Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (7): 1304-1316.doi: 10.16420/j.issn.0513-353x.2021-0151
• Research Papars • Previous Articles Next Articles
ZHANG Shuangshuang, SU Wei, LIU Yang, WANG Haiping, SONG Jiangping, YANG Wenlong, JIA Huixia, Zhang Xiaohui*(), LI Xixiang
Received:
2021-03-23
Revised:
2021-05-21
Online:
2021-07-25
Published:
2021-08-10
Contact:
Zhang Xiaohui
E-mail:zhangxiaohui01@caas.cn
CLC Number:
ZHANG Shuangshuang, SU Wei, LIU Yang, WANG Haiping, SONG Jiangping, YANG Wenlong, JIA Huixia, Zhang Xiaohui, LI Xixiang. Germplasm Innovation and Black Rot Resistance Transferring in Brassica rapa ssp. chinensis Through Interspecific Hybridization with Brassica carinata[J]. Acta Horticulturae Sinica, 2021, 48(7): 1304-1316.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2021-0151
分子标记编号 | 上游引物(5′-3′) | 下游引物(5′-3′) |
---|---|---|
Molecular marker ID | Forward primer | Reverse primer |
1A | GAGAAAACTCGGTGGGATCA | TCCCATACGCTCTCCTTCAC |
1B | GCAACACTTGCTGTTTTGGA | GCTGAGGTAGGAAGGGAAGG |
2A2 | GATCGACCTTCCATCACGTC | CCTTGTGCAAGAAGGTGTTG |
2B | GCTTTGTGGGTTTGAGCTTG | GCCATTTTGAACCATGAACC |
3A | ATAACGCTGAACTGGCGAAG | TTGATTGTCACACCGGAGAA |
3B | CCGGACCATAAATTATCGCA | GCTCCTCCTCCTCCATCTTC |
3B2 | CCTCCGCTAAGGTAAATCTCG | GCCGGAAGAAGAGATCAGTTT |
5B2 | TTCTTGTCAGTCCTGTCCCC | TCCCGAGGTACTTCACTTGC |
6D2 | GCTTCATTGGATCCCACATC | GGGTTCGTGATTGATGGTAAA |
7A2 | TGCCCTCCAAAATCCAATTA | CAGAAGCTCGGGAAGACATC |
7C | GGGAAAATTAAACCAAGCCA | GAACACATGGTGGACACAGC |
7D | GGAGAAGAAAACAGCGATGC | GGAATAGCTCTTGACGCTCG |
8B2 | TGCTGCTAAGTCTAGTCCACAA | CCTCAAGATCCACAATGCCT |
9D | TGACAGCATATGAAGCCTGC | GATCCTGCCACAAGAATTTGA |
Table 1 The primer sequences of the molecular markers
分子标记编号 | 上游引物(5′-3′) | 下游引物(5′-3′) |
---|---|---|
Molecular marker ID | Forward primer | Reverse primer |
1A | GAGAAAACTCGGTGGGATCA | TCCCATACGCTCTCCTTCAC |
1B | GCAACACTTGCTGTTTTGGA | GCTGAGGTAGGAAGGGAAGG |
2A2 | GATCGACCTTCCATCACGTC | CCTTGTGCAAGAAGGTGTTG |
2B | GCTTTGTGGGTTTGAGCTTG | GCCATTTTGAACCATGAACC |
3A | ATAACGCTGAACTGGCGAAG | TTGATTGTCACACCGGAGAA |
3B | CCGGACCATAAATTATCGCA | GCTCCTCCTCCTCCATCTTC |
3B2 | CCTCCGCTAAGGTAAATCTCG | GCCGGAAGAAGAGATCAGTTT |
5B2 | TTCTTGTCAGTCCTGTCCCC | TCCCGAGGTACTTCACTTGC |
6D2 | GCTTCATTGGATCCCACATC | GGGTTCGTGATTGATGGTAAA |
7A2 | TGCCCTCCAAAATCCAATTA | CAGAAGCTCGGGAAGACATC |
7C | GGGAAAATTAAACCAAGCCA | GAACACATGGTGGACACAGC |
7D | GGAGAAGAAAACAGCGATGC | GGAATAGCTCTTGACGCTCG |
8B2 | TGCTGCTAAGTCTAGTCCACAA | CCTCAAGATCCACAATGCCT |
9D | TGACAGCATATGAAGCCTGC | GATCCTGCCACAAGAATTTGA |
Fig.4 Morphological comparison of flowers,siliques,seeds of progenies from interspecific hybridization between Brassica rapa ssp. chinensis and B. carinata
Fig.6 Chromatin content in cells from young leaf of the hybrid of Brassica rapa ssp. chinensis and Brassica carinata BC2(A):Second generation progenies of the inter-specific hybrid backcrossed with B. rapa ssp. chinensis;BC1(U):Progenies of the inter-specific hybrid backcrossed with B. carinata;BC1(U)-BC2(A):Inter-specific hybrid backcrossed with B. carinata for one generation and backcrossed with B. rapa ssp. chinensis for two generation;BC1(U)S2-BC1(A):Inter-specific hybrid backcrossed with B. carinata for one generation,followed by two generation of selfing,and then backcrossed with B. rapa ssp. chinensis for one generation.
Fig. 7 The abnormal chromosome behavior of pollen mother cells during meiosis in BC2(A)plants A:Chromosome non reduction;B:Chromosome lagging;C:Three chromosomes organized in a group;D:Asymmetric segregation;E,F:Chromosome stickiness and chromosome bridges.
Fig.8 Black rot resistant assays of progenies from interspecific hybridization between Brassica rapa ssp. chinensis and B. carinata BC1(A)S2:Second generation selfing of plants backcrossed with B. rapa ssp. chinensis;BC1(U)S2:Second generation selfing of plants backcrossed with B. carinata.
[1] |
da Silva A L B R, Candian J S, do Rego E R, Coolong T, Dutta B. 2020. Screening cabbage cultivars for resistance to black rot under field conditions. Horttechnology, 30:448-455.
doi: 10.21273/HORTTECH04481-19 URL |
[2] |
da Silva F P, Xavier A D S, Bruckner F P, de Rezende R R, Vidigal P M P, Alfenas-Zerbini P. 2019. Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris,isolated from Brassica fields. Arch Virol, 164:1857-1862.
doi: 10.1007/s00705-019-04263-4 URL |
[3] |
Gong Q, Dai C Y, Zhang X H, Wang X L, Huang Z, Xu A X, Dong J G, Yu C Y. 2020. Towards breeding of rapeseed(Brassica napus)with alien cytoplasm and powdery mildew resistance from Ethiopian mustard(Brassica carinata). Breeding Science, 70:387-395.
doi: 10.1270/jsbbs.20017 URL |
[4] |
Hu D, Zhang W, Zhang Y, Chang S, Chen L, Chen Y, Shi Y, Shen J, Meng J, Zou J. 2019. Reconstituting the genome of a young allopolyploid crop,Brassica napus,with its related species. Plant Biotechnology Journal, 17:1106-1118.
doi: 10.1111/pbi.2019.17.issue-6 URL |
[5] |
Khedikar Y, Clarke W E, Chen L, Higgins E E, Kagale S, Koh C S, Bennett R, Parkin I A P. 2020. Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop,Brassica carinata A. Braun. Scientific Reports, 10:12629.
doi: 10.1038/s41598-020-69255-w URL |
[6] |
Mason A S, Nelson M N, Takahira J, Cowling W A, Alves G M, Chaudhuri A, Chen N, Ragu M E, Dalton-Morgan J, Coriton O, Huteau V, Eber F, Chèvre A M, Batley J. 2014. The fate of chromosomes and alleles in an allohexaploid Brassica population. Genetics, 197:273-283.
doi: 10.1534/genetics.113.159574 URL |
[7] |
Mason A S, Takahira J, Atri C, Samans B, Hayward A, Cowling W A, Batley J, Nelson M N. 2015. Microspore culture reveals complex meiotic behaviour in a trigenomic Brassica hybrid. BMC Plant Biology, 15:173.
doi: 10.1186/s12870-015-0555-9 URL |
[8] |
Navabi Z K, Stead K E, Pires J C, Xiong Z, Sharpe A G, Parkin I A, Rahman M H, Good A G. 2011. Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics, 187:659-673.
doi: 10.1534/genetics.110.124925 URL pmid: 21196520 |
[9] |
Sakudo A, Haritani M, Furusaki K, Onishi R, Onodera T. 2020. Electrically charged disinfectant containing calcium hydrogen carbonate mesoscopic crystals as a potential measure to control Xanthomonas campestris pv. campestris on cabbage seeds. Microorganisms, 8:1606.
doi: 10.3390/microorganisms8101606 URL |
[10] |
Raman R, Qiu Y, Coombes N, Song J, Kilian A, Raman H. 2017. Molecular diversity analysis and genetic mapping of pod shatter resistance loci in Brassica carinata L. Frontiers in Plant Science, 8:1765.
doi: 10.3389/fpls.2017.01765 pmid: 29250080 |
[11] |
Sharma B B, Kalia P, Singh D, Sharma T R. 2017. Introgression of black rot resistance from Brassica carinata to cauliflower(Brassica oleracea botrytis Group)through embryo rescue. Frontiers in Plant Science, 8:1255.
doi: 10.3389/fpls.2017.01255 pmid: 28769959 |
[12] |
Sharma B B, Kalia P, Yadava D K, Singh D, Sharma T R. 2016. Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard(Brassica carinata A. Braun). PLoS ONE, 11:e0152290.
doi: 10.1371/journal.pone.0152290 URL |
[13] |
Sheng X G, Branca F, Zhao Z Q, Wang J S, Yu H F, Shen Y S, Gu H H. 2020. Identification of black rot resistance in a wild Brassicas pecies and its potential transferability to cauliflower. Agronomy, 10:1400.
doi: 10.3390/agronomy10091400 URL |
[14] |
Singh A, Gautam V, Singh S, Sarkar Das S, Verma S, Mishra V, Mukherjee S, Sarkar A K. 2018. Plant small RNAs:advancement in the understanding of biogenesis and role in plant development. Planta, 248:545-558.
doi: 10.1007/s00425-018-2927-5 URL |
[15] |
Taylor J D, Conway J, Roberts S J, Astley D, Vicente J G. 2002. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology, 92:105-111.
doi: 10.1094/PHYTO.2002.92.1.105 pmid: 18944146 |
[16] |
Teklehaymanot T, Wang H J, Liang J L, Wu J, Lin R M, Zhou Z, Cai X, Wang X W. 2019. Variation in plant morphology and sinigrin content in Ethiopian mustard(Brassica carinata L.). Hortic Plant J, 5(5):205-212.
doi: 10.1016/j.hpj.2019.07.005 URL |
[17] | Tu Yu-qin, Tang Jie, Zhang Yang, Xin Jia-jia, Tu Wei-feng, Ji Hong-li, Dai Xing-lin. 2020. Innovation of new determinate infloresence germplasm via hybridization between Brassica napus and Brassica carinata. Journal of Plant Genetic Resoures, 21(1):74-82. (in Chinese) |
涂玉琴, 汤洁, 张洋, 辛佳佳, 涂伟凤, 姬红利, 戴兴临. 2020. 甘蓝型油菜与埃塞俄比亚芥杂交创制有限花序新种质. 植物遗传资源学报, 21(1):74-82 | |
[18] |
Vicente J G, Holub E B. 2013. Xanthomonas campestris pv. campestris(cause of black rot of crucifers)in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol, 14:2-18.
doi: 10.1111/j.1364-3703.2012.00833.x URL pmid: 23051837 |
[19] |
Vicente J G, Taylor J D, Sharpe A G, Parkin I A, Lydiate D J, King G J. 2002. Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology, 92:1134-1141.
doi: 10.1094/PHYTO.2002.92.10.1134 pmid: 18944224 |
[20] |
Wang R, Zou J, Meng J, Wang J. 2018. Integrative analysis of genome-wide lncRNA and mRNA expression in newly synthesized Brassica hexaploids. Ecology and Evolution, 8:6034-6052.
doi: 10.1002/ece3.2018.8.issue-12 URL |
[21] | Wei Z, Wang M, Chang S, Wu C, Liu P, Meng J, Zou J. 2016. Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis. Frontiers in Plant Science, 7:1677. |
[22] | Xie Yong-mei. 2008. Identification of black rot on cruciferous vegetables and the resistance of Chinese cabbage varieties in Shandong Province[M. D. Dissertation]. Tai’an:Shandong Agricultural University. (in Chinese) |
解永梅. 2008. 山东省十字花科蔬菜黑腐病菌的鉴定及大白菜品种抗病性研究[硕士论文]. 泰安:山东农业大学. | |
[23] | Yu Yang-jun, Chen Guang, Xu Jia-bing, Zhang Feng-lan, Sun Ji-zhi, Zhao Xiu-yun, Zhang De-shuang. 2005. A new Chinese cabbage F1 hybrid-‘Jingchun 99’. China Vegetables, (10/11):8-9. (in Chinese) |
余阳俊, 陈广, 徐家炳, 张凤兰, 孙继志, 赵岫云, 张德双. 2005. 春大白菜新品种京春99的选育. 中国蔬菜, (10/11):8-9. | |
[24] | Yuan Shi-feng, Qi Cun-kou. 2007. Inheritance of additional chromosomes in Brassica napus carinata disamic additional line 92I1096. Jiangsu Journal of Agricultural Sciences, 23(4):289-294. (in Chinese) |
袁世峰, 戚存扣. 2007. 甘蓝型油菜埃芥二体附加系92I1096附加染色体的遗传分析. 江苏农业学报, 23(4):289-294. | |
[25] | Zhang Feng-lan. 1994. Indoor identification of resistance of Chinese cabbage to black rot and selection of resistant sources. Beijing Agricultural Sciences, 12(4):28-29. (in Chinese) |
张凤兰. 1994. 白菜对黑腐病抗性的室内鉴定方法及抗源筛选. 北京农业科学, 12(4):28-29. | |
[26] |
Zhang W, Hu D, Raman R, Guo S, Wei Z, Shen X, Meng J, Raman H, Zou J. 2017. Investigation of the genetic diversity and quantitative trait loci accounting for important agronomic and seed quality traits in Brassica carinata. Frontiers in Plant Science, 8:615.
doi: 10.3389/fpls.2017.00615 URL |
[27] |
Zhang X, Liu T, Li X, Duan M, Wang, Qiu Y, Wang H, Song J, Shen D. 2016. Interspecific hybridization,polyploidization,and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Scientific Reports, 6:18618.
doi: 10.1038/srep18618 URL |
[28] |
Zhao Q, Zou J, Meng J, Mei S, Wang J. 2013. Tracing the transcriptomic changes in synthetic trigenomic allohexaploids of Brassica using an RNA-seq approach. PLoS ONE, 8:e68883.
doi: 10.1371/journal.pone.0068883 URL |
[29] |
Zou J, Hu D, Mason A S, Shen X, Wang X, Wang N, Grandke F, Wang M, Chang S, Snowdon R J, Meng J. 2018. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 16:507-519.
doi: 10.1111/pbi.2018.16.issue-2 URL |
[1] | SHAO Jingjie,PAN Lei,WAN Heping,GUO Rui,CHEN Gao,XIE Qian,REN Sanguo,LU Shuang,YAN Mu,and CHEN Chanyou*. Germplasm Innovation of Pest-resistant Asparagus Bean by Interspecific Crosses [J]. ACTA HORTICULTURAE SINICA, 2020, 47(3): 562-570. |
[2] | ZHANG Jie1,2,WANG Gui-xiang2,HAN Shuo2,YAN Hong3,ZONG Mei2,GUO Ning2,and LIU Fan2,*. The Phenotype Evolution and Transfer Breeding of Black Rot Resistance in Somatic Hybrids Between Cauliflower and Black Mustard [J]. ACTA HORTICULTURAE SINICA, 2016, 43(2): 271-280. |
[3] | ZHANG Li-Li, LIU Yu-Mei, TIAN Zi-Hua, FANG Zhi-Yuan, YANG Li-Mei, ZHUANG Mu, ZHANG Yang-Yong, LI Zhan-Sheng, SHU Jin-Shuai. Advances of Research on Breeding of Resistance to Black Rot in Crucifer [J]. ACTA HORTICULTURAE SINICA, 2012, 39(9): 1727-1738. |
[4] | WANG Gui-xiang;YAN Hong;ZENG Xing-ying;SHENG Xiao-guang;TANG Yu;HAN Shuo;ZONG Mei;LU Kun;and LIU Fan;. New Alien Additon Lines Resistance to Black Rot Generated by Somatic Hybridization Between Cauliflower and Black Mustard [J]. ACTA HORTICULTURAE SINICA, 2011, 38(10): 1901-1910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd