Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (6): 1250-1264.doi: 10.16420/j.issn.0513-353x.2020-0711
• Reviews • Previous Articles Next Articles
DENG Zeyi, SONG Xiang, HONG Yan(), DAI Silan()
Received:
2021-01-12
Revised:
2021-03-25
Online:
2021-06-25
Published:
2021-07-08
Contact:
HONG Yan,DAI Silan
E-mail:hongy@bjfu.edu.cn;silandai@sina.com
CLC Number:
DENG Zeyi, SONG Xiang, HONG Yan, DAI Silan. Applications of Promoters in the Genetic Engineering of Ornamental Plants:A Review[J]. Acta Horticulturae Sinica, 2021, 48(6): 1250-1264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0711
序号 No. | 启动子类型(比例) Promoter type(%) | 特异性 Specificity | 主要启动子名称 Key promoter | 改良性状(文献篇数) Improved trait(No. of articles) |
---|---|---|---|---|
1 | 组成型(80.1) Constitutive promoter | CaMV 35S、NOS、Actin、Ubi | 抗逆性Resistance(45)、花色Color(29)、花期Florescence(12)、瓶插期Longevity(7)、分枝Branching(6)、花香Perfume(5)、花型Type(5)、株高Height(5)、生根Root(3) | |
2 | 组织特异性(15.1) Tissue-specific promoter | 花器官 Flower | fbp1、CHS、F3H、DFR、ANS、MYB、DEF、GLO | 花色Color(9)、瓶插期Longevity(7)、花型Type(3) |
维管束 Vascular | rolC | 花色Color(2) | ||
根部 Root | mas2 | 提高根部虫害抗性Improve the resistance to root pest(1) | ||
3 | 诱导型(4.8) Inducible promoter | 非生物胁迫 Abiotic stress | rd29A、cor15a | 抗旱耐盐Drought and salt tolerance(2)、耐低温Low temperature resistance(1) |
衰老 Senescence | SAG12 | 降低对外源乙烯的敏感性、延缓衰老Reduce sensitivity to exogenous ethylene and extend the life circle(4) |
Table 1 Applications of different promoter types on the genetic engineering of ornamental plants
序号 No. | 启动子类型(比例) Promoter type(%) | 特异性 Specificity | 主要启动子名称 Key promoter | 改良性状(文献篇数) Improved trait(No. of articles) |
---|---|---|---|---|
1 | 组成型(80.1) Constitutive promoter | CaMV 35S、NOS、Actin、Ubi | 抗逆性Resistance(45)、花色Color(29)、花期Florescence(12)、瓶插期Longevity(7)、分枝Branching(6)、花香Perfume(5)、花型Type(5)、株高Height(5)、生根Root(3) | |
2 | 组织特异性(15.1) Tissue-specific promoter | 花器官 Flower | fbp1、CHS、F3H、DFR、ANS、MYB、DEF、GLO | 花色Color(9)、瓶插期Longevity(7)、花型Type(3) |
维管束 Vascular | rolC | 花色Color(2) | ||
根部 Root | mas2 | 提高根部虫害抗性Improve the resistance to root pest(1) | ||
3 | 诱导型(4.8) Inducible promoter | 非生物胁迫 Abiotic stress | rd29A、cor15a | 抗旱耐盐Drought and salt tolerance(2)、耐低温Low temperature resistance(1) |
衰老 Senescence | SAG12 | 降低对外源乙烯的敏感性、延缓衰老Reduce sensitivity to exogenous ethylene and extend the life circle(4) |
性状类型 Type of trait | 改良性状 Improved trait | 启动子 Promoter | 总计 Total | |||
---|---|---|---|---|---|---|
CaMV 35S | NOS | Actin | Ubi | |||
花部性状 Flower traits | 花色 Color | 28 | 0 | 1 | 0 | 29 |
花期 Florescence | 12 | 0 | 0 | 0 | 12 | |
花香 Perfume | 5 | 0 | 0 | 0 | 5 | |
花型 Type | 5 | 0 | 0 | 0 | 5 | |
株型Plant type | 株高 Height | 4 | 0 | 1 | 0 | 5 |
分枝 Branching | 6 | 0 | 0 | 0 | 6 | |
生根 Root | 3 | 0 | 0 | 0 | 3 | |
抗逆性Resistance | 生物胁迫 Biological stress | 29 | 2 | 0 | 2 | 33 |
非生物胁迫 Abiotic stress | 11 | 1 | 0 | 0 | 12 | |
其他Others | 瓶插期 Longevity | 4 | 3 | 0 | 0 | 7 |
总计Total | 107 | 6 | 2 | 2 | 117 |
Table 2 The number of literatures on trait improvement using constitutive promoters in ornamental plants
性状类型 Type of trait | 改良性状 Improved trait | 启动子 Promoter | 总计 Total | |||
---|---|---|---|---|---|---|
CaMV 35S | NOS | Actin | Ubi | |||
花部性状 Flower traits | 花色 Color | 28 | 0 | 1 | 0 | 29 |
花期 Florescence | 12 | 0 | 0 | 0 | 12 | |
花香 Perfume | 5 | 0 | 0 | 0 | 5 | |
花型 Type | 5 | 0 | 0 | 0 | 5 | |
株型Plant type | 株高 Height | 4 | 0 | 1 | 0 | 5 |
分枝 Branching | 6 | 0 | 0 | 0 | 6 | |
生根 Root | 3 | 0 | 0 | 0 | 3 | |
抗逆性Resistance | 生物胁迫 Biological stress | 29 | 2 | 0 | 2 | 33 |
非生物胁迫 Abiotic stress | 11 | 1 | 0 | 0 | 12 | |
其他Others | 瓶插期 Longevity | 4 | 3 | 0 | 0 | 7 |
总计Total | 107 | 6 | 2 | 2 | 117 |
改良性状 Improved trait | 启动子 Promoter | 来源 Origin | 组织特异性 Tissue specificity | 目的基因 Target gene | 受体植物 Recipient plant | 改良效果 Improvement | 参考文献 Reference |
---|---|---|---|---|---|---|---|
花色 Color | CHS | 月季Rosa spp. | 花瓣 Petal | F3'5'H | 菊花 Chrysanthemum× morifolium | 花积累飞燕草素,呈蓝色 Petals accumulate delphinidin and turn to bluish | Brugliera et al., |
东方百合 Lilium oriental‘Sorbonne' | 矮牵牛Petunia×hybrida 东方百合Lilium oriental‘Sorbonne' | Qi et al., | |||||
三花龙胆 Gentiana triflora | CHSir | 烟草Nicotiana tabacum | 花色变浅 Faintly colored | Nakatsuka et al., | |||
F3H | 菊花 Chrysanthemum×morifolium | F3'5'H A3'5'GT | 菊花Chrysanthemum× morifolium | 花积累飞燕草素,呈蓝色 Petals accumulate delphinidin and turn to bluish | Noda et al., | ||
F3'5'H | 花积累飞燕草素,从红变为紫色 Petals accumulate delphinidin and change from red to purple | Noda et al., | |||||
TfDEF | 蝴蝶草属 Torenia spp. | AtTCP3-SRDX | 蓝猪耳Torenia fournieri | 花色变浅 Faintly colored | Sasaki et al., | ||
TfDFR | 花色变浅 Faintly colored | ||||||
TfGLO | 花瓣边缘脱色 Decolorized border | ||||||
TfF3H | 花色变浅 Faintly colored | ||||||
改良性状 Improved trait | 启动子 Promoter | 来源 Origin | 组织特异性 Tissue specificity | 目的基因 Target gene | 受体植物 Recipient plant | 改良效果 Improvement | 参考文献 Reference |
花色 Color | PANS | 烟草Nicotiana tabacum | 花瓣 Petal | B-peru | 烟草Nicotiana tabacum | 花冠由浅粉色转变为深粉色到深红色 Flower changes from light pink to dark pink,then to deep red | Kim et al., |
mPAP1 | |||||||
Md-MYB10R6 | 苹果Malus×domestica | Md-MYB10R6 | 矮牵牛Petunia×hybrida | 花冠从白色变为紫色 Flower changes from white to purple | Boase et al., | ||
InMYB1 | 牵牛花 Ipomoea nil | RsMYB1 | 矮牵牛Petunia×hybrida | 花冠由白色变为粉色 Flower color changes from white to intense pink | Naing et al., | ||
花型 Type | TfDEF | 蝴蝶草属 Torenia spp. | 花瓣 Petal | AtTCP3-SRDX | 蓝猪耳Torenia fournieri | 花瓣波浪状 Wavy borders | Sasaki et al., |
TfDFR | 花瓣边缘较窄 Narrowed border | ||||||
TfGLO | 花瓣边缘锯齿状 Serrated petal margins | ||||||
TfF3H | 花瓣边缘波浪状 Wavy petal margins | ||||||
InMYB2 | 牵牛花 Ipomoea nil | MYB106-SRDX | 拟南芥Arabidopsis thaliana | 花瓣皱缩 Wrinkled petals | Azuma et al., | ||
MYB106-VP16 | 花瓣向内卷曲 Curled inwards | ||||||
CPG | 仙客来Cyclamen persicum | AtTCP3-RD CpTCP1B-RD AtSEP3-RD CpSEP3-RD | 蓝猪耳Torenia fournieri | 花瓣边缘锯齿状 Serrated flowers 花瓣波浪状 Wavy flowers | Kasajima et al., | ||
瓶插期 Longevity | fbp1 | 矮牵牛Petunia× hybrida | 花芽、花瓣 和雄蕊 Flower buds,petals and stamens | etr1-1 | 文心兰Oncidium ‘Sweet Sugar' | 阻止乙烯生物合成,延长瓶插寿命 Prevent ethylene biosynthesis and improve longevity | Raffeiner et al., |
杂交文心兰Burrageara‘Stefan Isler Lava Flow' | Winkelmann et al., | ||||||
长寿花Kalanchoe blossfeldiana‘Debbie' | Sanikhani et al., | ||||||
香石竹Dianthus caryophyllus‘Lena' | Bovy et al., | ||||||
风铃草Campanula | Sriskandarajah et al., Mibus et al., | ||||||
天竺葵Pelargonium zonale‘Katinka' | Gehl et al., |
Table 3 Characteristics,types and applications of flower organ-specific promoters in ornamental plants
改良性状 Improved trait | 启动子 Promoter | 来源 Origin | 组织特异性 Tissue specificity | 目的基因 Target gene | 受体植物 Recipient plant | 改良效果 Improvement | 参考文献 Reference |
---|---|---|---|---|---|---|---|
花色 Color | CHS | 月季Rosa spp. | 花瓣 Petal | F3'5'H | 菊花 Chrysanthemum× morifolium | 花积累飞燕草素,呈蓝色 Petals accumulate delphinidin and turn to bluish | Brugliera et al., |
东方百合 Lilium oriental‘Sorbonne' | 矮牵牛Petunia×hybrida 东方百合Lilium oriental‘Sorbonne' | Qi et al., | |||||
三花龙胆 Gentiana triflora | CHSir | 烟草Nicotiana tabacum | 花色变浅 Faintly colored | Nakatsuka et al., | |||
F3H | 菊花 Chrysanthemum×morifolium | F3'5'H A3'5'GT | 菊花Chrysanthemum× morifolium | 花积累飞燕草素,呈蓝色 Petals accumulate delphinidin and turn to bluish | Noda et al., | ||
F3'5'H | 花积累飞燕草素,从红变为紫色 Petals accumulate delphinidin and change from red to purple | Noda et al., | |||||
TfDEF | 蝴蝶草属 Torenia spp. | AtTCP3-SRDX | 蓝猪耳Torenia fournieri | 花色变浅 Faintly colored | Sasaki et al., | ||
TfDFR | 花色变浅 Faintly colored | ||||||
TfGLO | 花瓣边缘脱色 Decolorized border | ||||||
TfF3H | 花色变浅 Faintly colored | ||||||
改良性状 Improved trait | 启动子 Promoter | 来源 Origin | 组织特异性 Tissue specificity | 目的基因 Target gene | 受体植物 Recipient plant | 改良效果 Improvement | 参考文献 Reference |
花色 Color | PANS | 烟草Nicotiana tabacum | 花瓣 Petal | B-peru | 烟草Nicotiana tabacum | 花冠由浅粉色转变为深粉色到深红色 Flower changes from light pink to dark pink,then to deep red | Kim et al., |
mPAP1 | |||||||
Md-MYB10R6 | 苹果Malus×domestica | Md-MYB10R6 | 矮牵牛Petunia×hybrida | 花冠从白色变为紫色 Flower changes from white to purple | Boase et al., | ||
InMYB1 | 牵牛花 Ipomoea nil | RsMYB1 | 矮牵牛Petunia×hybrida | 花冠由白色变为粉色 Flower color changes from white to intense pink | Naing et al., | ||
花型 Type | TfDEF | 蝴蝶草属 Torenia spp. | 花瓣 Petal | AtTCP3-SRDX | 蓝猪耳Torenia fournieri | 花瓣波浪状 Wavy borders | Sasaki et al., |
TfDFR | 花瓣边缘较窄 Narrowed border | ||||||
TfGLO | 花瓣边缘锯齿状 Serrated petal margins | ||||||
TfF3H | 花瓣边缘波浪状 Wavy petal margins | ||||||
InMYB2 | 牵牛花 Ipomoea nil | MYB106-SRDX | 拟南芥Arabidopsis thaliana | 花瓣皱缩 Wrinkled petals | Azuma et al., | ||
MYB106-VP16 | 花瓣向内卷曲 Curled inwards | ||||||
CPG | 仙客来Cyclamen persicum | AtTCP3-RD CpTCP1B-RD AtSEP3-RD CpSEP3-RD | 蓝猪耳Torenia fournieri | 花瓣边缘锯齿状 Serrated flowers 花瓣波浪状 Wavy flowers | Kasajima et al., | ||
瓶插期 Longevity | fbp1 | 矮牵牛Petunia× hybrida | 花芽、花瓣 和雄蕊 Flower buds,petals and stamens | etr1-1 | 文心兰Oncidium ‘Sweet Sugar' | 阻止乙烯生物合成,延长瓶插寿命 Prevent ethylene biosynthesis and improve longevity | Raffeiner et al., |
杂交文心兰Burrageara‘Stefan Isler Lava Flow' | Winkelmann et al., | ||||||
长寿花Kalanchoe blossfeldiana‘Debbie' | Sanikhani et al., | ||||||
香石竹Dianthus caryophyllus‘Lena' | Bovy et al., | ||||||
风铃草Campanula | Sriskandarajah et al., Mibus et al., | ||||||
天竺葵Pelargonium zonale‘Katinka' | Gehl et al., |
[1] |
Aida R, Kishimoto S, Tanaka Y, Shibata M. 2000. Modification of flower color in torenia(Torenia fournieri Lind.)by genetic transformation. Plant Science, 153:33-42.
doi: 10.1016/S0168-9452(99)00239-3 URL |
[2] |
Aida R, Komano M, Saito M, Nakase K, Murai K. 2008. Chrysanthemum flower shape modification by suppression of chrysanthemum- agamous gene. Plant Biotechnology, 25:55-59.
doi: 10.5511/plantbiotechnology.25.55 URL |
[3] |
Aida R, Nagaya S, Yoshida K, Kishimoto S, Shibata M, Ohmiya A. 2005. Efficient transgene expression in chrysanthemum, Chrysanthemum morifolium Ramat. with the promoter of a gene for tobacco elongation factor 1α protein. Japan Agricultural Research Quarterly, 39:269-274.
doi: 10.6090/jarq.39.269 URL |
[4] |
Aida R, Ohira K, Tanaka Y, Yoshida K, Kishimoto S, Shibata M, Ohmiya A. 2004. Efficient transgene expression in chrysanthemum, Dendranthema grandiflorum(Ramat.)Kitamura,by using the promoter of a gene for chrysanthemum chlorophyll-a/b-binding protein. Breeding Science, 54:51-58.
doi: 10.1270/jsbbs.54.51 URL |
[5] |
Al-Kaff N S, Kreike M M, Covey S N, Pitcher R, Dale P J. 2000. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nature Biotechnology, 18:995-999.
doi: 10.1038/79501 URL |
[6] |
Annadana S, Ludmila M, Udayakumar M, Jong J D, Nap J P. 2002. The potato lhca3.st.1 promoter confers high and stable transgene expression in chrysanthemum,in contrast to CamV-based promoters. Molecular Breeding, 8:335-344.
doi: 10.1023/A:1015212312928 URL |
[7] |
Atsushi K, Masahiro O, Miho T, Takuo F, Hiroaki O, Toshikazu N, Masayoshi K, Hitoshi K, Fumi T, Masaru N. 2018. Ectopic expression of the R2R3-MYB gene from Tricyrtis sp. results in leaf color alteration in transgenic Pelargonium crispum. Scientia Horticulturae, 240:411-416.
doi: 10.1016/j.scienta.2018.06.029 URL |
[8] |
Azadi P, Otang N V, Supaporn H, Khan R S, Chin D P, Nakamura I, Mii M. 2011. Increased resistance to Cucumber mosaic virus(CMV)in Lilium transformed with a defective CMV replicase gene. Biotechnology Letters, 33:1249-1255.
doi: 10.1007/s10529-011-0550-7 URL |
[9] |
Azuma M, Morimoto R, Hirose M, Morita Y, Hoshino A, Iida S, Oshima Y, Mitsuda N, Ohme-Takagi M, Shiratake K. 2016. A petal-specific inmyb1 promoter from Japanese morning glory:a useful tool for molecular breeding of floricultural crops. Plant Biotechnology Journal, 14:354-363.
doi: 10.1111/pbi.2016.14.issue-1 URL |
[10] |
Baker S S, Wilhelm K S, Thomashow M F. 1994. The 5'-region ofArabidopsis thaliana cor15a has cis-acting elements that confer cold-,drought- and ABA-regulated gene expression. Plant Molecular Biology, 24:701-713.
doi: 10.1007/BF00029852 URL |
[11] | Benedito V A, Kronenburg B C E van, Tuyl J M van, Angenent G C, Krens F A. 2005. Transformation of Lilium longiflorum via particle bombardment and generation of herbicide-resistant plants. Crop Breeding and Applied Biotechnology, 5:259-264. |
[12] |
Boase M R, Brendolise C, Wang L, Ngo H, Espley R V, Hellens R P, Schwinn K E, Davies K M, Albert N W. 2015. Failure to launch the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Reports, 34:1817-1823.
doi: 10.1007/s00299-015-1827-4 URL |
[13] |
Bovy A G, Angenent G C, Dons H J M, Altvorst A C V. 1999. Heterologous expression of the arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Molecular Breeding, 5:301-308.
doi: 10.1023/A:1009617804359 URL |
[14] |
Brugliera F, Tao G Q, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey I, Katsumoto Y, Tanaka Y, Mason J G. 2013. Violet/blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiology, 54:1696-1710.
doi: 10.1093/pcp/pct110 URL |
[15] |
Buchanan-Wollaston V. 1994. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus:identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiology, 105:839-846.
doi: 10.1104/pp.105.3.839 URL |
[16] | Cao Yuwei, Xu Leifeng, Yang Panpan, Xu Hua, He Guoren, Tang Yuchao, Ren Junfang, Ming Jun. 2019. Differential expression of three R2R3-MYBs genes regulating anthocyanin pigmentation patterns in Lilium spp. Acta Horticulturae Sinica, 46 (5):955-963. (in Chinese) |
曹雨薇, 徐雷锋, 杨盼盼, 徐华, 何国仁, 唐玉超, 任君芳, 明军. 2019. 百合花青素苷呈色类型中3种R2R3-MYBs基因的差异表达. 园艺学报, 46 (5):955-963. | |
[17] |
Chang H, Jones M L, Banowetz G M, Clark D G. 2003. Overproduction of cytokinins in petunia flowers transformed with P SAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology, 132:2174-2183.
doi: 10.1104/pp.103.023945 URL |
[18] |
Chen C X, Hussain N, Wang Y R, Li M T, Liu L, Qin M Z, Ma N, Gao J P, Sun X M. 2020. An ethylene-inhibited NF-YC transcription factor RhNF-YC 9 regulates petal expansion in rose. Horticultural Plant Journal, 6 (6):419-427.
doi: 10.1016/j.hpj.2020.11.007 URL |
[19] |
Chin D P, Shiratori I, Shimizu A, Kato K, Mii M, Waga I. 2018. Generation of brilliant green fluorescent petunia plants by using a new and potent fluorescent protein transgene. Scientific Reports, 8:16556.
doi: 10.1038/s41598-018-34837-2 URL |
[20] |
Comai L, Moran P, Maslyar D. 1990. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and mas elements. Plant Molecular Biology, 15:373-381.
doi: 10.1007/BF00019155 URL |
[21] | Decaestecker W, Buono R A, Pfeiffer M L, Vangheluwe N, Jourquin J, Karimi M, Van I G, Beeckman T, Nowack M K, Jacobs T B. 2018. CRISPR-TSKO facilitates efficient cell type-,tissue-,or organ-specific mutagenesis in Arabidopsis. BioRxiv,474981. |
[22] |
Endo S, Iwamoto K, Fukuda H. 2017. Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter. Plant Biotechnology Journal, 16:451-458.
doi: 10.1111/pbi.2018.16.issue-2 URL |
[23] |
Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell, 21:168-183.
doi: 10.1105/tpc.108.059329 URL |
[24] |
Estrada-Melo A C, Ma C, Reid M S, Jiang C Z. 2015. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Horticulture Research, 2:15013.
doi: 10.1038/hortres.2015.13 URL |
[25] | Liu Jian-guo, Bai Guo-hui, Tian Yuan, Zhou Hao-lin. 2015. Research progress of genetically modified plant promoters. Guizhou Agricultural Sciences, 43 (4):25-30. (in Chinese) |
范繁, 刘建国, 白国辉, 田源, 周皓琳. 2015. 转基因工程植物启动子的研究进展. 贵州农业科学, 43 (4):25-30. | |
[26] |
Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K. 2003. A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3 ',5 '-hydroxylase gene. Phytochemistry, 63:15-23.
pmid: 12657292 |
[27] |
Gan S, Amasino R. 1997. Making sense of senescence. Plant Physiology, 113:313-319.
doi: 10.1104/pp.113.2.313 URL |
[28] | Garcia-Sogo B, Pineda B, Roque E, Anton T, Atares A, Borja M, Beltran J P, Moreno V, Canas L A. 2012. Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biology, l12:156. |
[29] |
Gehl C, Wamhoff D, Schaarschmidt F, Serek M. 2018. Improved leaf and flower longevity by expressing the etr1-1 allele in Pelargonium zonale under control of FBP1 and SAG12promoters. Plant Growth Regulation, 86:351-363.
doi: 10.1007/s10725-018-0434-0 URL |
[30] | He Fei-yan, Yan Jian-jun, Bai Yun-feng, Feng Rui-yun, Shi Jun-feng. 2017. Types and applications of promoters. Shanxi Agricultural Sciences, 45 (1):115-120. (in Chinese) |
贺飞燕, 闫建俊, 白云凤, 冯瑞云, 施俊凤. 2017. 启动子的类型及应用. 山西农业科学, 45 (1):115-120. | |
[31] | He Hong-xia, Chen Liang, Lin Chun-jing, Liu Qing. 2014. Research progress of tissue-specific promoters in crop genetic engineering. Chinese Agricultural Science Bulletin, 30 (9):225-231. (in Chinese) |
贺红霞, 陈亮, 林春晶, 柳青. 2014. 组织特异性启动子在作物基因工程中的研究进展. 中国农学通报, 30 (9):225-231. | |
[32] | Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J. 2006. Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Science in China Series C:Life Sciences, 49:436-445. |
[33] |
Hong J K, Suh E J, Kwon S J, Lee S B, Kim J A, Lee S I, Lee Y H. 2016. Promoter of chrysanthemum actin confers high-level constitutive gene expression in Arabidopsis and chrysanthemum. Scientia Horticulturae, 211:8-18.
doi: 10.1016/j.scienta.2016.08.006 URL |
[34] | Hoshino A, Mizuno T, Shimizu K, Mori S, Fukada-Tanaka S, Furukawa K, Ishiguro K, Yoshikazu Tanaka Y, Iida S. 2019. Generation of yellow flowers of the Japanese morning glory by engineering its flavonoid biosynthetic pathway toward aurones. Plant and Cell Physiology, 62:913-925. |
[35] |
Huang D, Li X, Sun M, Zhang T, Pan H, Cheng T, Wang J, Zhang Q. 2016. Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Frontiers in Plant Science, 7:1633.
pmid: 27872631 |
[36] | Immink R G H, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent G C. 2003. Analysis of the petunia MADS-box transcription factor family. Molecular Genetics and Geomics, 268:598-606. |
[37] |
Jiang P, Rausher M. 2018. Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. Nature Plants, 4:14-22.
doi: 10.1038/s41477-017-0085-6 pmid: 29298993 |
[38] | Jiao Yong, Liu Xiao-qing, Jiang Hai-yang, Chen Ru-mei. 2019. Research progress in plant tissue-specific promoters. Review of China Agricultural Science and Technology, 21 (1):18-28. (in Chinese) |
焦勇, 柳小庆, 江海洋, 陈茹梅. 2019. 植物组织特异性启动子研究进展. 中国农业科技导报, 21 (1):18-28. | |
[39] |
Kamo K, Aebig J, Guaragna M A, James C, Hsu H T, Jordan R. 2012. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus. Plant Cell Tissue and Organ Culture, 110:13-21.
doi: 10.1007/s11240-012-0124-y URL |
[40] |
Kamo K, Jordan R, Guaragna M A, Hsu H T, Ueng P. 2010. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup ii gene from Cucumber mosaic virus. Plant Cell Reports, 29:695-704.
doi: 10.1007/s00299-010-0855-3 URL |
[41] |
Kamo K, Thilmony R, Bauchan G. 2019. Transgenic Lilium longiflorum plants containing the bar-uidagene controlled by the rice rpc1,Agrobacterium rold,mas2,and CaMV 35S promoters. Plant Cell Tissue and Organ Culture, 136:303-312.
doi: 10.1007/s11240-018-1515-5 URL |
[42] | Kang T J, Kwon T H, Kim T G, Loc N H, Yang M S. 2003. Comparing constitutive promoters using cat activity in transgenic tobacco plants. Molecules and Cells, 16:117-122. |
[43] |
Kasajima I, Ohtsubo N, Sasaki K. 2017. Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind. Horticulture Research, 4:17008.
doi: 10.1038/hortres.2017.8 URL |
[44] |
Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton T A, Karan M, Noriko N, Keiko Y S, Togami J, Pigeaire A, Tao G H, Nehra S, Lu C Y, Dyson B, Tsuda S, Ashikari T, Kusumi T, Mason J, Tanaka Y. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiology, 48:1589-1600.
doi: 10.1093/pcp/pcm131 URL |
[45] |
Kim D H, Park S, Lee J Y, Ha S H, Lim S H. 2018. Enhancing flower color through simultaneous expression of the B-peru and mPAP 1 transcription factors under control of a flower-specific promoter. International Journal of Molecular Sciences, 19:309.
doi: 10.3390/ijms19010309 URL |
[46] | Kishi-Kaboshi M, Aida R, Sasaki K. 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiology, 58:216-226. |
[47] |
Kishi-Kaboshi M, Aida R, Sasaki K. 2018. Genome engineering in ornamental plants:current status and future prospects. Plant Physiology and Biochemistry, 131:47-52.
doi: S0981-9428(18)30138-4 pmid: 29709514 |
[48] | Kishi-Kaboshi M, Aida R, Sasaki K. 2019. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum actin 2 promoter for productive,constitutive,and durable expression of a transgene in Chrysanthemum morifolium. Breed Separation Science, 69:536-544. |
[49] | Lam E, Benfey P N, Gilmartin P M, Fang R X, Chua N H. 1989. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proceedings of the National Academy of Sciences, 86:7890-7894. |
[50] | Li Zhuo-xue, Chen Xin-bo. 2015. Research progress of plant-inducible promoters and related cis-acting elements. Biotechnology Bulletin, 31 (10):8-15. (in Chinese) |
李濯雪, 陈信波. 2015. 植物诱导型启动子及相关顺式作用元件研究进展. 生物技术通报, 31 (10):8-15. | |
[51] |
Liao L J, Pan I C, Chan Y L, Hsu Y H, Chen W H, Chan M T. 2004. Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium mosaic virus is a manifestation of RNA-mediated resistance. Molecular Breeding, 13:229-242.
doi: 10.1023/B:MOLB.0000022527.68551.30 URL |
[52] |
Mariya K, Yi L, Jisheng L, Vaňková Radomíra, Malbeck Jiří, Richard M A. 2005. Effects of cor15a-ipt gene expression on leaf senescence in transgenic Petunia × hybrida and Dendranthema × grandiflorum. Journal of Experimental Botany, 56:1165-1175.
doi: 10.1093/jxb/eri109 URL |
[53] |
Meng L S, Song J P, Sun S B, Wang C Y. 2009. The ectopic expression of pttkn1gene causes pleiotropic alternation of morphology in transgenic carnation(Dianthus caryophyllus L.). Acta Physiologiae Plantarum, 31:1155-1164.
doi: 10.1007/s11738-009-0334-z URL |
[54] | Mibus H, Sriskandarajah S, Serek M. 2009. Genetically modified flowering potted plants with reduced ethylene sensitivity. Acta Horticulturae, 847:75-80. |
[55] |
Mishiba K, Nishihara M, Nakatsuka T, Abe Y, Hirano H, Yokoi T, Kikuchi A, Yamamura S. 2005. Consistent transcrip-tional silencing of 35S-driven transgenes in gentian. The Plant Journal, 44:541-556.
doi: 10.1111/tpj.2005.44.issue-4 URL |
[56] |
Moerkercke A V, Haring M A, Schuurink R C. 2011. The transcription factor emission of benzenoids II activates the MYB ODORANT1promoter at a MYB binding site specific for fragrant petunias. The Plant Journal, 67:917-928.
doi: 10.1111/j.1365-313X.2011.04644.x pmid: 21585571 |
[57] | Moerkercke A V, Haring M A, Schuurink R C. 2012. The OsGEX2 gene promoter confers sperm cell expression in transgenic rice. The Plant Journal, 30:1138-1148. |
[58] |
Naing A H, Kang H H, Jeong H Y. 2020. Overexpression of the Raphanus sativus RsMYB1 using the flower-specific promoter(InMYB1)enhances anthocyanin accumulation in flowers of transgenic Petunia and their hybrids. Molecular Breeding, 40:97.
doi: 10.1007/s11032-020-01176-y URL |
[59] |
Nakamura N, Fukuchimizutani M, Fukui Y, Ishiguro K, Suzuki K, Suzuki H, Okazaki K, Shibata K, Tanaka Y. 2010. Generation of pink flower varieties from blue Torenia hybrida by redirecting the flavonoid biosynthetic pathway from delphinidin to pelargonidin. Plant Biotechnology, 27:375-383.
doi: 10.5511/plantbiotechnology.10.0610a URL |
[60] |
Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M. 2007. Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Reports, 26:1951-1959.
doi: 10.1007/s00299-007-0401-0 URL |
[61] | Nakatsuka T, Mishiba K, Abe Y, Kubota A, Kakizaki Y, Yamamura S, Nishihara M. 2008. Flower color modification of Gentian plants by RNAi-mediated gene silencing. Plant Tissue Culture Letters, 25:61-68. |
[62] |
Nakatsuka T, Mishiba K, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M. 2010. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. Journal of Plant Physiology, 167:231-237.
doi: 10.1016/j.jplph.2009.08.007 URL |
[63] |
Nakatsuka T, Saito M, Yamada E, Nishihara M. 2011. Production of picotee-type flowers in Japanese gentian by CRES-T. Plant Biotechnology, 28:173-180.
doi: 10.5511/plantbiotechnology.10.1101b URL |
[64] |
Narumi T, Aida R, Niki T, Nishijima T, Ohtsubo N. 2008. Chimeric agamous repressor induces serrated petal phenotype in Torenia fournieri similar to that induced by cytokinin application. Plant Biotechnology, 25:45-53.
doi: 10.5511/plantbiotechnology.25.45 URL |
[65] |
Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Interaction between two cis-acting elements,ABRE and DRE in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal, 34:137-148.
doi: 10.1046/j.1365-313X.2003.01708.x URL |
[66] |
Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A. 2013. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant and Cell Physiology, 54:1684-1695.
doi: 10.1093/pcp/pct111 URL |
[67] | Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R. 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances, 3:e1602785. |
[68] |
Núñez de Cáceres González F F,Davey M R,Cancho Sanchez E,Wilson Z A. 2015. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Reports, 34:1201-1209.
doi: 10.1007/s00299-015-1778-9 URL |
[69] |
Outchkourov N S, Peters J, De Jong J, Rademakers W, Jongsma M A. 2003. The promoter-terminator of chrysanthemum rbcS1directs very high foreign gene expression levels in plants. Planta, 216:1003-1112.
URL pmid: 12687368 |
[70] |
Qi Y Y, Lou Q, Quan Y H, Liu Y L, Wang Y J. 2013. Flower-specific expression of the Phalaenopsis flavonoid 3',5'-hydoxylase modifies flower color pigmentation in Petunia and Lilium. Plant Cell Tissue and Organ Culture, 115:263-273.
doi: 10.1007/s11240-013-0359-2 URL |
[71] |
Raffeiner B, Serek M, Winkelmann T. 2009. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1. Plant Cell Tissue and Organ Culture, 98:125-134.
doi: 10.1007/s11240-009-9545-7 URL |
[72] |
Rosati C, Cadic A, Duron M, Renou J P, Simoneau P. 1997. Molecular cloning and expression analysis of dihydroflavonol 4-reductase gene in flower organs of Forsythia × intermedia. Plant Molecular Biology, 35:303-311.
doi: 10.1023/A:1005881032409 URL |
[73] |
Sanikhani M, Mibus H, Stummann B M, Serek M. 2008. Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Reports, 27:729-737.
doi: 10.1007/s00299-007-0493-6 URL |
[74] |
Sasaki K, Yamaguchi H, Kasajima I, Narumi T, Ohtsubo N. 2016. Generation of novel floral traits using a combination of floral organ-specific promoters and a chimeric repressor in Torenia fournieri Lind. Plant Cell Physiology, 57:1319-1331.
doi: 10.1093/pcp/pcw081 URL |
[75] | Savin K W, Baudinette S C, Cornish E C. 1995. Antisense ACC oxidase RNA delays carnation petal senescence. Hortence, 30:970-972. |
[76] |
Shibuya K, Watanabe K, Ono M. 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiology and Biochemistry, 131:53-57.
doi: 10.1016/j.plaphy.2018.04.036 URL |
[77] |
Singer S D, Hily J M, Cox K D. 2011. The sucrose synthase-1 promoter from Cirus sinensis directs expression of the beta-glucuronidase reporter gene in phloem tissue and in response to wouding in transgenic plants. Planta, 234:623-637.
doi: 10.1007/s00425-011-1432-x URL pmid: 21594624 |
[78] |
Singh M, Bhalla P L, Xu H, Singh M. 2003. Isolation and characterization of a flowering plant male gametic cell-specific promoter. FEBS Letters, 542:47-52.
doi: 10.1016/S0014-5793(03)00335-1 URL |
[79] |
Sohal A K, Pallas J A, Jenkins G I. 1999. The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis. Plant Molecular Biology, 41:75-87.
doi: 10.1023/A:1006232700835 URL |
[80] |
Sriskandarajah S, Mibus H, Serek M. 2007. Transgenic Campanula carpatica plants with reduced ethylene sensitivity. Plant Cell Reports, 26:805-813.
doi: 10.1007/s00299-006-0291-6 URL |
[81] |
Sugaya S, Uchimiya H. 1992. Deletion analysis of the 5'-upstream region of the Agrobacterium rhizogenes Ri plasmid rolC gene required for tissue-specic expression. Plant Physiology, 99:464-467.
doi: 10.1104/pp.99.2.464 URL |
[82] |
Suh E J, Hong J K, Lee Y H. 2020. Overexpression of the Brassica rapa SRS7 gene in pot-type chrysanthemum[Chrysanthemum morifolium Ramat] reduces plant height. Scientia Horticulturae, 273:109634.
doi: 10.1016/j.scienta.2020.109634 URL |
[83] |
Sun D, Zhang X, Li S, Jiang C Z, Zhang Y, Niu L. 2016. LrABCF1,a GCN-type ATP-binding cassette transporter fromLilium regale,is involved in defense responses against viral and fungal pathogens. Planta, 244:1185-1199.
doi: 10.1007/s00425-016-2576-5 URL |
[84] | Ueyama Y, Suzuki K I, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y. 2002. Molecular and biochemical characterization of torenia flavonoid 3 '-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Science, 163:260-263. |
[85] |
Vieira P, Wantoch S, Lilley C J, Chitwood D J, Atkinson H J, Kamo K. 2015. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv.‘Nellie White'. Transgenic Research, 24:421-432.
doi: 10.1007/s11248-014-9848-2 URL |
[86] | Wang Huan, Zheng Riru, Cao Shenghai, Zhang Tong, Shi Ruoming, Wang Caiyun, Luo Jing. 2020. Screening and identification of rose petal-specific expression promoters. Acta Horticulturae Sinica, 47 (4):686-698. (in Chinese) |
王焕, 郑日如, 曹声海, 张通, 史若明, 王彩云, 罗靖. 2020. 月季花瓣特异表达启动子的筛选和鉴定. 园艺学报, 47 (4):686-698. | |
[87] |
Wang J, Guan Y, Ding L, Li P, Zhao W, Jiang J, Chen S, Chen F. 2018. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science, 280:248-257.
doi: 10.1016/j.plantsci.2018.12.008 URL |
[88] |
Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B(DFR-B)locus in the Japanese morning glory Ipomoea(Pharbitis) nil. Scientific Reports, 7:10028.
doi: 10.1038/s41598-017-10715-1 URL |
[89] |
Wilmink A, van de Ven B C, Dons J J. 1995. Activity of constitutive promoters in various species from the Liliaceae. Plant Molecular Biology, 28:949-955.
doi: 10.1007/BF00042079 URL |
[90] | Winkelmann T, Warwas M, Raffeine B, Serek M, Mibus H. 2016. Improved postharvest quality of inflorescences of fbp1::etr1-1 transgenic Burrageara‘Stefan Isler Lava Flow'. Journal of Plant Growth and Regulation, 35:390-400. |
[91] | Xia Jiang-dong, Cheng Zai-quan, Huang Xing-qi, Ji Peng-zhang, Xiong Hua-bin. 2006. Cloning and sequence analysis of the promoter of CHS-A gene associated with flower color(Pchsa)in Petunia hybrida. Southwest Agricultural Journal, 19 (4):676-678. (in Chinese) |
夏江东, 程在全, 黄兴奇, 季鹏章, 熊华斌. 2006. 矮牵牛花色CHS-A基因启动子(Pchsa)的克隆及序列分析. 西南农业学报, 19 (4):676-678. | |
[92] |
Xu W, Liu W, Ye R, Mazarei M, Huang D, Zhang X, Stewart C N. 2018. A profilin gene promoter from switchgrass(Panicum virgatum L.)directs strong and specific transgene expression to vascular bundles in rice. Plant Cell Reports, 37:1-11.
doi: 10.1007/s00299-017-2233-x URL |
[93] | Yang Rui-juan, Bai Jian-rong, Li Rui, Chang Li-fang. 2018. Research progress of inducible promoters in plant genetic engineering. Shanxi Agricultural Sciences, 46 (2):292-298. (in Chinese) |
杨瑞娟, 白建荣, 李锐, 常利芳. 2018. 诱导型启动子在植物基因工程中的研究进展. 山西农业科学, 46 (2):292-298. | |
[94] | Yang Yuyiing, Ren Yiran, Zheng Pengfei, You Chunxiang, Wang Xiaofei, Hao Yujin. 2020. Investigation on MdMYB2 from apple in response to abiotic stress. Acta Horticulturae Sinica, 47 (4):613-622. (in Chinese) |
杨钰莹, 任怡然, 郑朋飞, 由春香, 王小非, 郝玉金. 2020. 苹果 MdMYB2基因对非生物胁迫的响应. 园艺学报, 47 (4):613-622. | |
[95] |
Zakizadeh H, Lütken H, Sriskandarajah S, Serek M, Müller R. 2013. Transformation of miniature potted rose(Rosa hybrida cv. Linda)with P SAG12-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Reports, 32:195-205.
doi: 10.1007/s00299-012-1354-5 URL |
[96] |
Zhang J J, Yan G H, Wen Z F, An Y Q, Singer S D, Liu Z. 2014. Two tobacco AP1-like gene promoters drive highly specific tightly regulated and unique expression patterns during floral transition initiation and development. Planta, 239:469-478.
doi: 10.1007/s00425-013-1995-9 URL |
[97] |
Zhang N, McHale L K, Finer J J. 2018. Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters. Plant Biotechnology Journal, 17:724-735.
doi: 10.1111/pbi.2019.17.issue-4 URL |
[98] |
Zhao J, Li Z T, Chen J, Henny R J, Gray D J, Chen J. 2013. Purple-leaved Ficus Lyrata plants produced by overexpressing a grapevine vvmyba1gene. Plant Cell Reports, 32:1783-1793.
doi: 10.1007/s00299-013-1491-5 URL |
[1] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[2] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[3] | WANG Xiaobin, ZHANG Dong, SHI Xiaohua, LI Danqing, ZHANG Runlong, SHAO Lingmei, XU Tong, XIA Yiping, and ZHANG Jiaping, . A New Paeonia lactiflora Cultivar‘Purple Heart’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 115-116. |
[4] | LIU Zhaoxia, ZHANG Xin, WANG Lu, MA Yuting, CHEN Qian, ZHU Zhanling, GE Shunfeng, JIANG Yuanmao. Effects of Fertilizer Hole Application Sites on Fine Root Growth,15N Absorption and Utilization,Yield and Quality of Apple Trees [J]. Acta Horticulturae Sinica, 2022, 49(7): 1545-1556. |
[5] | HE Jingjuan, FAN Yanping. Progress in Composition and Metabolic Regulation of Carotenoids Related to Floral Color [J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172. |
[6] | WANG Dan, WANG Mi, LIU Jun, ZHOU Xiaohui, LIU Songyu, YANG Yan, ZHUANG Yong. Cloning of U6 Promoters and Establishment of CRISPR/Cas9 Mediated Gene Editing System in Eggplant [J]. Acta Horticulturae Sinica, 2022, 49(4): 791-800. |
[7] | ZHOU Lin, ZOU Hongzhu, HAN Lulu, JIA Yinghua, WANG Yan. Research Progress on the Role of Glycosyltransferases in Color Formation of Petals [J]. Acta Horticulturae Sinica, 2022, 49(3): 687-700. |
[8] | SONG Fang, LI Zixuan, WANG Ce, WANG Zhijing, HE Ligang, JIANG Yingchun, WU Liming, BAI Fuxi. Cloning and Function Analysis of Mycorrhizal Signaling Receptor Protein Lysin Motif Receptor-like Kinases 2 Gene(LYK2)in Citrus [J]. Acta Horticulturae Sinica, 2022, 49(2): 281-292. |
[9] | HUANG Renwei, REN Yinghong, QI Weiliang, ZENG Rui, LIU Xinyu, DENG Binyan. Cloning of Mulberry MaERF105-Like Gene and Its Expression Under Drought Stress [J]. Acta Horticulturae Sinica, 2022, 49(11): 2439-2448. |
[10] | ZHANG Dong, GAO Cong, LIN Yefan, XU Yunchen, LIU Yue, QIU Shuai, REN Ziming, and XIA Yiping, . A New Lycoris sprengeri Cultivar‘Summer Release’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2933-2934. |
[11] | ZHANG Dong, SHAO Lingmei, XU Tong, SHENTU Yuanyue, ZHAO Fangmeng, WEI Jianfen, XIA Yiping, and REN Ziming, . A New Lycoris sprengeri Cultivar‘Summer Smile’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2935-2936. |
[12] | QIAO Zhenglin, HU Huizhen, YAN Bo, CHEN Longqing. Advances of Researches on Biosynthesis and Regulation of Floral Volatile Benzenoids/Phenylpropanoids [J]. Acta Horticulturae Sinica, 2021, 48(9): 1815-1826. |
[13] | SHI Liting, ZHOU Xinyang, YE Jianfeng, ZHOU Jiahao, WANG Gang, XIA Guohua. Advances in Distant Hybridization Breeding of Woody Ornamental Plants [J]. Acta Horticulturae Sinica, 2021, 48(9): 1827-1838. |
[14] | YANG Tianchen, CHEN Xiaotong, LÜ Ke, ZHANG Di. Expression Pattern and Regulation Mechanism of ApSK3 Dehydrin (Agapanthus praecox)Response to Abiotic Stress and Hormone Signals [J]. Acta Horticulturae Sinica, 2021, 48(8): 1565-1578. |
[15] | CAI Roudi, LI Xue, CHEN Yan, XU Xiaoping, CHEN Xiaohui, LAI Zhongxiong, LIN Yuling. Genome-wide Identification and Expression Analysis of DRB Gene Family in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2021, 48(5): 921-933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd