Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (7): 1359-1370.doi: 10.16420/j.issn.0513-353x.2021-0194
• Research Papars • Previous Articles Next Articles
CHENG Feng, SONG Mengfei, CAO Lei, ZHANG Mengru, YANG Zhige, CHEN Jinfeng, LOU Qunfeng*()
Received:
2021-03-29
Revised:
2021-05-06
Online:
2021-07-25
Published:
2021-08-10
Contact:
LOU Qunfeng
E-mail:qflou@njau.edu.cn
CLC Number:
CHENG Feng, SONG Mengfei, CAO Lei, ZHANG Mengru, YANG Zhige, CHEN Jinfeng, LOU Qunfeng. Genetic Mapping for a Medium Short-fruit Mutant of Cucumber[J]. Acta Horticulturae Sinica, 2021, 48(7): 1359-1370.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0194
Fig. 3 Observation of paraffin sections of fruit cell size in wild type(WT)and mutant(msf)at different stages after flowering “**”indicates significant difference from WT at the 0.01 probability level. Scale bars represent 20 μm.
群体 | 总株数 | 长果株数 | 中短果株数 | 期望比 | χ2 | P |
---|---|---|---|---|---|---|
Population | Total | Long fruit | Medium Short fruits | Expected ratio | ||
P1(WT) | 20 | 20 | 0 | |||
P2(msf) | 20 | 0 | 20 | |||
F1 | 40 | 40 | 0 | |||
F2 | 447 | 339 | 108 | 3︰1 | 0.17 | 0.68 |
Table 1 Phenotypic data for short fruit mutant and wild-type cucumber
群体 | 总株数 | 长果株数 | 中短果株数 | 期望比 | χ2 | P |
---|---|---|---|---|---|---|
Population | Total | Long fruit | Medium Short fruits | Expected ratio | ||
P1(WT) | 20 | 20 | 0 | |||
P2(msf) | 20 | 0 | 20 | |||
F1 | 40 | 40 | 0 | |||
F2 | 447 | 339 | 108 | 3︰1 | 0.17 | 0.68 |
Fig. 5 Mapping of the msf gene A:Distribution of ∆(All-index)in two pools on seven chromosomes.(Each point represents a SNP site,and different chromosomes are distinguished by different colors;the black line is the SNP-index mean line,the blue line is the 95% threshold line,and the purple line is the 99% threshold line);B:Distribution of ∆(All-index)in two pools on chromosome 1.(Each point represents a SNP site,the red line is the SNP-index mean line,the green line is the 95% threshold line, and the purple line is the 99% threshold line);C:The msf gene was mapped to a region on chromosome 1 in an F2 population containing 437 individuals from a cross between msf and‘hazerd’.
位置/bp Position | 参考基因组 REF | 碱基Base | SNP指数 SNP-index | 类型 Category | 氨基酸变化 Amino acid change | ||
---|---|---|---|---|---|---|---|
野生型 | 变异 | 野生池 | 突变池 | ||||
WT | ALT | WT-pool | msf-pool | ||||
28 730 253 | T | T | A | 0.28 | 0.96 | 基因间Intergenic | |
28 790 458 | A | A | T | 0.28 | 0.91 | 上游 Upstream | |
29 026 627 | G | G | C | 0.25 | 1 | 基因间Intergenic | |
29 045 423 | G | G | A | 0.23 | 0.93 | 基因间Intergenic | |
29 057 944 | C | C | T | 0.21 | 0.96 | 基因间Intergenic | |
29 114 093 | T | T | G | 0.29 | 0.97 | 基因间 Intergenic | |
29 380 231 | G | G | A | 0.26 | 0.92 | 基因间 Intergenic | |
29 440 371 | C | C | G | 0.25 | 0.9 | 内含子Intronic | |
29 501 452 | G | G | A | 0.19 | 1 | 内含子Intronic | |
29 567 774 | G | G | C | 0.27 | 1 | 外显子Exonic | 谷氨酰胺到谷氨酸 Q to E |
29 647 321 | G | G | A | 0.26 | 0.9 | 基因间Intergenic | |
29 765 691 | G | G | A | 0.25 | 0.96 | 内含子Intronic | |
29 825 348 | A | A | C | 0.24 | 0.95 | 基因间Intergenic |
Table 2 Candidate loci in the target region on chromosome 1
位置/bp Position | 参考基因组 REF | 碱基Base | SNP指数 SNP-index | 类型 Category | 氨基酸变化 Amino acid change | ||
---|---|---|---|---|---|---|---|
野生型 | 变异 | 野生池 | 突变池 | ||||
WT | ALT | WT-pool | msf-pool | ||||
28 730 253 | T | T | A | 0.28 | 0.96 | 基因间Intergenic | |
28 790 458 | A | A | T | 0.28 | 0.91 | 上游 Upstream | |
29 026 627 | G | G | C | 0.25 | 1 | 基因间Intergenic | |
29 045 423 | G | G | A | 0.23 | 0.93 | 基因间Intergenic | |
29 057 944 | C | C | T | 0.21 | 0.96 | 基因间Intergenic | |
29 114 093 | T | T | G | 0.29 | 0.97 | 基因间 Intergenic | |
29 380 231 | G | G | A | 0.26 | 0.92 | 基因间 Intergenic | |
29 440 371 | C | C | G | 0.25 | 0.9 | 内含子Intronic | |
29 501 452 | G | G | A | 0.19 | 1 | 内含子Intronic | |
29 567 774 | G | G | C | 0.27 | 1 | 外显子Exonic | 谷氨酰胺到谷氨酸 Q to E |
29 647 321 | G | G | A | 0.26 | 0.9 | 基因间Intergenic | |
29 765 691 | G | G | A | 0.25 | 0.96 | 内含子Intronic | |
29 825 348 | A | A | C | 0.24 | 0.95 | 基因间Intergenic |
[1] |
Avila L M, Cerrudo D, Swanton C, Lukens L. 2016. Brevis plant1,a putative inositol polyphosphate 5-phosphatase,is required for internode elongation in maize. Journal of Experimental Botany, 67(5):1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748 |
[2] |
Che G, Zhang X. 2019. Molecular basis of cucumber fruit domestication. Current Opinion in Plant Biology, 47:38-46.
doi: 10.1016/j.pbi.2018.08.006 URL |
[3] |
Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty D R, Tan B C. 2014. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiology, 166(4):2028-2039.
doi: 10.1104/pp.114.247486 URL pmid: 25341533 |
[4] |
Chen Y, Yang Q, Sang S, Wei Z, Wang P. 2017. Rice inositol polyphosphate kinase(OsIPK2)directly interacts with OsIAA11 to regulate lateral root formation. Plant Cell Physiology, 58(11):1891-1900.
doi: 10.1093/pcp/pcx125 URL |
[5] |
Colle M, Weng Y, Kang Y, Ophir R, Sherman A, Grumet R. 2017. Variation in cucumber(Cucumis sativus L.)fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta, 246(4):641-658.
doi: 10.1007/s00425-017-2721-9 URL |
[6] |
Daviere J M, Achard P. 2013. Gibberellin signaling in plants. Development, 140:1147-1151.
doi: 10.1242/dev.087650 URL |
[7] |
Gao Z, Zhang H, Cao C, Han J, Li H, Ren Z. 2020. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Horticultural Plant Journal, 6(3):132-144.
doi: 10.1016/j.hpj.2020.04.004 URL |
[8] |
Lin W H, Wang Y, Mueller-Roeber B, Brearley C A, Xu Z H, Xue H W. 2005. At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis. Plant Physiology, 139(4):1677-1691.
doi: 10.1104/pp.105.067140 URL |
[9] | Liu Xingwang, Zhai Xuling, Zhang Yaqi, Yin Shuai, Feng Zhongxuan, Ren Huazhong. 2020. A review on genetic and molecular biology of fruit morphogenesis in cucumber. Acta Horticulturae Sinica, 47(9):1793-1809. (in Chinese) |
刘兴旺, 翟许玲, 张亚琦, 尹帅, 冯钟萱, 任华中. 2020. 黄瓜果实形态建成的遗传及分子基础研究进展. 园艺学报, 47(9):1793-1809. | |
[10] |
Pan Y, Liang X, Gao M, Liu H, Meng H, Weng Y, Cheng Z. 2017. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theoretical and Applied Genetics, 130(3):573-586.
doi: 10.1007/s00122-016-2836-6 URL |
[11] |
Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner S S, Kamoun S, Lucas W J, Zhang Z, Huang S. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12):1510-1515.
doi: 10.1038/ng.2801 URL |
[12] |
Qi X, Zhu Y, Li S, Zhou H, Xu X, Xu Q, Chen X. 2020. Identification of genes related to mesocarp development in cucumber. Horticultural Plant Journal, 6(5):293-300.
doi: 10.1016/j.hpj.2020.08.001 URL |
[13] |
Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y, Kitano H . 2012. DWARF50(D50),a rice(Oryza sativa L.)gene encoding inositol polyphosphate 5-phosphatase,is required for proper development of intercalary meristem. Plant Cell Environ, 35(11):2031-2044.
doi: 10.1111/j.1365-3040.2012.02534.x URL |
[14] |
Wang Y, Deng D, Ding H, Xu X, Zhang R, Wang S, Bian Y, Yin Z, Chen Y . 2013. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype:physiological and transcriptomic evidence. PLoS ONE, 8(6):e66466.
doi: 10.1371/journal.pone.0066466 URL |
[15] |
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J. 2014. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment(SLAF)sequencing. BMC Genomics, 15(1):1158.
doi: 10.1186/1471-2164-15-1158 URL |
[16] |
Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. 2015. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theoretical and Applied Genetics, 128(9):1747-1763.
doi: 10.1007/s00122-015-2544-7 URL |
[17] |
Whisstock J C, Wiradjaja F, Waters J E, Gurung R. 2002. The structure and function of catalytic domains within inositol polyphosphate 5-phosphatases. IUBMB Life, 53(1):15-23.
pmid: 12018403 |
[18] |
Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang Z H, Huang S, Yang X. 2019. Genetic regulation of ethylene dosage for cucumber fruit elongation. The Plant Cell, 31(5):1063-1076.
doi: 10.1105/tpc.18.00957 URL |
[19] |
Xu X, Wei C, Liu Q, Qu W, Qi X, Xu Q, Chen X. 2020. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. Plant Biotechnology Journal, 18(7):1598-1609.
doi: 10.1111/pbi.v18.7 URL |
[20] |
Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X. 2020. Genome-wide Target Mapping Shows Histone Deacetylase Complex1 Regulates Cell Proliferation in Cucumber Fruit. Plant Physiology, 182(1):167-184.
doi: 10.1104/pp.19.00532 pmid: 31378719 |
[21] |
Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X. 2019. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in Cucumber. The Plant Cell, 31(6):1289-1307.
doi: 10.1105/tpc.18.00905 URL |
[22] |
Zhong R, Burk D H, Morrison W H 3rd, Ye Z H. 2004. FRAGILE FIBER3,an Arabidopsis gene encoding a typeⅡinositol polyphosphate 5-phosphatase,is required for secondary wall synthesis and actin organization in fiber cells. The Plant Cell, 16(12):3242-3259.
doi: 10.1105/tpc.104.027466 URL |
[1] | LUO Tiankuan, WU Haitao, ZHANG Shengmei, HUANG Zong’an, SUN Ji, SHUI Deju, and CHEN Xianzhi . A New Cucumber Cultivar‘Oucui 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 125-126. |
[2] | WANG Hebing, XIANG Huafeng, CHEN Xinzhong, ZHANG Sheng, and ZHANG Hongcheng. A New Cucumber Hybrid‘Xinyan 095’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 79-80. |
[3] | XU Chunmei, ZHANG Zuobiao, LIU Jinglan, WANG Xin, YANG Long, ZHAO Dan, LIU Siyu, JIA Yunhe, MENG Xuejiao, and CUI Songcen. A New Cucumber Cultivar‘Lüchun 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 81-82. |
[4] | ZHANG Lidong, HUANG Hongyu, KONG Weiliang, LI Jiawang, and LI Yuhe, . A New Cucumber Cultivar of North China Type‘Jinyou 355’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 83-84. |
[5] | WANG Huizhe, YA NG Ruihuan, DENG Qiang, CAO Mingming, and LI Shuju, . A New Cucumber Cultivar‘Jindong 369’Resistant to Scab [J]. Acta Horticulturae Sinica, 2022, 49(S1): 85-86. |
[6] | NIE Xinmiao, LUAN Heng, FENG Gaili, WANG Chao, LI Yan, WEI Min. Effects of Silicon Nutrition and Grafting Rootstocks on Chilling Tolerance of Cucumber Seedlings [J]. Acta Horticulturae Sinica, 2022, 49(8): 1795-1804. |
[7] | HAN Lujie, FENG Yiqing, YANG Xiuhua, ZHANG Ning, BI Huangai, AI Xizhen. Effects of Combined Application of Organic and Chemical Fertilizers on Root Zone Soil and Root Characteristics of Cucumber in Plastic Greenhouse [J]. Acta Horticulturae Sinica, 2022, 49(5): 1047-1059. |
[8] | ZHOU Xuzixin, YANG Wei, MAO Meiqin, XUE Yanbin, MA Jun. Identification of Pigment Components and Key Genes in Carotenoid Pathway in Mutants of Chimeric Ananas comosus var. bracteatus [J]. Acta Horticulturae Sinica, 2022, 49(5): 1081-1091. |
[9] | QIAO Jun, LIU Jing, LI Suwen, WANG Liying. Prediction of Fruit Color Genes Under the Calyx of Eggplant Based on Genome-wide Resequencing in an Extreme Mixing Pool [J]. Acta Horticulturae Sinica, 2022, 49(3): 613-621. |
[10] | QUAN Jianhua, DUAN Yu, LUO Tian, YUAN Qiang, QI Xin, WANG Qinli. A New Cucumber Cultivar‘Yuyan 9’ [J]. Acta Horticulturae Sinica, 2022, 49(3): 703-704. |
[11] | SHENG Yunyan, YANG Limin, DAI Dongyang, ZHANG Jiaxin, WANG Ling, WANG Di, CAI Yi, TIAN Limei. Cytological Observation of Fruit Peduncle Abscission Zone and Preliminary Mapping of Mature Fruit Abscission AL3 gene in Melon [J]. Acta Horticulturae Sinica, 2022, 49(2): 341-351. |
[12] | SONG Mengfei, ZHA Gaohui, CHEN Jinfeng, LOU Qunfeng. Research Progress on Molecular Basis of Plant Architecture Related Traits in Cucumber [J]. Acta Horticulturae Sinica, 2022, 49(12): 2683-2702. |
[13] | WANG Tuantuan, GOU Chenxing, XIA Lei, ZHU Pinyu, LI Ji, CHEN Jinfeng. Effect of Endogenous Hormone Levels and Ratios in Explants of Ten Genotypes of Cucumber on Their Regeneration in Vitro [J]. Acta Horticulturae Sinica, 2021, 48(9): 1731-1742. |
[14] | ZHAO Changbo, ZHENG Shiwei, BIAN Ting, WANG Shuang, ZHANG Xiaolan, FU Hongdan, SUN Zhouping, LI Tianlai. Changes of Soil Medium Elements and Trace Elements in Different Continuous Cropping of Cucumber in Solar Greenhouse [J]. Acta Horticulturae Sinica, 2021, 48(9): 1805-1814. |
[15] | YANG Shuangjuan, Zhang Xiaowei, WEI Xiaochun, ZHAO Yanyan, WANG Zhiyong, ZHAO Xiaobin, LI Lin, YUAN Yuxiang. Mapping and KASP Markers Development for Clubroot Resistance Gene BraA.Pb.8.4 in Chinese Cabbage [J]. Acta Horticulturae Sinica, 2021, 48(7): 1317-1328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd