Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (3): 518-530.doi: 10.16420/j.issn.0513-353x.2020-0432
• Research Papers • Previous Articles Next Articles
ZENG Zexiang1, XIAO Xianmei1, TAN Xiaoli1, FAN Zhongqi2,*(), CHEN Jianye1,*(
)
Received:
2020-07-17
Online:
2021-03-25
Published:
2021-04-02
Contact:
FAN Zhongqi,CHEN Jianye
E-mail:ffanzqi@163.com;chenjianye@scau.edu.cn
CLC Number:
ZENG Zexiang, XIAO Xianmei, TAN Xiaoli, FAN Zhongqi, CHEN Jianye. Characteristics of the Transcription Factor BrWRKY57 and Its Regulation on BrPPH1 and BrNCED3[J]. Acta Horticulturae Sinica, 2021, 48(3): 518-530.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0432
引物用途 Primer assay | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence | 限制性内切酶 Enzyme |
---|---|---|---|
全长扩增Full- length amplification | BrWRKY57 | F:ATGAACGATCCTAAAGATCCCGAT; R:TCAAGGATTGCGCATGGTTTGAG | |
实时荧光定量PCR Real-time quantitative PCR | BrAct1 BrWRKY57 BrPPH BrNCED3 | F:CGCTTAACCCGAAAGCTAAC;R:TACGCCCACTAGCGTAAAG F:ACGGAGGAGAAGAAGAAGGC;R:ACTCTCTTCTTCACCGTGCA F:ATCGAGTATGGGCGGTTGAT;R:CCTGCAATGTACACTGGCTC F:GTCCTCTGCGAGATTCGGCT;R:GGAGACTTTAGGCCACGGCT | |
亚细胞定位 Subcellular localization | BrWRKY57 | F:ATCTAGAGCAGTCGACGGTACCATGAACGATCCTAAAGATCCCGAT R:CTCCTCGCCCTTGCTCACCATAGGATTGCGCATGGTTTGAGGTAC | KpnⅠ BamHⅠ |
酵母体内转录活性分析Transcriptional activity in yeast cells | BrWRKY57-pGBKT7 | F:CATGGAGGCCGAATTCATGAACGATCCTAAAGATCCCGAT R:GCCGCTGCAGGTCGACGTCAAGGATTGCGCATGGTTTGAG | EcoR Ⅰ SalⅠ |
双荧光素酶瞬时表达 Dual-luciferase transient expression assay | 62SK-BD-BrWRKY57 62SK-BrWRKY57 0800-BrPPH1 pro 0800-BrNCED3 pro | F:CGCCGTCTAGAACTAGTGGATCCATGAACGATCCTAAAGATCCCGAT R:TCGATAAGCTTGATATCGAATTCTCAAGGATTGCGCATGGTTTGAG F:GGCCGCTCTAGAACTAGTGGATCCATGAACGATCCTAAAGATCCCGAT R:ATCGATAAGCTTGATATCGAATTCTCAAGGATTGCGCATGGTTTGAGG F:TATAGGGCGAATTGGGTACCCTTTAGAGCATACTGAGGCTG R:TTGGCGTCTTCCATGGTACACAAATCAATCCTGTAAGGAAC F:TATAGGGCGAATTGGGTACCCTTAGAGACCAAGTCATATGATGTA R:TTGGCGTCTTCCATGGTTTAAATATGATTAGTCAGTATTGGTGC | BamHⅠ EcoRⅠ BamHⅠ EcoRⅠ KpnⅠ NcoⅠ KpnⅠ NcoⅠ |
Table 1 Primer sequences
引物用途 Primer assay | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence | 限制性内切酶 Enzyme |
---|---|---|---|
全长扩增Full- length amplification | BrWRKY57 | F:ATGAACGATCCTAAAGATCCCGAT; R:TCAAGGATTGCGCATGGTTTGAG | |
实时荧光定量PCR Real-time quantitative PCR | BrAct1 BrWRKY57 BrPPH BrNCED3 | F:CGCTTAACCCGAAAGCTAAC;R:TACGCCCACTAGCGTAAAG F:ACGGAGGAGAAGAAGAAGGC;R:ACTCTCTTCTTCACCGTGCA F:ATCGAGTATGGGCGGTTGAT;R:CCTGCAATGTACACTGGCTC F:GTCCTCTGCGAGATTCGGCT;R:GGAGACTTTAGGCCACGGCT | |
亚细胞定位 Subcellular localization | BrWRKY57 | F:ATCTAGAGCAGTCGACGGTACCATGAACGATCCTAAAGATCCCGAT R:CTCCTCGCCCTTGCTCACCATAGGATTGCGCATGGTTTGAGGTAC | KpnⅠ BamHⅠ |
酵母体内转录活性分析Transcriptional activity in yeast cells | BrWRKY57-pGBKT7 | F:CATGGAGGCCGAATTCATGAACGATCCTAAAGATCCCGAT R:GCCGCTGCAGGTCGACGTCAAGGATTGCGCATGGTTTGAG | EcoR Ⅰ SalⅠ |
双荧光素酶瞬时表达 Dual-luciferase transient expression assay | 62SK-BD-BrWRKY57 62SK-BrWRKY57 0800-BrPPH1 pro 0800-BrNCED3 pro | F:CGCCGTCTAGAACTAGTGGATCCATGAACGATCCTAAAGATCCCGAT R:TCGATAAGCTTGATATCGAATTCTCAAGGATTGCGCATGGTTTGAG F:GGCCGCTCTAGAACTAGTGGATCCATGAACGATCCTAAAGATCCCGAT R:ATCGATAAGCTTGATATCGAATTCTCAAGGATTGCGCATGGTTTGAGG F:TATAGGGCGAATTGGGTACCCTTTAGAGCATACTGAGGCTG R:TTGGCGTCTTCCATGGTACACAAATCAATCCTGTAAGGAAC F:TATAGGGCGAATTGGGTACCCTTAGAGACCAAGTCATATGATGTA R:TTGGCGTCTTCCATGGTTTAAATATGATTAGTCAGTATTGGTGC | BamHⅠ EcoRⅠ BamHⅠ EcoRⅠ KpnⅠ NcoⅠ KpnⅠ NcoⅠ |
[1] |
Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, Yoshioka H. 2015. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell, 27 (9):2645-2663.
doi: 10.1105/tpc.15.00213 URL |
[2] |
Bakshi M, Oelmuller R. 2014. WRKY transcription factors:Jack of many trades in plants. Plant Signaling and Behavior, 9 (2):e27700.
doi: 10.4161/psb.27700 URL |
[3] | Banerjee A, Roychoudhury A. 2015. WRKY proteins:signaling and regulation of expression during abiotic stress responses. Scientific World Journal,807560. |
[4] |
Birkenbihl R P, Liu S, Somssich I E. 2017. Transcriptional events defining plant immune responses. Current Opinion in Plant Biology, 38:1-9.
doi: S1369-5266(17)30009-2 pmid: 28458046 |
[5] |
Chen J Y, Zhu X Y, Ren J, Qiu K, Li Z P, Xie Z K, Gao J, Zhou X, Kuai B K. 2017. Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis. Plant Physiology, 173 (3):1881-1891.
doi: 10.1104/pp.16.01457 URL |
[6] | Chu Mengyuan, Yu Yanchong. 2019. The research progress of factors affecting plant leaf senescence. Chinese Bulletin of Life Sciences, 31 (2):178-184. (in Chinese) |
初梦圆, 于延冲. 2019. 影响植物叶片衰老因素的研究进展. 生命科学, 31 (2):178-184. | |
[7] | Ding Huaqiao, Mao Lihui, Hu Wei, Dong Qing, Liu Jianxin. 2020. Cloning and bioinformatics analysis of chlorophyll degrading gene PPH from Curcuma alismatifolia. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20200513.1712.006.html. (in Chinese) |
丁华侨, 毛俐慧, 胡伟, 董青, 刘建新. 2020. 姜荷花叶绿素降解酶基因PPH的克隆与生物信息学分析. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20200513.1712.006.html. | |
[8] | Fan Z Q, Tan X L, Shan W, Kuang J F, Chen Y J. 2017. BrWRKY65,a WRKY transcription factor, is involved in regulating three leaf senescence-associated genes in Chinese flowering cabbage. International Journal of Molecular Sciences, 18 (6);E1228. |
[9] |
Fan Z Q, Tan X L, Shan W, Kuang J F, Lu W J, Chen J Y. 2018. Characterization of a transcriptional regulator,BrWRKY6,associated with gibberellin-suppressed leaf senescence of Chinese flowering cabbage. Journal of Agricultural and Food Chemistry, 66 (8):1791-1799.
doi: 10.1021/acs.jafc.7b06085 URL |
[10] |
Feng B H, Han Y C, Xiao Y Y, Kuang J F, Fan Z Q, Chen J Y, Lu W J. 2016. The banana fruit Dof transcription factor MaDof 23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes. Journal of Experimental Botany, 67 (8):2263-2275.
doi: 10.1093/jxb/erw032 URL |
[11] |
Han M, Kim C Y, Lee J, Lee S K, Jeon J S. 2014. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Molecules and Cells, 37 (7):532-539.
doi: 10.14348/molcells.2014.0128 URL |
[12] |
Hellens R, AllanA C, Friel E N, Bolitho K, Grafton K, Templeton M D, Karunairetnam S, Gleave A P, Laing W A. 2005. Transient expression vectors for functional genomics,quantification of promoter activity and RNA silencing in plants. Plant Methods, 1:13.
pmid: 16359558 |
[13] |
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. 2010. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant Journal, 27 (4):325-333.
doi: 10.1046/j.1365-313x.2001.01096.x URL |
[14] | Jiang Xiaoyang, Zhang Zhaoqi, Yang Xian, Huang Xuemei. 2011. Research progress of postharvest physiology and storage and transport technologies. Storage and Process, 11 (1):47-50. (in Chinese) |
姜晓阳, 张昭其, 杨暹, 黄雪梅. 2011. 菜心采后生理及贮运保鲜技术研究进展. 保鲜与加工, 11 (1):47-50. | |
[15] |
Jiang Y J, Liang G, Yang S Z, Yu D Q. 2014. Arabidopsis WRKY 57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell, 26 (1):230-245.
doi: 10.1105/tpc.113.117838 URL |
[16] |
Jiang Y J, Liang G, Yu D Q. 2012. Activated expression of WRKY 57 confers drought tolerance in Arabidopsis. Molecular Plant, 5 (6):1375-1388.
doi: 10.1093/mp/sss080 URL |
[17] |
Jibran R A, Hunter D P, Dijkwel P. 2013. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82 (6):547-561.
doi: 10.1007/s11103-013-0043-2 URL |
[18] |
Kusaba M, Tanka A, Tanka R. 2013. Stay-green plants:what do they tell us about the molecular mechanism of leaf senescence. Photosynthesis Research, 117 (1-3):221-234.
doi: 10.1007/s11120-013-9945-8 URL |
[19] |
Li Weixing, Wang Lu, He Zhichong, Lu Zhaogeng, Cui Jiawen, Xu Ningtao, Jin Biao, Wang Li. 2020. Physiological and transcriptomic changes during autumn coloration and senescence in Ginkgo biloba leaves. Horticultural Plant Journal, 6 (6):396-408.
doi: 10.1016/j.hpj.2020.11.002 URL |
[20] |
Li Z H, Peng J Y, Wen X, Guo H W. 2012. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. Journal of Integrative Plant Biology, 54 (8):526-539.
doi: 10.1111/jipb.2012.54.issue-8 URL |
[21] | Luo D L, Ba L J, Shan W, Kuang J F, Lu W J, Chen J Y. 2017. Involvement of WRKY transcription factors in abscisic-acid-induced cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry, 6 (18):3627-3635. |
[22] | Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo J, Xi D, Chen X, Ming F. 2017. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiology, 74 (3):1747-1763. |
[23] |
Miao Y, Zentgraf U. 2010. A HECT E 3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant Journal, 63 (2):179-188.
doi: 10.1111/j.1365-313X.2010.04233.x URL |
[24] |
Ren T, Wang J, Zhao M, Gong X, Wang S, Wang G. 2018. Involvement of NAC transcription factor SiNAC 1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. Planta, 247 (1):53-68.
doi: 10.1007/s00425-017-2770-0 URL |
[25] |
Robatzek S, Somssich I E. 2002. Targets of AtWRKY 6 regulation during plant senescence and pathogen defense. Genes and Development, 16 (9):1139-1149.
doi: 10.1101/gad.222702 URL |
[26] | Song Kanghua, Jia Zhiwei, Chang Jinmei, Sun Manli, Zhang Lubin. 2019. Lignification induced by ethephon and related gene expression in postharvest flowering Chinese cabbage at low temperature. Acta Horticulturae Sinica, 46 (4):775-783. (in Chinese) |
宋康华, 贾志伟, 常金梅, 孙曼丽, 张鲁斌. 2019. 低温下乙烯对采后菜薹木质化及相关基因表达的影响. 园艺学报, 46 (4):168-176. | |
[27] | Tan X L, Fan Z Q, Kuang J F, Lu W J, Reiter R J, Lakshmanan P, Su X G, Zhou J, Chen J Y, Shan W. 2019. Melatonin delays leaf senescence of chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation. Journal of Pineal Research, 67:e12570. |
[28] |
Tan X L, Fan Z Q, Li L L, Wu Y, Kuang J J, Lu W J, Chen J Y. 2016. Molecular characterization of a leaf senescence-related transcription factor BrWRKY 75 of chinese flowering cabbage. Horticultural Plant Journal, 2 (5):272-278.
doi: 10.1016/j.hpj.2017.01.003 URL |
[29] | Tan Xiaoli, Fan Zhongqi, Li Lulu, Wu Ya, Kuang Jianfei, Lu Wangjin, Chen Jianye. 2016. Molecular characterization of a transcription factor BrWRKY 75 related to leaf senescence of Chinese flowering cabbage. Acta Horticulturae Sinica, 43 (6):1089-1098. (in Chinese) |
谭小丽, 范中奇, 李露露, 吴亚, 邝健飞, 陆旺金, 陈建业. 2016. 菜薹叶片衰老相关转录因子BrWRKY75的特性分析. 园艺学报, 43 (6):1089-1098. | |
[30] |
Wei W, Cheng M N, Ba L J, Zeng R X, Luo D L, Qin Y H, Liu Z L, Kuang J F, Lu W J, Chen Y Y, Su X G, Shan W. 2019. Pitaya HpWRKY 3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1. International Journal of Molecular Sciences, 20 (8):1890.
doi: 10.3390/ijms20081890 URL |
[31] | Yue Maolan, Jiang Leiyu, Liu Yi, Li Yue, Liu Yongqiang, Chen Qing, Lin Yuanxiu, Tang Haoru. 2019. Cloning,subcellular location and expression analysis of FaWRKY31 in Fragaria × ananassa. Acta Horticulturae Sinica, 46 (10):84-96. (in Chinese) |
岳茂兰, 江雷雨, 刘怡, 李栎, 刘勇强, 陈清, 林源秀, 汤浩茹. 2019. 草莓 FaWRKY31的克隆,亚细胞定位及表达特性分析. 园艺学报, 46 (10):84-96. | |
[32] | Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K. 2016. BA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America, 113 (7):1949-1954. |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | REN Hailong, XU Donglin, ZHANG Jing, ZOU Jiwen, LI Guangguang, ZHOU Xianyu, XIAO Wanyu, and SUN Yijia. Establishment of SNP Fingerprinting and Identification of Chinese Flowering Cabbage Varieties Based on KASP Genotyping [J]. Acta Horticulturae Sinica, 2023, 50(2): 307-318. |
[3] | WANG Yan, SUN Zheng, FENG Shan, YUAN Xinyi, ZHONG Linlin, ZENG Yunliu, FU Xiaopeng, CHENG Yunjiang, Bao Manzhu, ZHANG Fan. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation [J]. Acta Horticulturae Sinica, 2022, 49(6): 1313-1326. |
[4] | LI Junzhang, QIN Yuan, XIAO Qiang, AN Chang, LIAO Jingyi, ZHENG Ping. Recent Advances in Molecular Biology of Crassulacean Acid Metabolism Plants and the Application Potential of CAM Engineering [J]. Acta Horticulturae Sinica, 2022, 49(12): 2597-2610. |
[5] | XU Tong, SHAO Lingmei, WANG Xiaobin, ZHANG Runlong, ZHANG Kaijing, XIA Yiping, ZHANG Jiaping, LI Danqing. Research Progress on Winter Dormancy of Perennial Monocots [J]. Acta Horticulturae Sinica, 2022, 49(12): 2703-2721. |
[6] | YU Jianqiang, GU Kaidi, WANG Chuanzeng, HU Dagang. Functional Characterization of An Apple Pyrophosphate-dependent Phosphofructokinase Gene MdPFPβ in Regulating Soluble Sugar Accumulation [J]. Acta Horticulturae Sinica, 2022, 49(10): 2223-2235. |
[7] | YANG Bo, WEI Jia, LI Kunfeng, WANG Chengliang, NI Junbei, TENG Yuanwen, and BAI Songling. PpyERF060-PpyABF3-PpyMADS71 Regulates Ethylene Signaling Pathway- Mediated Pear Bud Dormancy Process [J]. Acta Horticulturae Sinica, 2022, 49(10): 2249-2262. |
[8] | LI Guihua, FU Mei, LUO Wenlong, LUO Shanwei, and GUO Juxian. A New Chinese Flowering Cabbage Cultivar‘Yuetai 1’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2833-2834. |
[9] | YANG Weihai, ZENG Lizhen, XIAO Qiusheng, SHI Shengyou. Changes of Fruit Abscission and Carbohydrate,ABA and Related Genes Expression in the Pericarp and Fruit Abscission Zone of Longan Under Starvation Stress [J]. Acta Horticulturae Sinica, 2021, 48(8): 1457-1469. |
[10] | LI Chonghui, YANG Guangsui, ZHANG Zhiqun, YIN Junmei. A Novel R2R3-MYB Transcription Factor Gene AaMYB6 Involved in Anthocyanin Biosynthesis in Anthurium andraeanum [J]. Acta Horticulturae Sinica, 2021, 48(10): 1859-1872. |
[11] | LI Yuzhuo, LIU Ke, YUAN Lu, CAO Liwen, WANG Tingjin, GAN Susheng, CHEN Liping. Cloning and Functional Analyses of BrNAP in Postharvest Leaf Senescence in Chinese Flowering Cabbage [J]. Acta Horticulturae Sinica, 2021, 48(1): 60-72. |
[12] | DAI Wenshan1,2,WANG Min1,2,and LIU Jihong1,*. Enhanced Dehydration Tolerance in Lemon by Overexpression of CrNCED1(9-cis-epoxycarotenoid dioxygenase gene)from Citrus reshni [J]. ACTA HORTICULTURAE SINICA, 2020, 47(3): 551-561. |
[13] | WANG Jiahui,YU Jianqiang,ZHANG Quanyan,HAN Pengliang,YOU Chunxiang,HU Dagang*,and HAO Yujin. Analysis of Abscisic Acid Sensitivity of Apple Ethylene Response Factor MdERF11 Gene [J]. ACTA HORTICULTURAE SINICA, 2020, 47(1): 1-10. |
[14] | WANG Junwei,HUANG Ke,HUANG Yingjuan,MAO Shuxiang,BAI Aimei,LIU Mingyue,and WU Qiuyun*. The Research Progress of Transcription Factors Regulating Glucosinolates Biosynthesis in Cruciferous Vegetables [J]. ACTA HORTICULTURAE SINICA, 2019, 46(9): 1752-1764. |
[15] | FANG Hua,WANG Chunlei,LIAO Weibiao*,ZHANG Jing,HUO Jianqiang,HUANG Dengjing,NIU Lijuan,and WANG Bo. NO is Involved in ABA-regulated Senescence of Cut Roses by Maintaining Water Content and Increasing Antioxidant Enzyme Activities [J]. ACTA HORTICULTURAE SINICA, 2019, 46(5): 901-909. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd