Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (7): 1340-1348.doi: 10.16420/j.issn.0513-353x.2021-0206
• Research Papars • Previous Articles Next Articles
LIU Genzhong, SHI Chunmei, YU Huiyang, WANG Ying, CHEN Weifang, SHANG Lele, ZHANG Yuyang*(), YE Zhibiao
Received:
2021-04-27
Revised:
2021-05-28
Online:
2021-07-25
Published:
2021-08-10
Contact:
ZHANG Yuyang
E-mail:yyzhang@mail.hzau.edu.cn
CLC Number:
LIU Genzhong, SHI Chunmei, YU Huiyang, WANG Ying, CHEN Weifang, SHANG Lele, ZHANG Yuyang, YE Zhibiao. Identification and Functional Verification of Tomato Stem Internode Length Genes IL10 and IL11[J]. Acta Horticulturae Sinica, 2021, 48(7): 1340-1348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0206
基因 Gene | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
IL11 for RNAi | GGGGACAAGTTTGTACAAAAAAGCAGGCTAAATTGGAAATAAGGGAGAAGGAGAT | GGGGACCACTTTGTACAAGAAAGCTGGGTGGCTAGTGCTTCCACCCCAAC |
IL10 for RNAi | GGGGACAAGTTTGTACAAAAAAGCAGGCTGAGATATTGAAGTAGAACTTGTCACCTTTT | GGGGACCACTTTGTACAAGAAAGCTGGGTAGGACTTCACTAAGATTCTAAGCACTCTCT |
IL11 for qRT-PCR | ATGGCGACATTTGTTAGAGCAAA | GTTCCGATTTGAGCTTATGATTTTG |
IL10 for qRT-PCR | GAACAACAGGAGAATATCACAGCC | GGATACTGGAGATATGATTGCTTGA |
Table 1 Primers for the genes related to the tomato internode length
基因 Gene | 正向引物(5′-3′) Forward primer | 反向引物(5′-3′) Reverse primer |
---|---|---|
IL11 for RNAi | GGGGACAAGTTTGTACAAAAAAGCAGGCTAAATTGGAAATAAGGGAGAAGGAGAT | GGGGACCACTTTGTACAAGAAAGCTGGGTGGCTAGTGCTTCCACCCCAAC |
IL10 for RNAi | GGGGACAAGTTTGTACAAAAAAGCAGGCTGAGATATTGAAGTAGAACTTGTCACCTTTT | GGGGACCACTTTGTACAAGAAAGCTGGGTAGGACTTCACTAAGATTCTAAGCACTCTCT |
IL11 for qRT-PCR | ATGGCGACATTTGTTAGAGCAAA | GTTCCGATTTGAGCTTATGATTTTG |
IL10 for qRT-PCR | GAACAACAGGAGAATATCACAGCC | GGATACTGGAGATATGATTGCTTGA |
Fig.1 Phenotypic variation of internode length among three groups of Solanum pimpinellifolium(Wild),S. lycopersicum var. cerasiforme(Cer)and S. lycopersicum(Big)
染色体 Chr. | 单核苷酸多态性 SNP | P值 P value | 候选基因 Candidate gene | 基因注释 Annotation |
---|---|---|---|---|
3 7 8 9 10 10 11 | SL2.50ch03_2446325 SL2.50ch07_65859165 SL2.50ch08_671204 SL2.50ch09_66441776 SL2.50ch10_1974647 SL2.50ch10_63349786 SL2.50ch11_56214917 | 5.26E-07 1.27E-07 4.87E-07 6.54E-08 1.27E-07 1.86E-07 1.81E-07 | Solyc03g007950 Solyc07g063410 Solyc08g005870 Solyc09g074640 Solyc10g007730 Solyc10g083560 Solyc11g073110 | 糖苷水解酶家族蛋白/聚半乳糖醛酸酶蛋白 Glycoside hydrolase family 28 protein/polygalacturonase protein NAC蛋白转录因子 NAC domain transcription factor MYB转录因子 MYB transcription factor 锌指CCCH结构域蛋白32 Zinc finger CCCH domain-containing protein 32 叉头相关结构域蛋白 Forkhead-associated domain protein 乙烯响应转录因子1 Ethylene-responsive transcription factor 1 生长素调控蛋白 Auxin-regulated protein |
Table 3 Prediction of candidate genes related to tomato internode length
染色体 Chr. | 单核苷酸多态性 SNP | P值 P value | 候选基因 Candidate gene | 基因注释 Annotation |
---|---|---|---|---|
3 7 8 9 10 10 11 | SL2.50ch03_2446325 SL2.50ch07_65859165 SL2.50ch08_671204 SL2.50ch09_66441776 SL2.50ch10_1974647 SL2.50ch10_63349786 SL2.50ch11_56214917 | 5.26E-07 1.27E-07 4.87E-07 6.54E-08 1.27E-07 1.86E-07 1.81E-07 | Solyc03g007950 Solyc07g063410 Solyc08g005870 Solyc09g074640 Solyc10g007730 Solyc10g083560 Solyc11g073110 | 糖苷水解酶家族蛋白/聚半乳糖醛酸酶蛋白 Glycoside hydrolase family 28 protein/polygalacturonase protein NAC蛋白转录因子 NAC domain transcription factor MYB转录因子 MYB transcription factor 锌指CCCH结构域蛋白32 Zinc finger CCCH domain-containing protein 32 叉头相关结构域蛋白 Forkhead-associated domain protein 乙烯响应转录因子1 Ethylene-responsive transcription factor 1 生长素调控蛋白 Auxin-regulated protein |
[1] |
Aguado E, Garcia A, Iglesias-Moya J, Romero J, Wehner T C, Gomez-Guillamon M L, Pico B, Garces-Claver A, Martinez C, Jamilena M. 2020. Mapping a partial andromonoecy locus in citrullus lanatus using BSA-Seq and GWAS approaches. Frontiers in Plant Science, 11:1243.
doi: 10.3389/fpls.2020.01243 URL |
[2] | Bishop G J, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones J D, Kamiya Y. 1999. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 96(4):1761-1766. |
[3] |
Cao J. 2012. The pectin lyases in Arabidopsis thaliana:evolution,selection and expression profiles. PLoS ONE, 7(10):e46944.
doi: 10.1371/journal.pone.0046944 URL |
[4] |
Chano V, Sobrino-Plata J, Collada C, Soto A. 2021. Wood development regulators involved in apical growth in Pinus canariensis. Plant Biology, 23(3):438-444.
doi: 10.1111/plb.v23.3 URL |
[5] |
Chen X, Lu S C, Wang Y F, Zhang X, Lv B, Luo L Q, Xi D D, Shen J B, Ma H, Ming F. 2015. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant Journal, 82(2):302-314.
doi: 10.1111/tpj.2015.82.issue-2 URL |
[6] |
Chen Y T, Mao W W, Liu T, Feng Q Q, Li L, Li B B. 2020. Genome editing as a versatile tool to improve horticultural crop qualities. Horticultural Plant Journal, 6(6):372-384.
doi: 10.1016/j.hpj.2020.11.004 URL |
[7] |
Cheng X, Flokova K, Bouwmeester H, Ruyter-Spira C. 2017. The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed phelipanche ramosa in tomato plants. Frontiers in Plant Science, 8:392.
doi: 10.3389/fpls.2017.00392 pmid: 28392795 |
[8] |
Desai M, Pan R, Hu J. 2017. Arabidopsis forkhead-associated domain protein 3 negatively regulates peroxisome division. Journal of Integrative Plant Biology, 59(7):454-458.
doi: 10.1111/jipb.v59.7 URL |
[9] | Fan M, Gao S, Ren J, Yang Q, Li H, Yang C, Ye Z. 2016. Overexpression of SlRBZ results in chlorosis and dwarfism through impairing chlorophyll,carotenoid,and gibberellin biosynthesis in tomato. Frontiers in Plant Science, 7:907. |
[10] |
Guan J T, Xu Y G, Yu Y, Fu J, Ren F, Guo J Y, Zhao J B, Jiang Q, Wei J H, Xie H. 2021. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biology, 22(1):13.
doi: 10.1186/s13059-020-02239-1 URL |
[11] |
Gui J S, Luo L F, Zhong Y, Sun J Y, Umezawa T, Li L G. 2019. Phosphorylation of LTF1,an MYB transcription factor in populus,acts as a sensory switch regulating lignin biosynthesis in wood cells. Molecular Plant, 12(10):1325-1337.
doi: 10.1016/j.molp.2019.05.008 URL |
[12] |
Guo X H, Chen G P, Naeem M, Yu X H, Tang B Y, Li A Z, Hu Z L. 2017. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Science, 258:90-101.
doi: 10.1016/j.plantsci.2017.02.005 URL |
[13] |
Kwon C T, Heo J, Lemmon Z H, Capua Y, Hutton S F, Van Eck J, Park S J, Lippman Z B. 2020. Rapid customization of Solanaceae fruit crops for urban agriculture. Nature Biotechnology, 38(2):182.
doi: 10.1038/s41587-019-0361-2 URL |
[14] |
Liu D, Yang L, Zhang J Z, Zhu G T, Lu H J, Lu Y Q, Wang Y L, Cao X, Sun T S, Huang S W, Wu Y Y. 2020. Domestication and breeding changed tomato fruit transcriptome. Journal of Integrative Agriculture, 19(1):120-132.
doi: 10.1016/S2095-3119(19)62824-8 URL |
[15] | Li Miao. 2017. Characterization of GRAS2 gene involved in fruit development in tomato[Ph. D. Dissertation]. Wuhan:Huazhong Agricultural University. (in Chinese) |
李淼. 2017. 番茄GRAS2基因调控果实发育的机理研究[博士论文]. 武汉:华中农业大学. | |
[16] |
Lin T, Zhu G T, Zhang J H, Xu X Y, Yu Q H, Zheng Z, Zhang Z H, Lun Y Y, Li S, Wang X X, Huang Z J, Li J M, Zhang C Z, Wang T T, Zhang Y Y, Wang A X, Zhang Y C, Lin K, Li C Y, Xiong G S, Xue Y B, Mazzucato A, Causse M, Fei Z J, Giovannoni J J, Chetelat R T, Zamir D, Stadler T, Li J F, Ye Z B, Du Y C, Huang S W. 2014. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11):1220-1226.
doi: 10.1038/ng.3117 URL |
[17] |
Li X, Tieman D, Liu Z M, Chen K S, Klee H J. 2020. Identification of a lipase gene with a role in tomato fruit short-chain fatty acid-derived flavor volatiles by genome-wide association. Plant Journal, 104(3):631-644.
doi: 10.1111/tpj.v104.3 URL |
[18] |
Liu X L, Yang W C, Wang J, Yang M X, Wei K, Liu X Y, Qiu Z K, van Giang T, Wang X X, Guo Y M, Li J M, Liu L, Shu J S, Du Y C, Huang Z J. 2020e. SlGID1aIs a putative candidate gene forqtph1.1,a major-effect quantitative trait locus controlling tomato plant height. Frontiers in Genetics, 11:881.
doi: 10.3389/fgene.2020.00881 URL |
[19] |
Marti E, Gisbert C, Bishop G J, Dixon M S, Garcia-Martinez J L. 2006. Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9):2037-2047.
doi: 10.1093/jxb/erj154 URL |
[20] | Ouyang Bo. 2003. Studies on Agrobacterium-mediated transformation of tomato with several pathogenesis-related genes[Ph. D. Dissertation]. Wuhan:Huazhong Agricultural University. (in Chinese) |
欧阳波. 2003. 几种病程相关蛋白基因转化番茄的研究[博士论文]. 武汉:华中农业大学. | |
[21] |
Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 125(11):1979-1989.
pmid: 9570763 |
[22] | Singh K, Singh J, Jindal S, Sidhu G, Dhaliwal A, Gill K. 2019. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat. Functional & Integrative Genomics, 19(1):29-41. |
[23] |
Ye J, Tian R W, Meng X F, Tao P W, Li C X, Liu G Z, Chen W F, Wang Y, Li H X, Ye Z B, Zhang Y Y. 2020. Tomato SD1,encoding a kinase-interacting protein,is a major locus controlling stem development. Journal of Experimental Botany, 71(12):3575-3587.
doi: 10.1093/jxb/eraa144 URL |
[24] |
Yu X H, Chen G P, Tang B Y, Zhang J L, Zhou S G, Hu Z L. 2018. The Jasmonate ZIM-domain protein gene SlJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Science, 267:65-73.
doi: 10.1016/j.plantsci.2017.11.008 URL |
[25] |
Zhang L, Liu P, Wu J, Qiao L Y, Zhao G Y, Jia J Z, Gao L F, Wang J M. 2020. Identification of a novel ERF gene,TaERF8,associated with plant height and yield in wheat. BMC Plant Biology, 20(1):263.
doi: 10.1186/s12870-020-02473-6 pmid: 32513101 |
[26] | Zhang Jun, Ku Li-xia, Zhang Wei-qiang, Yang Shuang, Liu Hai-ying, Zhao Rui-fang, Chen Yan-hui. 2020. QTL mapping of internodes length above upmost ear in maize. Journal of Maize Sciences, 18(4):45-48.(in Chinese) |
张君, 库丽霞, 张伟强, 杨爽, 刘海英, 赵瑞芳, 陈彦惠. 2010. 玉米穗上节间距的QTL定位. 玉米科学, 18(4):45-48. | |
[27] |
Zhao Z, Zhang H S, Fu Z J, Chen H, Lin Y N, Yan P S, Li W H, Xie H L, Guo Z Y, Zhang X H, Tang J H. 2018. Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method. Plant Biotechnology Journal, 16(5):1085-1093.
doi: 10.1111/pbi.12853 pmid: 29055111 |
[28] |
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, Lin T, Qin M, Peng M, Yang C, Cao X, Han X, Wang X, Knaap E, Zhang Z, Cui X, Klee H, Fernie A R, Luo J, Huang S. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell, 172(1-2):249-261.
doi: 10.1016/j.cell.2017.12.019 URL |
[29] |
Zhu Z G, Liang H L, Chen G P, Tang B Y, Tian S B, Hu Z L. 2019. Isolation of the brassinosteroid receptor genes and recharacterization of dwarf plants by silencing of SlBRI1 in tomato. Plant Growth Regulation, 89(1):59-71.
doi: 10.1007/s10725-019-00524-z URL |
[1] | SHI Hongli, LI La, GUO Cuimei, YU Tingting, JIAN Wei, YANG Xingyong. Isolation,Identification and Analysis of Biocontrol Ability of Biocontrol Strain TL1 Against Tomato Botrytis cinerea [J]. Acta Horticulturae Sinica, 2023, 50(1): 79-90. |
[2] | HU Jingyu, QUE Kaijuan, MIAO Tianli, WU Shaozheng, WANG Tiantian, ZHANG Lei, DONG Xian, JI Pengzhang, DONG Jiahong. Identification of Tomato Spotted Wilt Orthotospovirus Infecting Iris tectorum [J]. Acta Horticulturae Sinica, 2023, 50(1): 170-176. |
[3] | ZHENG Jirong, WANG Tonglin, and HU Songshen. A New Tomato Cultivar‘Hangza 603’with High Quality [J]. Acta Horticulturae Sinica, 2022, 49(S2): 103-104. |
[4] | ZHENG Jirong and WANG Tonglin. A New Tomato Cultivar‘Hangza 601’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 105-106. |
[5] | ZHENG Jirong and WANG Tonglin. A New Cherry Tomato Cultivar‘Hangza 503’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 107-108. |
[6] | HUANG Tingting, LIU Shuqin, ZHANG Yongzhi, LI Ping, ZHANG Zhihuan, and SONG Libo. A New Cherry Tomato Cultivar‘Yingshahong 4’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 109-110. |
[7] | ZHANG Qianrong, LI Dazhong, QIU Boyin, LIN Hui, MA Huifei, YE Xinru, LIU Jianting, ZHU Haisheng, and WEN Qingfang. A New Tomato Cultivar‘Minnongke 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 73-74. |
[8] | HAN Shuai, WU Jie, ZHANG Heqing, XI Yadong. Identification and Sequence Analysis of Tomato Spotted Wilt Orthotospovirus Infecting Lettuce in Sichuan [J]. Acta Horticulturae Sinica, 2022, 49(9): 2007-2016. |
[9] | CHEN Lilang, YANG Tianzhang, CAI Ruping, LIN Xiaoman, DENG Nankang, CHE Haiyan, LIN Yating, KONG Xiangyi. Molecular Detection and Identification of Viruses from Passiflora edulis in Hainan [J]. Acta Horticulturae Sinica, 2022, 49(8): 1785-1794. |
[10] | CAI Jianfa, MO Xuelian, GUAN Sicong, CHEN Xu, XUE Cheng. Expression Characteristics and Functional Analysis of FvYABBY5.1 in Strawberry [J]. Acta Horticulturae Sinica, 2022, 49(7): 1458-1472. |
[11] | LU Tao, YU Hongjun, LI Qiang, JIANG Weijie. Effects of Leaf and Fruit Quantity Regulation on Growth,Fruit Quality and Yield of Tomato [J]. Acta Horticulturae Sinica, 2022, 49(6): 1261-1274. |
[12] | MENG Xianmin, CUI Qingqing, DUAN Yundan, ZHUANG Tuanjie, PU Dan, DONG Chunjuan, YANG Wencai, SHANG Qingmao. Promoting Effects of Uniconazole on Grafting Formation of Tomato Seedlings and Underlying Mechanisms [J]. Acta Horticulturae Sinica, 2022, 49(6): 1275-1289. |
[13] | CUI Dongyu, LI Changqing, SUN Yanxin, WANG Jiqing, ZOU Guoyuan, YANG Jungang. Effects of Dwarf Close Planting on Growth and Yield of Tomato Under East-West Cultivation in Greenhouse [J]. Acta Horticulturae Sinica, 2022, 49(4): 875-884. |
[14] | CHEN Tongqiang, ZHANG Tianzhu, WANG Xiaozhuo. Research Progress of The Regulation of Light on Lycopene Biosynthesis in Tomato Fruit [J]. Acta Horticulturae Sinica, 2022, 49(4): 907-923. |
[15] | ZHAO Hui, GENG Xingmin, WANG Lulu, XU Shida. Research on the Effect of Ethylene in Heat Resistance Mechanism of Rhododendron [J]. Acta Horticulturae Sinica, 2022, 49(3): 561-570. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd