. Functional analysis of sucrose phosphate synthase(SPS)and sucrose synthase (SS)in sugarcane(Saccharum)cultivars. Plant Biology, 13 (2):325-332.
doi: 10.1111/j.1438-8677.2010.00379.x URL pmid: 21309979 |
[23] |
Vimolmangkang S, Zheng H, Peng Q, Jiang Q, Wang H, Fang T, Liao L, Lu W, He H P, Han Y P. 2016. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. Journal of Agricultural and Food Chemistry, 64 (35):6723-6729.
doi: 10.1021/acs.jafc.6b02159 pmid: 27537219 |
[24] |
Wang D, Zhao J T, Hu B, Li J Q, Qin Y Q, Chen L H, Qin Y H, Hu G B. 2018. Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn. Peer J, 6:e4379.
doi: 10.7717/peerj.4379 URL |
[25] |
Wang J, Du J, Mu X, Wang P. 2017. Cloning and characterization of the Cerasus humilis sucrose phosphate synthase gene(ChSPS1). PLoS ONE, 12 (10):e0186650.
doi: 10.1371/journal.pone.0186650 URL |
[26] | Wei Qingjiang, Ma Zhangzheng, Le Si, Lei Changyu, Ma Qiaoli, Gu Qingqing. 2020. Identification and expression analysis of sucrose-phosphate synthase(SPS)genes in citrus. Acta Horticulturae Sinica, 47 (2):334-344. (in Chinese) |
魏清江, 马张正, 勒思, 雷常玉, 马巧利, 辜青青. 2020. 柑橘磷酸蔗糖合酶基因CsSPS的鉴定和表达. 园艺学报, 47 (2):334-344. | |
[27] |
Wind J, Smeekens S, Hanson J. 2010. Sucrose:metabolite and signaling molecule. Phytochemistry, 71 (14-15):1610-1614.
doi: 10.1016/j.phytochem.2010.07.007 URL |
[28] | Zhang Kai-chun, Yan Guo-hua, Zhang Xiao-ming, Wang Jing, Duan Xu-wei. 2017. The cultivation history,production situation and development proposals of sweet cherry in China. Deciduous Fruits, 49 (6):1-5. (in Chinese) |
张开春, 闫国华, 张晓明, 王晶, 段续伟. 2017. 中国甜樱桃的栽培历史、生产现状及发展建议. 落叶果树, 49 (6):1-5 | |
[29] |
Zhang X M, Wang W, Du L Q, Xie J H, Yao Y L, Sun G M. 2012. Expression patterns,activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase,sucrose synthase and neutral invertase in pineapple fruit during development and ripening. International Journal of Molecular Sciences, 13 (8):9460-9477.
doi: 10.3390/ijms13089460 URL |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | HAN Rui, ZHONG Xionghui, CHEN Denghui, CUI Jian, YUE Xiangqing, XIE Jianming, and KANG Jungen, . Cloning and Functional Analysis of BobHLH34 Gene in Cabbage that Interacts with XopR from Xanthomonas [J]. Acta Horticulturae Sinica, 2023, 50(2): 319-330. |
[3] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[4] | ZHANG Xiaoming, YAN Guohua, ZHOU Yu, WANG Jing, DUAN Xuwei, WU Chuanbao, and ZHANG Kaichun. A New Sweet Cherry Rootstock Cultivar‘Jingchun 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 31-32. |
[5] | ZHANG Qiuyue, LIU Changlai, YU Xiaojing, YANG Jiading, FENG Chaonian. Screening of Reference Genes for Differentially Expressed Genes in Pyrus betulaefolia Plant Under Salt Stress by qRT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. |
[6] | LI Lixian, WANG Shuo, CHEN Ying, WU Yingtao, WANG Yaqian, FANG Yue, CHEN Xuesen, TIAN Changping, FENG Shouqian. PavMYB10.1 Promotes Anthocyanin Accumulation by Positively Regulating PavRiant in Sweet Cherry [J]. Acta Horticulturae Sinica, 2022, 49(5): 1023-1030. |
[7] | LI Yamei, MA Fuli, ZHANG Shanqi, HUANG Jinqiu, CHEN Mengting, ZHOU Junyong, SUN Qibao, SUN Jun. Optimization of Jujube Callus Transformation System and Application of ZjBRC1 in Regulating ZjYUCCA Expression [J]. Acta Horticulturae Sinica, 2022, 49(4): 749-757. |
[8] | WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng. Identification and Expression Analysis of Genes Related to DNA Methylation in Chrysanthemum × morifolium and C. nankingense [J]. Acta Horticulturae Sinica, 2022, 49(4): 827-840. |
[9] | ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu. Transcriptome Analysis of the Molecular Mechanism of Saline-alkali Stress Response in Malus halliana Leaves [J]. Acta Horticulturae Sinica, 2022, 49(2): 237-251. |
[10] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[11] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[12] | HOU Tianze, YI Shuangshuang, ZHANG Zhiqun, WANG Jian, LI Chonghui. Selection and Validation of Reference Genes for RT-qPCR in Phalaenopsis- type Dendrobium Hybrid [J]. Acta Horticulturae Sinica, 2022, 49(11): 2489-2501. |
[13] | ZHOU Tie, PAN Bin, LI Feifei, MA Xiaochuan, TANG Mengjing, LIAN Xuefei, CHANG Yuanyuan, CHEN Yuewen, LU Xiaopeng. Effects of Drought Stress at Enlargement Stage on Fruit Quality Formation of Satsuma Mandarin and the Law of Water Absorption and Transportation in Tree After Re-watering [J]. Acta Horticulturae Sinica, 2022, 49(1): 11-22. |
[14] | HE Yan, SUN Yanli, ZHAO Fangfang, DAI Hongjun. Effect of Exogenous Brassinolides Treatment on Sugar Metabolism of Merlot Grape Berries [J]. Acta Horticulturae Sinica, 2022, 49(1): 117-128. |
[15] | LI Maofu, YANG Yuan, WANG Hua, FAN Youwei, SUN Pei, JIN Wanmei. Identification and Analysis of Self Incompatibility S-RNase in Rose [J]. Acta Horticulturae Sinica, 2022, 49(1): 157-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd