Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (8): 1437-1445.doi: 10.16420/j.issn.0513-353x.2020-0668
• Research Papers • Next Articles
BIAN Lu, GUO Dalong, YU Keke, WEI Tonglu, PEI Maosong, LIU Hainan, YU Yihe()
Received:
2021-02-23
Revised:
2021-06-07
Online:
2021-08-25
Published:
2021-09-06
Contact:
YU Yihe
E-mail:yuyihe@haust.edu.cn
CLC Number:
BIAN Lu, GUO Dalong, YU Keke, WEI Tonglu, PEI Maosong, LIU Hainan, YU Yihe. Cloning and Expression Analysis of the Cytokinin Response Regulator VlRR5 in Kyoho Grapevine[J]. Acta Horticulturae Sinica, 2021, 48(8): 1437-1445.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0668
引物名称基因 Primer | 碱基序列(5'-3') Primer sequence |
---|---|
QT-VlRR5 | F:TGGGTATGCATTGCCTTTCT;R:GAAGAAGGAAGCTCTGCGTTT |
VlRR5 | F:ATGACAGTTGAACCGAGGGT;R:TTAATGGAAAAGAACTTGAT |
Y1H-RR5 | F:ATGGCCATGGAGGCCGAATTCATGACAGTTGAACCGAGGGT; |
R:ATGCGGCCGCTGCAGGAATTCTTAATGGAAAAGAACTTGAT | |
LS-RR5 | F:AGAGAACACGGGGGACTCTAGAATGACAGTTGAACCGAGGGT; |
R:CTTCTCCCTTACCCATGGTACCTTAATGGAAAAGAACTTGAT |
Table 1 List of primers
引物名称基因 Primer | 碱基序列(5'-3') Primer sequence |
---|---|
QT-VlRR5 | F:TGGGTATGCATTGCCTTTCT;R:GAAGAAGGAAGCTCTGCGTTT |
VlRR5 | F:ATGACAGTTGAACCGAGGGT;R:TTAATGGAAAAGAACTTGAT |
Y1H-RR5 | F:ATGGCCATGGAGGCCGAATTCATGACAGTTGAACCGAGGGT; |
R:ATGCGGCCGCTGCAGGAATTCTTAATGGAAAAGAACTTGAT | |
LS-RR5 | F:AGAGAACACGGGGGACTCTAGAATGACAGTTGAACCGAGGGT; |
R:CTTCTCCCTTACCCATGGTACCTTAATGGAAAAGAACTTGAT |
Fig. 1 Amino acid sequence alignment of VlRR5 and other species RRs A:Phosphoric acid receptor domain(REC);B:MYB-like DNA binding domain. Pan:Parasponia andersonii;Md:Malus × domestica;Os:Oryza sativa;At:Arabidopsis thaliana.
顺式作用元件 cis-acting element | 功能 Function | 序列 Sequence | 数量 Amount |
---|---|---|---|
gGTAAAGAAA | 脱落酸响应Abscisic acid responsiveness | ACGTG | 1 |
ARE | 厌氧诱导Anaerobic induction | AAACCA | 3 |
AuxRR-core | 生长素响应Auxin responsiveness | GGTCCAT | 1 |
CAT-box | 分生组织表达Meristem expression | GCCACT | 1 |
CGTCA-motif | 茉莉酸甲酯响应MeJA-responsiveness | CGTCA | 2 |
G-box | 光响应Light responsiveness | TACGTG | 2 |
MBS | 参与干旱诱导的MYB结合位点MYB binding site involved in drought-inducibility | CAACTG | 9 |
Pc-CMA2a | 光响应元件的一部分Part of a light responsive element | CAGCCAATCACAG | 1 |
TATA-box | 在转录开始-30左右的核心启动子元件 Core promoter element around-30 of transcription start | TATA | 5 |
TCA-element | 水杨酸响应Salicylic acid responsiveness | TCAGAAGAGG | 1 |
TGACG-motif | 茉莉酸甲酯响应MeJA-responsiveness | TGACG | 2 |
CAAT-box | 启动子和增强子区域的顺式作用元件 Common cis-acting element in promoter and enhancer regions | CAAAT | 49 |
Table 2 The cis-acting elements in promoters of VlRR5
顺式作用元件 cis-acting element | 功能 Function | 序列 Sequence | 数量 Amount |
---|---|---|---|
gGTAAAGAAA | 脱落酸响应Abscisic acid responsiveness | ACGTG | 1 |
ARE | 厌氧诱导Anaerobic induction | AAACCA | 3 |
AuxRR-core | 生长素响应Auxin responsiveness | GGTCCAT | 1 |
CAT-box | 分生组织表达Meristem expression | GCCACT | 1 |
CGTCA-motif | 茉莉酸甲酯响应MeJA-responsiveness | CGTCA | 2 |
G-box | 光响应Light responsiveness | TACGTG | 2 |
MBS | 参与干旱诱导的MYB结合位点MYB binding site involved in drought-inducibility | CAACTG | 9 |
Pc-CMA2a | 光响应元件的一部分Part of a light responsive element | CAGCCAATCACAG | 1 |
TATA-box | 在转录开始-30左右的核心启动子元件 Core promoter element around-30 of transcription start | TATA | 5 |
TCA-element | 水杨酸响应Salicylic acid responsiveness | TCAGAAGAGG | 1 |
TGACG-motif | 茉莉酸甲酯响应MeJA-responsiveness | TGACG | 2 |
CAAT-box | 启动子和增强子区域的顺式作用元件 Common cis-acting element in promoter and enhancer regions | CAAAT | 49 |
Fig. 2 Phylogenetic tree of VlRR5 and RR proteins of other species St:Solanum tuberosum;Sl:Solanum lycopersicum;Os:Oryza sativa subsp. japonica;Tt:Thalictrum thalictroides;Nn:Nelumbo nucifera;At:Arabidopsis thaliana;Ns:Nyssa sinensis;Ac:Actinidia chinensis var. chinensis;Cs:Camellia sinensis;Cm:Cucumis melo;Cf:Carpinus fangiana;Pan:Parasponia andersonii;Zj:Ziziphus jujuba;Md:Malus × domestica;Pd:Prunus dulcis;Pa:Prunus avium.
[1] | Duan J, Yu H, Yuan K, Liao Z, Meng X, Jing Y, Liu G, Chu J, Li J. 2019. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceedings of the National Academy of Sciences, 116 (28):14319-14324. |
[2] | Fan Biao, Zhao Jiangzhe. 2017. Research progress of cytokinin and its application in crop production. Zhejiang Agricultural Sciences, 58 (8):1411-1414. (in Chinese) |
樊彪, 赵江哲. 2017. 细胞分裂素研究进展及其在作物生产中的应用. 浙江农业科学, 58 (8):1411-1414. | |
[3] |
Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z. 2012. A plasma membrane receptor kinase,GHR1,mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant Cell, 24 (6):2546-2561.
doi: 10.1105/tpc.112.100107 URL |
[4] |
Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y. 2018. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Molecular Plant, 11 (7):970-982.
doi: 10.1016/j.molp.2018.05.001 URL |
[5] |
Li Y, Zhang D, Zhang L, Zuo X, Fan S, Zhang X, Shalmani A, Han M. 2017. Identification and expression analysis of cytokinin response-regulator genes during floral induction in apple(Malus domestica Borkh). Plant Growth Regulation, 83 (3):455-464.
doi: 10.1007/s10725-017-0311-2 URL |
[6] | Liang Peng, Shi Heping, Li Ling. 2002. Research progress of cytokinin signal transduction. Botanical Bulletin, 19 (2):171-175. (in Chinese) |
梁朋, 施和平, 李玲. 2002. 细胞分裂素信号转导研究进展. 植物学通报, 19 (2):171-175. | |
[7] | Nguyen K H, Ha C V, Nishiyama R, Watanabe Y, Leyva-González M A, Fujita Y, Tran U T, Li W, Tanaka M, Seki M, Schaller G E, Herrera-Estrella L, Tran L P. 2016. Arabidopsis type B cytokinin response regulators ARR1,ARR10,and ARR12 negatively regulate plant responses to drought. Proceedings of the National Academy of Sciences, 113 (11):3090-3095. |
[8] | Ni J, Bai S, Gao L, Qian M, Zhong L, Teng Y. 2017. Identification,classification,and transcription profiles of the B-type response regulator family in pear. PLoS ONE, 12 (2):e171523. |
[9] |
Ramireddy E, Brenner W G, Pfeifer A, Heyl A, Schmülling T. 2013. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. Plant and Cell Physiology, 54 (7):1079-1092.
doi: 10.1093/pcp/pct060 URL |
[10] |
Reyes-Olalde J I, Zúñiga-Mayo V M, Serwatowska J, Chavez Montes R A, Lozano-Sotomayor P, Herrera-Ubaldo H, Gonzalez-Aguilera K L, Ballester P, Ripoll J J, Ezquer I, Paolo D, Heyl A, Colombo L, Yanofsky M F, Ferrandiz C, Marsch-Martínez N, de Folter S. 2017. The bHLH transcription factor SPATULA enables cytokinin signaling,and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. Plos Genetics, 13 (4):e1006726.
doi: 10.1371/journal.pgen.1006726 URL |
[11] |
Salomé P A, To J P C, Kieber J J, McClung C R. 2005. Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of Circadian Period. The Plant Cell, 18 (1):55-69.
doi: 10.1105/tpc.105.037994 URL |
[12] | Schaller G E, Shiu S, Armitage J P. 2011. Two-component systems and their co-option for eukaryotic signal transduction. Current Biology, 21 (9):R320-R330. |
[13] |
Sheen J. 2002. Phosphorelay and transcription control in cytokinin signal transduction. Science, 296 (5573):1650-1652.
pmid: 12040183 |
[14] | Wallmeroth N, Jeschke D, Slane D, Nägele J, Veerabagu M, Mira-Rodado V, Berendzen K W. 2019. ARR22 overexpression can suppress plant two-component regulatory systems. PLoS ONE, 14 (2):e212056. |
[15] |
Yang M, Chen J, Tian H, Ni C, Xiao K. 2019. TaARR1,a cytokinin response regulator gene in Triticum aestivum,is essential in plant N starvation tolerance via regulating the N acquisition and N assimilation. Journal of Integrative Agriculture, 18 (12):2691-2702.
doi: 10.1016/S2095-3119(19)62698-5 URL |
[16] |
Yang Y, Jiang Y, Mi X, Gan L, Gu T, Ding J, Li Y. 2016. Identification and expression analysis of cytokinin response regulators in Fragaria vesca. Acta Physiologiae Plantarum, 38 (8):198.
doi: 10.1007/s11738-016-2213-8 URL |
[17] | Yao Jifang, An Jianping, You Chunxiang, Wang Xiaofei, Hao Yujin. 2019. Molecular cloning and tolerance identification of apple cytokinin oxidase gene MdCKX7.2. Acta Horticulturae Sinica, 46 (3):409-420. (in Chinese) |
姚继芳, 安建平, 由春香, 王小非, 郝玉金. 2019. 苹果细胞分裂素氧化酶基因MdCKX7.2的克隆及抗性鉴定. 园艺学报, 46 (3):409-420. | |
[18] |
Yu Y, Bian L, Jiao Z, Yu K, Wan Y, Zhang G, Guo D. 2019a. Molecular cloning and characterization of a grapevine(Vitis vinifera L.)serotonin N-acetyltransferase(VvSNAT2)gene involved in plant defense. BMC Genomics, 20 (1):880.
doi: 10.1186/s12864-019-6085-3 URL |
[19] |
Yu Y, Jiao Z, Bian L, Wan Y, Yu K, Zhang G, Guo D. 2019b. Overexpression of Vitis vinifera VvbZIP60 enhances Arabidopsis resistance to powdery mildew via the salicylic acid signaling pathway. Scientia Horticulturae, 256:108640.
doi: 10.1016/j.scienta.2019.108640 URL |
[1] | WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species [J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212. |
[2] | ZHU Ziguo, ZHANG Qingtian, HAN Zhen, LI Bo, LI Guodong, LI Xiujie. VvMYB6,an R2R3-MYB Transcription Factor,is Involved in Anthocyanin Biosynthesis of Grapevine [J]. Acta Horticulturae Sinica, 2021, 48(3): 465-476. |
[3] | FAN Xudong, DONG Yafeng, ZHANG Zunping, REN Fang, HU Guojun, ZHANG Mengyan, LI Chen. Detection and Sequence Analyses of Grapevine Leafroll-associated Virus 7 Isolates in China [J]. Acta Horticulturae Sinica, 2021, 48(2): 347-354. |
[4] | SHI Xiangbin, WANG Xiaodi, WANG Baoliang, WANG Zhiqiang, JI Xiaohao, WANG Xiaolong, LIU Fengzhi, WANG Haibo. Requirement Rule of Nitrogen,Phosphorus,Potassium,Calcium and Magnesium of‘Red Globe’Grapevine [J]. Acta Horticulturae Sinica, 2021, 48(11): 2146-2160. |
[5] | YANG Lushan,GUO Ye,HU Yang,and WEN Yingqiang*. CRISPR/Cas9-mediated Mutagenesis of VviEDR2 Results in Enhanced Resistance to Powdery Mildew in Grapevine(Vitis vinifera) [J]. ACTA HORTICULTURAE SINICA, 2020, 47(4): 623-634. |
[6] | ZHU Ziguo, YIN Qizhong, ZHANG Qingtian, HAN Zhen, ZHANG Qian, and LI Bo, . DRL1,a NAC Gene from Vitis vinifera‘Yatomo Rose’,Negatively Regulates the Drought Tolerance [J]. Acta Horticulturae Sinica, 2020, 47(12): 2290-2300. |
[7] | WANG Xiaoyue, ZHANG Guojun, SUN Lei, YAN Ailing, WANG Huiling, REN Jiancheng, and XU Haiying. Effects of Different Rootstocks on the Growth and Endogenous Hormones for Grape Cultivars [J]. Acta Horticulturae Sinica, 2020, 47(11): 2107-2120. |
[8] | ZHANG Mengyan,ZHANG Zunping,REN Fang,HU Guojun,FAN Xudong*,and DONG Yafeng*. Establishment and Application of a Real-time Fluorescent Quantitative RT-PCR for Detection of Grapevine fabavirus [J]. ACTA HORTICULTURAE SINICA, 2020, 47(1): 187-194. |
[9] | GUO Ye,WAN Dongyan,CHAI Zhuangzhuang,WANG Yuejin,and WEN Yingqiang*. Knock-out Analysis of VviPDS1 Gene Using CRISPR/Cas9 in Grapevine [J]. ACTA HORTICULTURAE SINICA, 2019, 46(4): 623-634. |
[10] | SHI Xiangbin,LIU Fengzhi,CHENG Cungang,WANG Xiaodi,JI Xiaohao,WANG Baoliang,ZHENG Xiaocui,and WANG Haibo*. Effects of Different New Shoots Spacing on Canopy Light Environment and Fruit Quality of Grapevine Under Protected Cultivation [J]. ACTA HORTICULTURAE SINICA, 2018, 45(3): 436-446. |
[11] | ZHOU Changhao*,LIN Caicai*,FENG Yuanyuan,JIN Hua,WANG Jianhua,and SONG Zhenqiao**. Analysis of Sequence Characteristics of Cytokinin Response Regulator in Salvia miltiorrhiza [J]. ACTA HORTICULTURAE SINICA, 2018, 45(11): 2217-2227. |
[12] | REN Fang,DONG Yafeng*,ZHANG Zunping,FAN Xudong,and HU Guojun*. Development and Application of a Quantitative RT-PCR Approach for Detection of Grapevine virus A [J]. ACTA HORTICULTURAE SINICA, 2018, 45(11): 2243-2254. |
[13] | ZHANG Chengjun,WANG Lei,DUAN Shuyan,SONG Shiren,MA Chao,ZHAO Liping,ZHANG Caixi,WANG Shiping,and XU Wenping*. Effect of Low Light Stress on Photosynthetic Physiology and Gene Expression in‘Khoyo’Grapevine After Blooming [J]. ACTA HORTICULTURAE SINICA, 2017, 44(8): 1450-1462. |
[14] | WANG Mengqi1,XIE Zhenqiang2,SUN Xin1,LI Xiaopeng1,ZHU Xudong1,WANG Chen1,and FANG Jinggui1,*. Function Analysis of miR159 and Its Target Gene VvGAMYB in Grape Flower Development [J]. ACTA HORTICULTURAE SINICA, 2017, 44(6): 1061-1072. |
[15] | LUO Meng1,WU Guohong2,XU Wenping1,*,LUO Qiangwei2,LOU Yusui1,SUN Feng2,and WANG Shiping1,*. Water and Mineral Elements Uptake Patterns of‘Thompson Seedless’ Grapevine in Turpan,Xinjiang [J]. ACTA HORTICULTURAE SINICA, 2017, 44(10): 1849-1860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd