Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (6): 1233-1249.doi: 10.16420/j.issn.0513-353x.2020-0496
• Reviews • Previous Articles Next Articles
ZHAO Yuqing, CHEN Tao, YUAN Ming()
Received:
2020-11-27
Revised:
2021-01-14
Online:
2021-06-25
Published:
2021-07-08
Contact:
YUAN Ming
E-mail:yuanming@sicau.edu.cn
CLC Number:
ZHAO Yuqing, CHEN Tao, YUAN Ming. Review of the Role of Melatonin in Fruit Development and Postharvest Preservation[J]. Acta Horticulturae Sinica, 2021, 48(6): 1233-1249.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0496
拉丁名 Latin name | 品种 Variety | 测定方法 Method | 褪黑素含量/ (ng · g -1FW) Melatonin content | 发育阶段 Stage | 测定部位 Part | 参考文献 Reference |
---|---|---|---|---|---|---|
香蕉 Musa s | GC-MS | 0.47 | 果肉Flesh | Dubbles et al., | ||
GC-MS | 0.66 | 果肉Flesh | Badria, | |||
HPLC-FD | 0.0089 | Johns et al., | ||||
柑橘Citrus reticulata | HPLC-FD | 0.15 | Johns et al., | |||
菠萝Ananus comosus | HPLC-FD | 0.30 | Johns et al., | |||
杧果Mangifera indica | HPLC-FD | 0.67 | Johns et al., | |||
番木瓜Carica papyya | HPLC-FD | 0.24 | Johns et al., | |||
草莓Fragaria magna | GC-MS | 0.14 | Badria, | |||
猕猴桃 Actinidia chinensis | HPLC-FD | 0.24 | Hattori et al., | |||
黑桑 Fructus mori | 红果2号 Hongguo 2 | HPLC-ESI-MS/MS | 1.41 | 成熟期 Mature stage | 全果 Whole fruit | Wang et al., |
白玉王 Baiyuwang | HPLC-ESI-MS/MS | 0.58 | 成熟期 Mature stage | 全果 Whole fruit | Wang et al., | |
苹果 Malus × domestica | 富士Fuji | HPLC | 67.63 | 成熟期 Mature stage | 果皮Peel | Zhang et al., |
富士Fuji | HPLC | 0.86 | 成熟期 Mature stage | 果肉Peel | Zhang et al., | |
Granny Smith | HPLC | 7.37 | 成熟期 Mature stage | 果皮Peel | Zhang et al., | |
Granny Smith | HPLC | 0.72 | 成熟期 Mature stage | 果肉Flesh | Zhang et al., | |
番茄 Solanum lycopersicum | Cheery | UHPLC-q- Orbitrap | 0.079 | 成熟期 Mature stage | 全果 Whole fruit | Reinholds et al., |
Cherry Red | UHPLC-q- Orbitrap | 0.15 | 成熟期 Mature stage | 全果 Whole fruit | Reinholds et al., | |
Roma | UHPLC-q- Orbitrap | 0.059 | 成熟期 Mature stage | 全果 Whole fruit | Reinholds et al., | |
Bmei | HPLC | 5.90 | 绿熟期 Mature-green stage | 全果 Whole fruit | Sun et al., | |
葡萄 Vitis vinifera | Merlot | HPLC-ELISA | 0.26 | 果皮Peel | Iriti et al., | |
Nebbiolo | HPLC-ELISA | 0.97 | 果皮Peel | Iriti et al., | ||
Croatina | HPLC-ELISA | 0.87 | 果皮Peel | Iriti et al., | ||
Merlot | UPLC-MS/MS | 17.50 | 转色前期 Pre-veraison | 果皮Peel | Vitalini et al., | |
Merlot | UPLC-MS/MS | 9.30 | 转色期Veraison | 果皮Peel | Vitalini et al., | |
Merlot | UPLC-MS/MS | 3.60 | 转色前期 Pre-veraison | 种子Seed | Vitalini et al., | |
Merlot | UPLC-MS/MS | 10.04 | 转色期Veraison | 种子Seed | Vitalini et al., | |
Merlot | UPLC-MS/MS | 0.20 | 转色前期 Pre-veraison | 果肉Flesh | Vitalini et al., | |
Merlot | UPLC-MS/MS | 3.90 | 转色期Veraison | 果肉Flesh | Vitalini et al., | |
樱桃 Prunus avium | Burlat | HPLC-MS | 0.22 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., |
Navalinda | HPLC-MS | 0.027 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Van | HPLC-MS | 0.014 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Pico Limón Negro | HPLC-MS | 0.0060 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Sweetheart | HPLC-MS | 0.060 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Pico Negro | HPLC-MS | 0.115 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Pico Colorado | HPLC-MS | 0.048 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Sweetheart | HPLC-ECD | 16.52 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., | |
拉丁名 Latin name | 品种 Variety | 测定方法 Method | 褪黑素含量/ (ng · g -1FW) Melatonin content | 发育阶段 Stage | 测定部位 Part | 参考文献 Reference |
樱桃 Prunus avium | Summit | HPLC-ECD | 11.36 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., |
Sunburst | HPLC-ECD | 11.79 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., | |
Saco | HPLC-ECD | 12.05 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., | |
红灯 Hongdeng | HPLC | 1.41 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Zhao et al., | |
Rainier | HPLC | 0.58 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Zhao et al., |
Table 1 Contents of endogenous melatonin in different fruits
拉丁名 Latin name | 品种 Variety | 测定方法 Method | 褪黑素含量/ (ng · g -1FW) Melatonin content | 发育阶段 Stage | 测定部位 Part | 参考文献 Reference |
---|---|---|---|---|---|---|
香蕉 Musa s | GC-MS | 0.47 | 果肉Flesh | Dubbles et al., | ||
GC-MS | 0.66 | 果肉Flesh | Badria, | |||
HPLC-FD | 0.0089 | Johns et al., | ||||
柑橘Citrus reticulata | HPLC-FD | 0.15 | Johns et al., | |||
菠萝Ananus comosus | HPLC-FD | 0.30 | Johns et al., | |||
杧果Mangifera indica | HPLC-FD | 0.67 | Johns et al., | |||
番木瓜Carica papyya | HPLC-FD | 0.24 | Johns et al., | |||
草莓Fragaria magna | GC-MS | 0.14 | Badria, | |||
猕猴桃 Actinidia chinensis | HPLC-FD | 0.24 | Hattori et al., | |||
黑桑 Fructus mori | 红果2号 Hongguo 2 | HPLC-ESI-MS/MS | 1.41 | 成熟期 Mature stage | 全果 Whole fruit | Wang et al., |
白玉王 Baiyuwang | HPLC-ESI-MS/MS | 0.58 | 成熟期 Mature stage | 全果 Whole fruit | Wang et al., | |
苹果 Malus × domestica | 富士Fuji | HPLC | 67.63 | 成熟期 Mature stage | 果皮Peel | Zhang et al., |
富士Fuji | HPLC | 0.86 | 成熟期 Mature stage | 果肉Peel | Zhang et al., | |
Granny Smith | HPLC | 7.37 | 成熟期 Mature stage | 果皮Peel | Zhang et al., | |
Granny Smith | HPLC | 0.72 | 成熟期 Mature stage | 果肉Flesh | Zhang et al., | |
番茄 Solanum lycopersicum | Cheery | UHPLC-q- Orbitrap | 0.079 | 成熟期 Mature stage | 全果 Whole fruit | Reinholds et al., |
Cherry Red | UHPLC-q- Orbitrap | 0.15 | 成熟期 Mature stage | 全果 Whole fruit | Reinholds et al., | |
Roma | UHPLC-q- Orbitrap | 0.059 | 成熟期 Mature stage | 全果 Whole fruit | Reinholds et al., | |
Bmei | HPLC | 5.90 | 绿熟期 Mature-green stage | 全果 Whole fruit | Sun et al., | |
葡萄 Vitis vinifera | Merlot | HPLC-ELISA | 0.26 | 果皮Peel | Iriti et al., | |
Nebbiolo | HPLC-ELISA | 0.97 | 果皮Peel | Iriti et al., | ||
Croatina | HPLC-ELISA | 0.87 | 果皮Peel | Iriti et al., | ||
Merlot | UPLC-MS/MS | 17.50 | 转色前期 Pre-veraison | 果皮Peel | Vitalini et al., | |
Merlot | UPLC-MS/MS | 9.30 | 转色期Veraison | 果皮Peel | Vitalini et al., | |
Merlot | UPLC-MS/MS | 3.60 | 转色前期 Pre-veraison | 种子Seed | Vitalini et al., | |
Merlot | UPLC-MS/MS | 10.04 | 转色期Veraison | 种子Seed | Vitalini et al., | |
Merlot | UPLC-MS/MS | 0.20 | 转色前期 Pre-veraison | 果肉Flesh | Vitalini et al., | |
Merlot | UPLC-MS/MS | 3.90 | 转色期Veraison | 果肉Flesh | Vitalini et al., | |
樱桃 Prunus avium | Burlat | HPLC-MS | 0.22 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., |
Navalinda | HPLC-MS | 0.027 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Van | HPLC-MS | 0.014 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Pico Limón Negro | HPLC-MS | 0.0060 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Sweetheart | HPLC-MS | 0.060 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Pico Negro | HPLC-MS | 0.115 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Pico Colorado | HPLC-MS | 0.048 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | González-Gómez et al., | |
Sweetheart | HPLC-ECD | 16.52 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., | |
拉丁名 Latin name | 品种 Variety | 测定方法 Method | 褪黑素含量/ (ng · g -1FW) Melatonin content | 发育阶段 Stage | 测定部位 Part | 参考文献 Reference |
樱桃 Prunus avium | Summit | HPLC-ECD | 11.36 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., |
Sunburst | HPLC-ECD | 11.79 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., | |
Saco | HPLC-ECD | 12.05 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Rosado et al., | |
红灯 Hongdeng | HPLC | 1.41 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Zhao et al., | |
Rainier | HPLC | 0.58 | 成熟期 Mature stage | 果肉和果皮 Flesh and peel | Zhao et al., |
[1] |
Aghdam M S, Fard J R. 2017. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruit(Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221:1650-1657.
doi: 10.1016/j.foodchem.2016.10.123 URL |
[2] |
Aghdam M S, Luo Z S, Jannatizadeh A, Sheikh-assadi M, Sharafi Y, Farmani B, Fard J R, Razavi F. 2019. Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulatingZAT2/6/12 giving rise to promoting endogenous polyamines,proline,and nitric oxide accumulation by triggering arginine pathway activity. Food Chemistry, 275:549-556.
doi: 10.1016/j.foodchem.2018.09.157 URL |
[3] |
Aghdam M S, Luo Z S, Li L, Jannatizadeh A, Fard J R, Pirzad F. 2020. Melatonin treatment maintains nutraceutical properties of pomegranate fruit during cold storage. Food Chemistry, 303:125385.
doi: 10.1016/j.foodchem.2019.125385 URL |
[4] |
Angel C. 2007. The ability of melatonin to counteract lipid peroxidation in biological membranes. Current Molecular Medicine, 7 (7):638-649.
doi: 10.2174/156652407782564444 URL |
[5] |
Back K, Tan D X, Reitter R J. 2016. Melatonin biosynthesis in plants:multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 61 (4):426-437.
doi: 10.1111/jpi.12364 URL |
[6] |
Badria F A. 2002. Melatonin,serotonin,and tryptamine in some Egyptian food and medicinal plants. Journal of Medicinal Food, 5(3):153-157.
pmid: 12495587 |
[7] |
Barsacchi R, Kusmic C, Damini E, Carloni P, Greci L, Donato L. 1998. Vitamin E consumption induced by oxidative stress in red blood cells is enhanced by melatonin and reduced by N-acetylserotonin. Free Radical Biology and Medicine, 24 (7/8):1187-1192.
doi: 10.1016/S0891-5849(97)00431-0 URL |
[8] |
Boccalandro H E, Gonzalez C V, Wunderlin D A, Silva M F. 2011. Melatonin levels,determined by LC-ESI-MS/MS,fluctuate during the day/night cycle in Vitis vinifera cv Malbec:evidence of its antioxidant role in fruits. Journal of Pineal Research, 51 (2):226-232.
doi: 10.1111/j.1600-079X.2011.00884.x URL |
[9] |
Byeon Y, Lee K, Park Y I, Park S, Back K. 2013. Molecular cloning and functional analysis of serotonin- N-acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. Journal of Pineal Research, 55 (4):371-376.
doi: 10.1111/jpi.12080 URL |
[10] |
Byeon Y, Park S, Kim Y S, Park DH, Lee S, Back K. 2012. Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. Journal of Pineal Research, 53:107-111.
doi: 10.1111/jpi.2012.53.issue-1 URL |
[11] |
Cao S F, Bian K, Shi L Y, Chung H H, Chen W, Yang Z F. 2018a. The Role of melatonin in affecting cell wall disassembly and chilling tolerance in cold-stored peach fruit. Journal of Agricultural and Food Chemistry, 66 (22):5663-5670.
doi: 10.1021/acs.jafc.8b02055 URL |
[12] | Cao S F, Shao J R, Shi L Y, Xu L W, Shen Z M, Chen W, Yang Z F. 2018b. Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Science Reports, 8:806. |
[13] |
Cao S F, Song C B, Shao J R, Bian K, Chen W, Yang Z F. 2016. Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64 (25):5215-5222.
doi: 10.1021/acs.jafc.6b01118 URL |
[14] |
Chen Q, Qi W B, Reiter R J, Wei W, Wang B M. 2009. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166 (3):324-328.
doi: 10.1016/j.jplph.2008.06.002 URL |
[15] |
Chen Y E, Mao J J, Sun L Q, Huang B, Ding C B, Gu Y, Liao J Q, Hu C, Zhang Z W, Yuan S, Yuan M. 2018a. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiologia Plantarum, 164 (3):349-363.
doi: 10.1111/ppl.2018.164.issue-3 URL |
[16] |
Chen Z P, Gu Q, Yu X L, Huang L Q, Xu S, Wang R, Shen W, Shen W B. 2018b. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Annals of Botany, 121 (6):1127-1136.
doi: 10.1093/aob/mcx207 URL |
[17] |
Chervin C, Tira-Umphon A, Terrier N, Zouine M, Severac D, Roustan J P. 2008. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts,over the ripening phase. Physiologia Plantarum, 134 (3):534-546.
doi: 10.1111/ppl.2008.134.issue-3 URL |
[18] |
Çolak A M. 2018. Effect of melatonin and gibberellic acid foliar application on the yield and quality of Jumbo blackberry species. Saudi Journal of Biological Sciences, 25 (6):1242-1246.
doi: 10.1016/j.sjbs.2018.06.008 URL |
[19] |
Davies C, Boss P K, Robinson S P. 1997. Treatment of grape berries,a nonclimacteric fruit with a synthetic auxin,retards ripening and alters the expression of developmentally regulated genes. Plant Physiology, 115(3):1155-1161.
doi: 10.1104/pp.115.3.1155 URL |
[20] |
Debnath B, Hussain M, Li M, Lu X C, Sun Y T, Qiu D L. 2018. Exogenous melatonin improves fruit quality features,health promoting antioxidant compounds and yield traits in tomato fruits under acid rain stress. Molecules, 23 (8):1868.
doi: 10.3390/molecules23081868 URL |
[21] |
Ding F, Liu B, Zhang S X. 2017. Exogenous melatonin ameliorates cold-induced damage in tomato plants. Scientia Horticulturae, 219:264-271.
doi: 10.1016/j.scienta.2017.03.029 URL |
[22] |
Ding F, Wang G, Wang M L, Zhang S X. 2018. Exogenous melatonin improves tolerance to water deficit by promoting cuticle formation in tomato plants. Molecules, 23 (7):1605.
doi: 10.3390/molecules23071605 URL |
[23] |
Dubbles R, Reiter R J, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara H W, Schloot W. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18 (1):28-31.
doi: 10.1111/jpi.1995.18.issue-1 URL |
[24] |
El-Naby S K M A, Mohamed A A A, El-Naggar Y I M. 2019. Effect of melatonin,GA3 and NAA on vegetative growth,yield and quality of ‘Canino'apricot fruit. Acta Scientiarum Polonorum-Hortorum Cultus, 18 (3):167-174.
doi: 10.24326/asphc.2019.3.16 |
[25] |
Gao H, Lu Z M, Yang Y, Wang D N, Yang T, Cao M M, Cao W. 2018a. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245:659-666.
doi: 10.1016/j.foodchem.2017.10.008 URL |
[26] |
Gao H, Zheng Z K, Chai H K, Cheng N, Yang Y, Wang D N, Yang T, Cao W. 2016. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118:103-110.
doi: 10.1016/j.postharvbio.2016.03.006 URL |
[27] |
Gao W Y, Zhang Y J, Feng Z, Bai Q Q, He J J, Wang Y J. 2018b. Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules, 23 (7):1580.
doi: 10.3390/molecules23071580 URL |
[28] |
Given N K, Venis M A, Gierson D. 1988. Hormonal regulation of ripening in the strawberry,a non-climacteric fruit. Planta, 174 (3):402-406.
doi: 10.1007/BF00959527 pmid: 24221523 |
[29] |
González-Gómez D, Lozano M, Fernández-León M F, Ayuso M C, Bernalte M J, Rodríguez A B. 2009. Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars(Prunus avium L.). European Food Research and Technology, 229 (2):223-229.
doi: 10.1007/s00217-009-1042-z URL |
[30] |
Gu Q, Chen Z P, Yu X L, Cui W T, Pan J C, Zhou G, Xu S, Wang R, Shen W B. 2017. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis. Plant Science, 261:28-37.
doi: 10.1016/j.plantsci.2017.05.001 URL |
[31] |
Guo S H, Xu T F, Shi T C, Jin X Q, Feng M X, Zhao X H, Zhang Z W, Meng J F. 2020. Cluster bagging promotes melatonin biosynthesis in the berry skins of Vitis vinifera cv. Cabernet Sauvignon and Carignan during development and ripening. Food Chemistry, 305:125502.
doi: 10.1016/j.foodchem.2019.125502 URL |
[32] |
Han Q H, Huang B, Ding C B, Zhang Z W, Chen Y E, Hu C, Zhou L J, Huang Y, Liao J Q, Yuan S, Yuan M. 2017. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Frontiers in Plant Science, 8:785.
doi: 10.3389/fpls.2017.00785 URL |
[33] |
Hardeland R. 2016. Melatonin in plants-diversity of levels and multiplicity of functions. Frontiers in Plant Science, 7:198.
doi: 10.3389/fpls.2016.00198 pmid: 26925091 |
[34] |
Hattori A, Migitaka H, Iigo M, Yamamoto K, Ohtani-kaneko R, Hara M, Suzuki T, Reiter R J. 1995. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International, 35 (3):627-634.
pmid: 7773197 |
[35] |
Hernández I G, Gomez F J V, Cerutti S, Arana M V, Silva M F. 2015. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiology and Biochemistry, 94:191-196.
doi: 10.1016/j.plaphy.2015.06.011 pmid: 26113158 |
[36] |
Huang B, Chen Y E, Zhao Y Q, Dong C B, Liao J Q, Hu C, Zhao L J, Zhang Z W, Yuan S, Yuan M. 2019. Exogenous melatonin alleviates oxidative damages and protects photosystemⅡin maize seedlings under drought stress. Frontiers in Plant Science, 10:677.
doi: 10.3389/fpls.2019.00677 pmid: 31178885 |
[37] |
Iriti M, Rossoni M, Faoro F. 2006. Melatonin content in grape:myth or panacea? Journal of the Science of Food and Agriculture, 86 (10):1432-1438.
doi: 10.1002/(ISSN)1097-0010 URL |
[38] |
Jannatizadeh A. 2019. Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. Scientia Horticulturae, 246:544-549.
doi: 10.1016/j.scienta.2018.11.027 |
[39] |
Jiang G X, Xiao L, Yan H L, Zhang D D, Wu F W, Liu X C, Su X G, Dong X H, Wang J S, Duan X W. 2017. Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi. Biochimica Et Biophysica Acta-General Subjects, 1861 (5):1140-1151.
doi: 10.1016/j.bbagen.2017.02.004 URL |
[40] |
Johns N P, Johns J, Porasuphatana S, Plaimee P, Sae-Teaw M. 2013. Dietary intake of melatonin from tropical fruit altered urinary excretion of 6‑sulfatoxymelatonin in healthy volunteers. Journal of Agricultural and Food Chemistry, 61 (4):913-919.
doi: 10.1021/jf300359a URL |
[41] |
José Luis Castañares andCarlos Alberto Bouzo. 2019. Effect of exogenous melatonin on seed germination and seedling growth in melon(Cucumis melo L.)under salt stress. Horticultural Plant Journal, 5 (2):79-87.
doi: 10.1016/j.hpj.2019.01.002 URL |
[42] |
Kathresan A, Tung P, Chinnappa C C, Reid D M. 1997. γ-aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiology, 115 (1):129-135.
doi: 10.1104/pp.115.1.129 URL |
[43] |
Lee H Y, Back K. 2016. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. Journal of Pineal Research, 60 (3):327-335.
doi: 10.1111/jpi.12314 URL |
[44] |
Lee H Y, Back K. 2017. Melatonin is required for H2O2-and NO-mediated defense signaling through MAPKKK3 and OXI 1 in Arabidopsis thaliana. Journal of Pineal Research, 62 (2):e12379.
doi: 10.1111/jpi.2017.62.issue-2 URL |
[45] |
Lee K, Choi G H, Back K. 2017. Cadmium-induced melatonin synthesis in rice requires light,hydrogen peroxide,and nitric oxide:key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. Journal of Pineal Research, 63 (4):e12441.
doi: 10.1111/jpi.2017.63.issue-4 URL |
[46] |
Lei Q, Wang L, Tan D X, Zhao Y, Zheng X D, Chen H, Li Q T, Zuo B X, Kong J. 2013. Identification of genes for melatonin synthetic enzymes in‘Red Fuji'apple(Malus domestica Borkh. cv. Red)and their expression and melatonin production during fruit development. Journal of Pineal Research, 55 (4):443-451.
doi: 10.1111/jpi.12096 URL |
[47] |
Li C W, Lee S H, Chieh P S, Lin C S, Wang Y C, Chan M T. 2012. Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress. Plant Cell Physiology, 53 (10):1707-1719.
doi: 10.1093/pcp/pcs114 URL |
[48] |
Li S E, Xu Y H, Bi Y Zhang B, Shen S L, Jiang T J, Zheng X L. 2019a. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biology and Technology, 157:110962.
doi: 10.1016/j.postharvbio.2019.110962 URL |
[49] |
Li T T, Wu Q X, Zhu H, Zhou Y J, Jiang Y M, Gao H J, Yun Z. 2019b. Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel. BMC Plant Biology, 19:289.
doi: 10.1186/s12870-019-1855-2 URL |
[50] |
Lin Y L, Fan L Q, Xia X H, Wang Z K, Yin Y P, Cheng Y L, Li Z G. 2019. Melatonin decreases resistance to postharvest green mold on citrus fruit by scavenging defense-related reactive oxygen species. Postharvest Biology and Technology, 153:21-30.
doi: 10.1016/j.postharvbio.2019.03.016 URL |
[51] |
Lin Y X, Ling H T, Lin M S, Chen Y H, Wang H, Fan Z Q, Ritenour M A, Lin Y F. 2020. Hydrogen peroxide reduced ATPase activity and the levels of ATP,ADP,and energy charge and its association with pulp breakdown occurrence of longan fruit during storage. Food Chemistry, 311:126008.
doi: 10.1016/j.foodchem.2019.126008 URL |
[52] |
Liu C H, Zheng H H, Sheng K L, Liu W, Zheng L. 2018a. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139:47-55.
doi: 10.1016/j.postharvbio.2018.01.016 URL |
[53] |
Liu C X, Chen L L, Zhao R R, Li R, Zhang S J, Yu W Q, Sheng J P, Shen L. 2019a. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. Journal of Agricultural and Food Chemistry, 67 (22):6116-6124.
doi: 10.1021/acs.jafc.9b00058 URL |
[54] |
Liu G S, Zhang Y X, Yun Z, Hu M J, Liu J L, Jiang Y M, Zhang Z K. 2020. Melatonin enhances cold tolerance by regulating energy and proline metabolism in litchi fruit. Foods, 9 (4):454.
doi: 10.3390/foods9040454 URL |
[55] |
Liu H, Song L L, You Y L, Li Y B, Duan X W, Jiang Y M, Joyce D C, Ashraf M, Lu W J. 2011. Cold storage duration affects litchi fruit quality,membrane permeability,enzyme activities and energy charge during shelf time at ambient temperature. Postharvest Biology and Technology, 60 (1):24-30.
doi: 10.1016/j.postharvbio.2010.11.008 URL |
[56] |
Liu J L, Liu H T, Wu T, Zhai R, Yang C Q, Wang Z G, Ma F W, Xu L F. 2019b. Effects of melatonin treatment of postharvest pear fruit on aromatic volatile biosynthesis. Molecules, 24 (23):4233.
doi: 10.3390/molecules24234233 URL |
[57] |
Liu J L, Yang J, Zhang H Q, Cong L, Zhai R, Yang C Q, Wang Z G, Ma F W, Xu L F. 2019c. Melatonin inhibits ethylene synthesis via nitric oxide regulation to delay postharvest senescence in pears. Journal of Agricultural and Food Chemistry, 67 (8):2279-2288.
doi: 10.1021/acs.jafc.8b06580 URL |
[58] |
Liu J L, Yue R R, Si M, Wu M, Cong L, Zhai R, Yang C Q, Wang Z G, Ma F W, Xu L F. 2019d. Effects of exogenous application of melatonin on quality and sugar metabolism in‘Zaosu'pear fruit. Journal of Plant Growth Regulation, 38 (3):1161-1169.
doi: 10.1007/s00344-019-09921-0 URL |
[59] |
Liu J L, Zhai R, Liu F X, Zhao Y X, Wang H B, Liu L L, Yang C Q, Wang Z G, Ma F W, Xu L F. 2018b. Melatonin induces parthenocarpy by regulating genes in gibberellin pathways of ‘Starkrimson' pear( Pyrus communis L.). Frontiers in Plant Science, 9:946.
doi: 10.3389/fpls.2018.00946 URL |
[60] |
Liu J L, Zhang R M, Sun Y K, Liu Z Y, Jin W, Sun Y. 2016. The beneficial effects of exogenous melatonin on tomato fruit properties. Scientia Horticulturae, 207:14-20.
doi: 10.1016/j.scienta.2016.05.003 URL |
[61] |
López-Burillo S, Tan D X, Rodriguez-Gallego V, Manchester L C, Mayo J C, Sainz R M, Reiter R J. 2003. Melatonin and its derivatives cyclic 3-hydroxymelatonin,N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents. Journal of Pineal Research, 34 (3):178-184.
doi: 10.1034/j.1600-079X.2003.00025.x URL |
[62] |
Mahal H S, Sharma H S, Mukherjee T. 1999. Antioxidant properties of melatonin:a pulse radiolysis study. Free Radical Biology and Medicine, 26 (5/6):557-565.
doi: 10.1016/S0891-5849(98)00226-3 URL |
[63] |
Majidinia M, Reiter R J, Shakouri S K, Yousefi B. 2018. The role of melatonin,a multitasking molecule,in retarding the processes of ageing. Ageing Research Reviews, 47:198-213.
doi: 10.1016/j.arr.2018.07.010 URL |
[64] | Mandal M K, Suren H, Ward B, Boroujerdi A, Kousik C. 2018. Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. Journal of Pineal Research, 65 (3):e12505. |
[65] |
Meng J F, Xu T F, Song C Z, Yu Y, Hu F, Zhang L, Zhang Z W, Xi Z M. 2015. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chemistry, 185:127-134.
doi: 10.1016/j.foodchem.2015.03.140 URL |
[66] |
Mirshekaria A, Madanib B, Yahic E M, Golding J B, Vand S H. 2020. Postharvest melatonin treatment reduces chilling injury in sapota fruit. Journal of the Science of Food and Agriculture, 100 (5):1897-1903.
doi: 10.1002/jsfa.v100.5 URL |
[67] |
Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelsh A, Arnao M B, Li L F, Ai S Y. 2020. Melatonin and its protective role against biotic stress impacts on plants. Biomolecules, 10 (1):54.
doi: 10.3390/biom10010054 URL |
[68] |
Okazaki M, Ezura H. 2009. Profiling of melatonin in the model tomato(Solanum lycopersicum L.)cultivar Micro-Tom. Journal of Pineal Research, 46 (3):338-343.
doi: 10.1111/jpi.2009.46.issue-3 URL |
[69] | Pan Yong-gui. 1999. Effect of polyamines on physiology of postharvest fruits and vegetables and its application. Tropic Agricultural Science,(4):68-74. (in Chinese) |
潘永贵. 1999. 多胺对采后果蔬生理影响及其应用. 热带农业科学,(4):68-74. | |
[70] |
Reinholds I, Pugajva I, Radenkovs V, Rjabova J, Bartkevics V. 2016. Development and validation of new ultra-high-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry method for determination of melatonin in fruits. Journal of Chromatographic Science, 54 (6):977-984.
doi: 10.1093/chromsci/bmw030 pmid: 26966272 |
[71] | Ressmeyer A R,Myao,J C,Zelosko V,Sainz R M,Tan D X,Poeggeler B,Antolin I,Zsizsik B K,Reiter R J,Hardeland R. 2003. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine(AMK):scavenging of free radicals and prevention of protein destruction. Redox Report:Communications in Free Radical Research, 8 (4):205-213. |
[72] |
Riga P, Medina S, Garcia-Flores L A, Gil-Lzquierdo A. 2014. Melatonin content of pepper and tomato fruits:effects of cultivar and solar radiation. Food Chemistry, 156 (4):347-352.
doi: 10.1016/j.foodchem.2014.01.117 URL |
[73] |
Rosado T, Henriques I, Gallardo E, Duarte A P. 2017. Determination of melatonin levels in different cherry cultivars by high-performance liquid chromatography coupled to electrochemical detection. European Food Research and Technology, 243 (10):1749-1757.
doi: 10.1007/s00217-017-2880-8 URL |
[74] |
Sharafi F Y, Aghdama M S, Luo Z S, Jannatizadeh A, Razavi F, Fard J R, Farmani B. 2019. Melatonin treatment promotes endogenous melatonin accumulation and triggers GABA shunt pathway activity in tomato fruits during cold storage. Scientia Horticulturae, 254:222-227.
doi: 10.1016/j.scienta.2019.04.056 |
[75] |
Sun Q Q, Zhang N, Wang J F, Zhang H J, Li D B, Shi J, Li R, Weeda S, Zhao B, Ren S X, Guo Y D. 2015. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66 (3):657-668.
doi: 10.1093/jxb/eru332 URL |
[76] |
Sun Q S, Zhang N, Wang J F, Cao Y Y, Li X S, Zhang H J, Zheng L, Tan D X, Guo Y D. 2016. A label-free differential proteomics analysis reveals the effect of melatonin in promoting fruit ripening and anthocyanin accumulation upon post-harvest in tomatoes. Journal of Pineal Research, 61 (2):138-153.
doi: 10.1111/jpi.12315 URL |
[77] |
Tan D X, Hardeland R, Manchester L C, Korkmaz A, Ma S R, Rosales-Corral S, Reiter R J. 2012. Functional roles of melatonin in plants,and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 63 (2):577-597.
doi: 10.1093/jxb/err256 URL |
[78] |
Tan D X, Manchester L C, Sainz R M, Mayo J C, Leon J, Hardeland R, Poeggeler B, Reiter R J. 2005. Interactions between melatonin and nicotinamide nucleotide:NADH preservation in cells and in cell-free systems by melatonin. Journal of Pineal Research, 39 (2):185-194.
doi: 10.1111/j.1600-079X.2005.00234.x URL |
[79] |
Vitalini S, Gardana C, Zanzotto A, Simonetti P, Faoro F, Fico G, Iriti M. 2011. The presence of melatonin in grapevine(Vitis vinifera L.) berry tissues. Journal of Pineal Research, 51 (3):331-337.
doi: 10.1111/jpi.2011.51.issue-3 URL |
[80] | Wang C, Yin L Y, Shi X Y, Xiao H, Kang K, Liu X Y, Zhan J C, Huang W D. 2016. Effect of cultivar,temperature,and environmental conditions on the dynamic change of melatonin in mulberry fruit development and wine fermentation. Journal of Food Science, 81 (4):958-967. |
[81] |
Wang F, Zhang X P, Yang Q Z, Zhao Q F. 2019a. Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chemistry, 301:125311.
doi: 10.1016/j.foodchem.2019.125311 URL |
[82] |
Wang L, Luo Z S, Yang M Y, Li D, Qi M, Xu Y Q, Abdelshafy A M, Ban Z J, Wang F Z, Li L. 2020a. Role of exogenous melatonin in table grapes:first evidence on contribution to the phenolics-oriented response. Food Chemistry, 329:127155.
doi: 10.1016/j.foodchem.2020.127155 URL |
[83] |
Wang P, Sun X, Xie Y P, Li M J, Chen W, Zhang S, Liang D, Ma F W. 2014. Melatonin regulates proteomic changes during leaf senescence in Malus hupehensis. Journal of Pineal Research, 57 (3):291-307.
doi: 10.1111/jpi.12169 URL |
[84] |
Wang T, Hu M J, Yuan D B, Yun Z, Gao Z Y, Su Z H, Zhang Z K. 2020b. Melatonin alleviates pericarp browning in litchi fruit by regulating membrane lipid and energy metabolisms. Postharvest Biology and Technology, 160:111066.
doi: 10.1016/j.postharvbio.2019.111066 URL |
[85] | Wang X, Liang D, Xie Y, Lv X L, Wang J, Xia H. 2019b. Melatonin application increases accumulation of phenol substances in kiwifruit during storage. Emirates Journal of Food Agriculture, 31 (5):361-367. |
[86] | Wang Xia, Wang Yong-zhang, Liu Geng-sen, Liu Cheng-lian, Li Pei-huan. 2008. Effects of IAA, GA and ABA on the activities of Ca2+-ATPase in variety‘Hongdeng'sweet cherry fruit. Journal of Qingdao Agricultural University, 25 (2):88-90. (in Chinese) |
王霞, 王永长, 刘更森, 刘成连, 李培环. 2008. IAA、GA和ABA对‘红灯'樱桃果实Ca2+-ATPase活性的影响. 青岛农业大学报(自然科学版), 25 (2):88-90. | |
[87] |
Wei Y, Hu W, Wang Q, Zheng H Q, Li X L, Yan Y, Reiter R J, He C Z. 2017. Identification,transcriptional and functional analysis of heat-shock protein 90s in banana(Musa acuminata L.) high light their novel role in melatonin-mediated plant response to Fusarium wilt. Journal of Pineal Research, 62 (1):e12367.
doi: 10.1111/jpi.12367 URL |
[88] |
Wolf K, Kolář J, Witters E, van Dongen W, van Onckelen H, Macháčková I. 2001. Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. Journal of Plant Physiology, 158 (11):1491-1493.
doi: 10.1078/0176-1617-00561 URL |
[89] |
Xia H, Shen Y Q, Shen T, Wang X, Zhang X F, Hu P, Liang D, Lin L J, Deng H H, Wang J. 2020. Melatonin accumulation in sweet cherry and its influence on fruit quality and antioxidant properties. Molecules, 25 (3):753.
doi: 10.3390/molecules25030753 URL |
[90] |
Xu L L, Yue Q Y, Bian F E, Sun H, Zhai H, Yao Y X. 2017. Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries. Frontiers in Plant Science, 8:1426.
doi: 10.3389/fpls.2017.01426 URL |
[91] |
Xu L L, Yue Q Y, Xiang G Q, Bian F E, Yao Y X. 2018. Melatonin promotes ripening of grape berry via increasing the levels of ABA,H2O2,and particularly ethylene. Horticulture Research, 5:1-16.
doi: 10.1038/s41438-017-0012-z URL |
[92] | Ya Rong, Xu Weirong, Zhang Ying, Xia Siqi, Zhang Ningbo. 2020. Investigation of melatonin on somatic embryo induction for‘Thompson Seedless'grapevine. Acta Horticulturae Sinica, 47 (5):953-962. (in Chinese) |
雅蓉, 徐伟荣, 张莹, 夏思琪, 张宁波. 2020. 褪黑素对‘无核白'葡萄体细胞胚的诱导作用. 园艺学报, 47 (5):953-962. | |
[93] |
Zahedi S M, Hosseini M S, Abadia J, Marjani M. 2020. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry(Fragaria × ananassa Duch. ). Plant Physiology and Biochemistry, 149:313-323.
doi: 10.1016/j.plaphy.2020.02.021 URL |
[94] |
Zhai R, Liu J L, Liu F X, Zhao Y X, Liu L L, Fang C, Wang H B, Li X Y, Wang Z G, Ma F W, Xu L F. 2018. Melatonin limited ethylene production,softening and reduced physiology disorder in pear(Pyrus communis L.)fruit during senescence. Postharvest Biology and Technology, 139:38-46.
doi: 10.1016/j.postharvbio.2018.01.017 URL |
[95] |
Zhang Hai-long, Chen Ying-ying, Yang Li-xin, Shen Ying-bai. 2020. Regulation of γ-aminobutyric acid on plant growth and development and stress resistance. Plant Physiology Journal, 56 (4):600-612. (in Chinese)
doi: 10.1104/pp.56.5.600 URL |
张海龙, 陈迎迎, 杨立新, 沈应柏. 2020. γ-氨基丁酸对植物生长发育和抗逆性的调节作用. 植物生理学报, 56 (4):600-612. | |
[96] |
Zhang H X, Liu X, Chen T, Ji Y Z, Shi K, Wang L, Zheng X D, Kong J. 2018a. Melatonin in apples and juice:inhibition of browning and microorganism growth in apple juice. Molecules, 23 (3):521.
doi: 10.3390/molecules23030521 URL |
[97] |
Zhang H X, Wang L, Shi K, Shan D Q, Zhu Y P, Wang CY, Bai Y X, Yan T C, Zheng X D, Kong J. 2019a. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. Journal of Pineal Research, 66:e12551.
doi: 10.1111/jpi.2019.66.issue-2 URL |
[98] |
Zhang J, Li H B, Xu B, Li J, Huang B R. 2016. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass(Lolium perenne L.). Frontiers in Plant Science, 7:1500.
pmid: 27761136 |
[99] |
Zhang L, Wang J W, Zhou X, Shi F, Fu W W, Ji S J. 2018b. Effect of ATP treatment on enzymes involved in energy and lipid metabolisms accompany peel browning of‘Nanguo'pears during shelf life after low temperature. Scientia Horticulturae, 240:446-452.
doi: 10.1016/j.scienta.2018.06.036 URL |
[100] |
Zhang W L, Cao J K, Fan X G, Jiang W B. 2020. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends in Food Science Technology, 99:531-541.
doi: 10.1016/j.tifs.2020.03.024 URL |
[101] |
Zhang Y Y, Huber D J, Hu M J, Jiang G X, Gao Z Y, Xu X B, Jiang Y M, Zhang Z K. 2018c. Melatonin delays postharvest browning in litchi fruit by enhancing anti-oxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, 66 (28):7475-7484.
doi: 10.1021/acs.jafc.8b01922 URL |
[102] | Zhang Z X, Hu Q, Liu Y A, Cheng P L, Cheng H, Liu W X, Xing X J, Guan Z Y, Fang W M, Chen S M. 2019b. Strigolactone represses the synthesis of melatonin,thereby inducing floral transition in Arabidopsis thaliana in an FLC-dependent manner. Journal of Pineal Research, 67 (2):e12582. |
[103] |
Zhao D K, Yu Y, Shen Y, Liu Q, Zhao Z W, Sharma R, Reiter R J. 2019. Melatonin synthesis and function:evolutionary history in animals and plants. Frontiers in Endocrinology, 10:249.
doi: 10.3389/fendo.2019.00249 URL |
[104] |
Zhao Y, Tan D X, Lei Q, Chen H, Wang L, Li Q T, Gao Y A, Kong J. 2013. Melatonin and its potential biological functions in the fruits of sweet cherry. Journal of Pineal Research, 55 (1):79-88.
doi: 10.1111/jpi.12044 URL |
[105] |
Zheng H H, Liu W, Liu S, Liu C H, Zheng L. 2019. Effects of melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit. Food Chemistry, 299:125116.
doi: 10.1016/j.foodchem.2019.125116 URL |
[1] | TIAN Mingkang, XU Zhixiang, LIU Xiuqun, SUI Shunzhao, LI Mingyang, and LI Zhineng, . Identification of the AP2 Subfamily Transcription Factors in Chimonanthus praecox and the Functional Study of CpAP2-L11 [J]. Acta Horticulturae Sinica, 2023, 50(2): 382-396. |
[2] | YANG Zhi, ZHANG Chuanjiang, YANG Xinfang, DONG Mengyi, WANG Zhenlei, YAN Fenfen, WU Cuiyun, WANG Jiurui, LIU Mengjun, LIN Minjuan. Analysis of Fruit Genetic Tendency and Mixed Inheritance in Hybrid Progeny of Jujube and Wild Jujube [J]. Acta Horticulturae Sinica, 2023, 50(1): 36-52. |
[3] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[4] | SHAO Fengqing, LUO Xiurong, WANG Qi, ZHANG Xianzhi, WANG Wencai. Advances in Research of DNA Methylation Regulation During Fruit Ripening [J]. Acta Horticulturae Sinica, 2023, 50(1): 197-208. |
[5] | WANG Yingying, LIU Lichang, LIU Zhiwu, YANG Xingwang, LIU Wanchun, and WANG Xiaodi, . A New Little Nectarine Cultivar‘Zhongnong Zhenzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 25-26. |
[6] | SONG Fang, CHEN Qi, YUAN Yanliang, CHEN Sha, YIN Haijun, and JIANG Yingchun, . A New Yellow-fleshed Kiwifruit Cultivar‘Xianwo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 47-48. |
[7] | QI Yongjie, GAO Zhenghui, MA Na, WANG Qingming, KE Fanjun, CHEN Qian, and XU Yiliu, . A New Yellow Flesh and Resistant to Canker Disease Kiwifruit Cultivar ‘Wannong Jinguo’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 49-50. |
[8] | ZHANG Huiqin, LOU Guorong, LU Linghong, GU Xianbin, SONG Genhua, and XIE Ming. A New Yellow-fleshed Kiwifruit Cultivar‘Jinyi’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 51-52. |
[9] | Patiguli Maimaitituerxun, Gulinisha Kasimu, LUO Qinghong, LIU Liyan, LIU Qiaoling, and Reyihan Awutitashi. A New Cultivar of Elaeagnus moorcroftii‘Yafeng’in Xinjiang [J]. Acta Horticulturae Sinica, 2022, 49(S2): 69-70. |
[10] | ZHAO Xia, LI Gang, LIU Lifeng, SONG Yanhong, and ZHOU Houcheng. A New Strawberry Cultivar‘Huashuo 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 81-82. |
[11] | LI Zhengli, ZHANG Li, and MA Licang. A New Capsicum frutescens Cultivar‘Huangla Chaotian’with Yellow Fruit [J]. Acta Horticulturae Sinica, 2022, 49(S2): 123-124. |
[12] | GAO Zhihong, NI Zhaojun, SHI Ting, HAN Jian, and ZHANG Zhen. A Novel Cultivar of Prunus mume‘Nannong Fengyu’for Ornamental Value and Fruit Production [J]. Acta Horticulturae Sinica, 2022, 49(S2): 259-260. |
[13] | LU Lu, LI Wenqing, WU Dan, WANG Zhen, LIU Li, WANG Lei, XIE Xiaoman, and ZHAO Yongjun, . A New Xanthoceras sorbifolium Cultivar‘Xiaozhenzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 275-276. |
[14] | QIN Gaihua, LIU Chunyan, LI Jiyu, and XU Yiliu, . A New Pomegranate Cultivar‘Suzi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 39-40. |
[15] | WANG Yan, LIU Zhenshan, ZHANG Jing, YANG Pengfei, MA Lan, WANG Zhiyi, TU Hongxia, YANG Shaofeng, WANG Hao, CHEN Tao, WANG Xiaorong. Inheritance Trend of Flower and Fruit Traits in F1 Progenies of Chinese Cherry [J]. Acta Horticulturae Sinica, 2022, 49(9): 1853-1865. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd