Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (2): 336-346.doi: 10.16420/j.issn.0513-353x.2020-0151
• Research Notes • Previous Articles Next Articles
YU Lei1, ZHOU Ya1, ZONG Yu1,2, ZHANG Ying1, QIU Jiaqi1, LI Yongqiang1,2, YANG Li1,2,*(), GUO Weidong1,2,*()
Received:
2020-05-08
Revised:
2020-08-25
Online:
2021-02-25
Published:
2021-03-09
Contact:
YANG Li,GUO Weidong
E-mail:yangli@zjnu.edu.cn;gwd@zjnu.cn
CLC Number:
YU Lei, ZHOU Ya, ZONG Yu, ZHANG Ying, QIU Jiaqi, LI Yongqiang, YANG Li, GUO Weidong. Characteristic and Relative Expression Pattern Analysis of FWL/PLAC8 Family in Blueberry[J]. Acta Horticulturae Sinica, 2021, 48(2): 336-346.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0151
引物名称 Primer name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer | 扩增长度/bp Predicted length |
---|---|---|---|
A subfamily | TCAGACATCCTTCCCACTAACC | CCGTCGCAGGAGACGTAG | 138 |
B subfamily | CCAGGGTTTCGCTCTCCTTCC | AGCTCCCTTGGCCTGCGG | 186 |
C subfamily | TCTGCGAAAGGTCTGGAGAT | CATGGCAACCAACATTTCAG | 285 |
VcGAPDH | CGGCTACTTACGAGCAAATCAA | TTCAGTGTAGCCCAAAATTCCTTT | 80 |
Table 1 The primer sequences for qPCR analysis
引物名称 Primer name | 上游引物(5′-3′) Forward primer | 下游引物(5′-3′) Reverse primer | 扩增长度/bp Predicted length |
---|---|---|---|
A subfamily | TCAGACATCCTTCCCACTAACC | CCGTCGCAGGAGACGTAG | 138 |
B subfamily | CCAGGGTTTCGCTCTCCTTCC | AGCTCCCTTGGCCTGCGG | 186 |
C subfamily | TCTGCGAAAGGTCTGGAGAT | CATGGCAACCAACATTTCAG | 285 |
VcGAPDH | CGGCTACTTACGAGCAAATCAA | TTCAGTGTAGCCCAAAATTCCTTT | 80 |
Fig. 2 Growth curves of single flower/fruit mass,horizontal and vertical diameters during Vaccinium corymbosum ‘O’Neal’and‘Bluerain’flower bud and fruit development ** P < 0.01.
品种 Cultivar | 百粒种子质量/g Weight / 100 seeds | 单果种子数 Seed number | 单果种子质量/g Seed weight pre fruit | 心室数比例/% Locule number | |||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | ||||
奥尼尔O’Neal | 0.04 ± 0.00 | 83.00 ± 4.06** | 0.036 ± 0.007** | 57.39 | 21.09 | 16.52 | |
蓝雨Bluerain | 0.04 ± 0.00 | 30.42 ± 8.31 | 0.012 ± 0.004 | 1.64 | 98.36 |
Table 2 Conventionally physicochemical indexes and locule number of Vaccinium corymbosum‘O’Neal’and‘Bluerain’mature fruit
品种 Cultivar | 百粒种子质量/g Weight / 100 seeds | 单果种子数 Seed number | 单果种子质量/g Seed weight pre fruit | 心室数比例/% Locule number | |||
---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | ||||
奥尼尔O’Neal | 0.04 ± 0.00 | 83.00 ± 4.06** | 0.036 ± 0.007** | 57.39 | 21.09 | 16.52 | |
蓝雨Bluerain | 0.04 ± 0.00 | 30.42 ± 8.31 | 0.012 ± 0.004 | 1.64 | 98.36 |
基因名称 Gene name | 染色体位置 Chromosome location | CDS/bp | 外显子数 Exon number | 大小/aa Size | 分子量/kD Molecular weight | 等电点 pI |
---|---|---|---|---|---|---|
gene-169.8 | VaccDscaff5:16978476..16983996- | 561 | 3 | 186 | 20.39 | 5.60 |
gene-244.19 | VaccDscaff8:24434249..24439769+ | 693 | 2 | 230 | 25.72 | 4.92 |
gene-228.26 | VaccDscaff10:22828768..22834442+ | 672 | 4 | 223 | 24.22 | 5.35 |
gene-180.23 | VaccDscaff1:18011712..18017230- | 777 | 3 | 258 | 27.84 | 8.12 |
gene-48.40 | VaccDscaff27:4876429..4880014+ | 741 | 3 | 246 | 26.38 | 5.40 |
gene-85.17 | VaccDscaff17:8569670..8572170+ | 657 | 2 | 218 | 23.42 | 8.54 |
gene-85.18 | VaccDscaff17:8572400..8573369+ | 396 | 2 | 131 | 14.60 | 6.27 |
gene-305.30 | VaccDscaff34:30578948..30582561- | 738 | 3 | 246 | 26.40 | 5.37 |
gene-296.30 | VaccDscaff29:29591240..29601268- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-308.41 | VaccDscaff26:30828379..30838346- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-316.28 | VaccDscaff21:31596223..31606319- | 603 | 3 | 200 | 21.30 | 4.76 |
VcFW2.2 | v.corymbosum_GDV_reftransV1_0004680 | 732 | / | 243 | 26.32 | 5.97 |
Table 3 Physical and chemical characteristics of VcFWL/PLAC8 family in Vaccinium corymbosum
基因名称 Gene name | 染色体位置 Chromosome location | CDS/bp | 外显子数 Exon number | 大小/aa Size | 分子量/kD Molecular weight | 等电点 pI |
---|---|---|---|---|---|---|
gene-169.8 | VaccDscaff5:16978476..16983996- | 561 | 3 | 186 | 20.39 | 5.60 |
gene-244.19 | VaccDscaff8:24434249..24439769+ | 693 | 2 | 230 | 25.72 | 4.92 |
gene-228.26 | VaccDscaff10:22828768..22834442+ | 672 | 4 | 223 | 24.22 | 5.35 |
gene-180.23 | VaccDscaff1:18011712..18017230- | 777 | 3 | 258 | 27.84 | 8.12 |
gene-48.40 | VaccDscaff27:4876429..4880014+ | 741 | 3 | 246 | 26.38 | 5.40 |
gene-85.17 | VaccDscaff17:8569670..8572170+ | 657 | 2 | 218 | 23.42 | 8.54 |
gene-85.18 | VaccDscaff17:8572400..8573369+ | 396 | 2 | 131 | 14.60 | 6.27 |
gene-305.30 | VaccDscaff34:30578948..30582561- | 738 | 3 | 246 | 26.40 | 5.37 |
gene-296.30 | VaccDscaff29:29591240..29601268- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-308.41 | VaccDscaff26:30828379..30838346- | 603 | 3 | 200 | 21.34 | 4.76 |
gene-316.28 | VaccDscaff21:31596223..31606319- | 603 | 3 | 200 | 21.30 | 4.76 |
VcFW2.2 | v.corymbosum_GDV_reftransV1_0004680 | 732 | / | 243 | 26.32 | 5.97 |
Fig. 5 Relative expression levels of VcFWL/PLAC8 subfamilies during Vaccinium corymbosum ‘O’Neal’and‘Bluerain’flower bud and fruit development * P < 0.05;** P < 0.01.
[1] | Alpert K B, Tanksley S D. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America, 93:5503-15507. |
[2] |
Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. 2009. MEME SUITE:tools for motif discovery and searching. Nucleic Acids Research, 37(Supplement 2):W202-W208.
doi: 10.1093/nar/gkp335 URL |
[3] |
Bertin N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division,cell expansion and DNA endoreduplication. Annals of Botany, 95:439-447.
doi: 10.1093/aob/mci042 URL |
[4] |
Busov V B, Brunner A M, Strauss S H. 2008. Genes for control of plant stature and form. New Phytologist, 177:589-607.
doi: 10.1111/nph.2008.177.issue-3 URL |
[5] |
Cabreira-Cagliari C, Dias N D, Bohn B, Fagundes D G D, Margis-Pinheiro M, Bodanese-Zanettini M H, Cagliari A. 2018. Revising the PLAC8 gene family:from a central role in differentiation,proliferation,and apoptosis in mammals to a multifunctional role in plants. Genome, 61:857-865.
doi: 10.1139/gen-2018-0035 pmid: 30427722 |
[6] | Chen Man-man. 2019. Comparative analysis of anatomy and cell-cy.le related genes of southern highbush Vaccinium corymbosum[M. D. Dissertation]. Jinhua:Zhejiang Normal University. (in Chinese) |
陈曼曼. 2019. 南高丛蓝莓果实发育细胞学规律及相关基因的分离与表达分析[硕士论文]. 金华:浙江师范大学. | |
[7] |
Dernisky A K, Evans R C, Liburd O E, Mackenzie K. 2005. Characterization of early floral damage by cranberry tipworm(Dasineura oxycoccana Johnson)as a precursor to reduced fruit set in rabbiteye blueberry(Vaccinium ashei Reade). International Journal of Pest Management, 51:143-148.
doi: 10.1080/09670870500130980 URL |
[8] |
Die J V, Rowland L J. 2013. Advent of genomics in blueberry. Molecular Breeding, 32:493-504.
doi: 10.1007/s11032-013-9893-1 URL |
[9] |
Doebley J F, Gaut B S, Smith B D. 2006. The molecular genetics of crop domestication. Cell, 127:1309-1321.
pmid: 17190597 |
[10] |
Frary A, Nesbitt T C, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. 2000. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science, 289:85-88.
doi: 10.1126/science.289.5476.85 URL |
[11] |
Gonzalez N, Beemster G T, Inze D. 2009. David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Current Opinion in Plant Biology, 12:157-164.
doi: 10.1016/j.pbi.2008.11.003 URL |
[12] |
Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, van Daele T, De Milde L, Weigel D, Kamiya Y, Stitt M, Beemster G T S, Inze D. 2010. Increased leaf size:different means to an end. Plant Physiology, 153 : 1261-1279.
doi: 10.1104/pp.110.156018 URL |
[13] |
Grandillo S, Ku H M, Tanksley S D. 1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99:978-987.
doi: 10.1007/s001220051405 URL |
[14] |
Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, Duncan K E, Howard R J, Hou Z, Simmons C R. 2010. Cell Number Regulator1 affects plant and organ size in maize:implications for crop yield enhancement and heterosis. The Plant Cell, 22:1057-1073.
doi: 10.1105/tpc.109.073676 URL |
[15] |
Guo M, Simmons C R. 2011. Cell number counts-The fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Science, 181:1-7.
doi: 10.1016/j.plantsci.2011.03.010 URL |
[16] | He Chao-ying, Wang Li, Yan Li-xin, Li Qiao-ru, Yong Bin, Zhu Wei-wei. 2019. Evolutionary developmental mechanisms underlying the origin and diversification of the fruits. Scientia Sinica(Vitae), 49(4):301-319. (in Chinese) |
贺超英, 王丽, 严立新, 李巧茹, 雍斌, 朱韦韦. 2019. 果实起源与多样化的进化发育机制. 中国科学:生命科学, 49(4):301-319. | |
[17] |
Hussain Q, Shi J Q, Scheben A, Zhan J P, Wang X F, Liu G H, Yan G J, King G J, Edwards D, Wang H Z. 2020. Genetic and signaling pathways of dry fruit size: targets for genome editing based crop improvement. Plant Biotechnology Journal, 18(5) : 1124-1140.
doi: 10.1111/pbi.13318 pmid: 31850661 |
[18] |
Janssen B J, Thodey K, Schaffer R J, Alba R, Balakrishnan L, Bishop R, Bowen J H, Crowhurst R N, Gleave A P, Ledger S, McArtney S, Pichler F B. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology, 8:16.
doi: 10.1186/1471-2229-8-16 pmid: 18279528 |
[19] | Letunic L, Bork P. 2019. Interactive tree of life(iTOL)v4:recent updates and new developments. Nucleic Acids Research, 47(1):256-259. |
[20] |
Li X B, Jin L, Pan X H, Yang L, Guo W D. 2019. Proteins expression and metabolite profile insight into phenolic biosynthesis during highbush blueberry fruit maturation. Food Chemistry, 290:216-228.
doi: 10.1016/j.foodchem.2019.03.115 URL |
[21] | Li Ya-dong, Pei Jia-bo, Sun Hai-yue. 2018. Status and prospect of global blueberry industry. Journal of Jilin Agricultural University, 40(4):421-432. (in Chinese) |
李亚东, 裴嘉博, 孙海悦. 2018. 全球蓝莓产业发展现状及展望. 吉林农业大学学报, 40(4):421-432. | |
[22] | Libault M, Stacey G. 2010. Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes. Plant Signaling & Behavior, 5(10):1226-1228. |
[23] |
Libault M, Zhang X C, Govindarajulu M, Qiu J, Ong Y T, Brechenmacher L, Berg R H, Hurley-Sommer A, Taylor C G, Stacey G. 2010. A member of the highly conserved FWL(tomato FW2.2-like)gene family is essential for soybean nodule organogenesis. The Plant Journal, 62:852-864.
doi: 10.1111/j.1365-313X.2010.04201.x pmid: 20230508 |
[24] |
Lin Y, Wang Y H, Li B, Tan H, Li D N, Li L, Liu X, Han J C, Meng X J. 2018. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. Plant Physiology and Biochemistry, 127:561-572.
doi: 10.1016/j.plaphy.2018.04.034 URL |
[25] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4):402-408.
pmid: 11846609 |
[26] |
Monforte A J, Diaz A I, Caño-Delgado A, van der Knaap E. 2014. The genetic basis of fruit morphology in horticultural crops:lessons from tomato and melon. Journal of Experimental Botany, 65(16):4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021 |
[27] |
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. 2020. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theoretical and Applied Genetics, 133(1):1-21.
doi: 10.1007/s00122-019-03481-3 URL |
[28] |
Renaudin J P, Deluche C, Cheniclet C, Chevalier C, Frangne N. 2017. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. Journal of Experimental Botany, 68:1613-1623.
doi: 10.1093/jxb/erx058 URL |
[29] |
Rowland L J, Alkharouf N, Darwish O, Ogden E L, Polashock J J, Bassil N V, Main D. 2012. Generation and analysis of blueberry transcriptome sequences from leaves,developing fruit,and flower buds from cold acclimation through deacclimation. BMC Plant Biology, 12:46.
doi: 10.1186/1471-2229-12-46 pmid: 22471859 |
[30] |
Song W Y, Martinoia E, Lee J, Kim D, Kim D Y, Vogt E, Shim D, Choi K S, Hwang I, Lee Y. 2004. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiology, 135(2):1027-1039.
doi: 10.1104/pp.103.037739 URL |
[31] |
Su W B, ZhuY M, Zhang L, Yang X H, Gao Y S, Lin S Q. 2017. The cellular physiology of loquat(Eriobotrya japonica Lindl.)fruit with a focus on how cell division and cell expansion processes contribute to pome morphogenesis. Scientia Horticulturae, 224:142-149.
doi: 10.1016/j.scienta.2017.06.012 URL |
[32] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739.
doi: 10.1093/molbev/msr121 URL |
[33] |
Tanksley S D. 2004. The genetic,developmental,and molecular bases of fruit size and shape variation in tomato. The Plant Cell, 16:S181-S189.
doi: 10.1105/tpc.018119 URL |
[34] | Wang Yan. 2015. The roles of kinesins in exponential cell production and enlargement during early fruit development[Ph. D. Dissertation]. Beijing:Chinese Academy of Agricultural Science. (in Chinese) |
王燕. 2015. 黄瓜动蛋白参与果实发育早期细胞分裂和细胞膨大过程的研究[博士论文]. 北京:中国农业科学院. | |
[35] |
Xu J, Xiong W, Cao B, Yan T, Luo T, Fan T, Luo M. 2013a. Molecular characterization and functional analysis of“fruit-weight2.2-like”gene family in rice. Planta, 238:643-655.
doi: 10.1007/s00425-013-1916-y URL |
[36] | Xu Jing, Pan Yu-peng, Cheng Zhi-hui. 2020. Mechanism analysis of fruit size regulating genes CsSUN and CsLNG1 in cucumber. Acta Horticulturae Sinica, 47(1):53-62. (in Chinese) |
徐婧, 潘玉朋, 程智慧. 2020. 黄瓜CsSUN和CsLNG1调控果实大小的机理分析. 园艺学报, 47(1):53-62. | |
[37] |
Xu T F, Xiang J, Li F J, Li T M, Yu Y H, Wang Y J, Xu Y. 2013b. Screening proteins interacting with VpPR10.1 of Chinese wild grapevine using the yeast two-hybrid system. Acta Physiologiae Plantarum, 35:2355-2364.
doi: 10.1007/s11738-013-1269-y URL |
[38] |
Yang L, Cai K L, Huang H Y, Zhang Y H, Zong Y, Wang S, Shi J L, Li X P, Liao F L, Lu M, Guo W D. 2019. Comparative analysis of anatomy,gene expression of Vaccinium corymbosum cyclins and cyclin dependent kinases during the flower bud and fruit ontogeny. Scientia Horticulturae, 251:252-259.
doi: 10.1016/j.scienta.2019.03.028 |
[39] |
Yang L, Chen M M, Cai K L, Zhang L J, Zhu Y F, Ye Q, Lu M, Liao F L, Chen W R, Guo W D. 2018. VcFAS,VcSUN and VcOVATE orchestrated the fruit morphogenesis in southern highbush blueberry during the pre-anthesis and fruit development. Scientia Horticulturae, 240:109-115.
doi: 10.1016/j.scienta.2018.05.023 URL |
[40] | Yu Ke-da, Ye Mei-juan, Chen Wen-rong, Zhu Kai-li, Zhang Chang-jing, Guo Wei-dong. 2016. Methods for RNA isolation from blueberry tissues. Journal of Zhejiang Normal University(Natural Sciences), 39(1):66-70. (in Chinese) |
余柯达, 叶美娟, 陈文荣, 朱凯丽, 张常晶, 郭卫东. 2016. 蓝莓组织RNA提取方法的研究. 浙江师范大学学报(自然科学版), 39(1):66-70. | |
[41] |
Zifkin M, Jin A, Ozga J A, Zaharia L I, Schernthaner J P, Gesell A, Abrams S R, Kennedy J A, Constabel C P. 2012. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiology, 158:200-224.
doi: 10.1104/pp.111.180950 URL |
[1] | A New Rabbiteye Blueberry Cultivar‘Languan’. A New Rabbiteye Blueberry Cultivar‘Languan’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 43-44. |
[2] | QIN Gaihua, LIU Chunyan, LI Jiyu, and XU Yiliu, . A New Pomegranate Cultivar‘Suzi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 39-40. |
[3] | GAO Weilin, ZHANG Liman, XUE Chaoling, ZHANG Yao, LIU Mengjun, ZHAO Jin. Expression of E-type MADS-box Genes in Flower and Fruits and Protein Interaction Analysis in Chinese Jujube [J]. Acta Horticulturae Sinica, 2022, 49(4): 739-748. |
[4] | XU Guohui, AN Qi, ZHAO Lina, LIU Guoling, LOU Xin, and WANG Hexin, . A New Blueberry Cultivar‘Morning Snow’Suitable for Cluster Harvesting [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2795-2796. |
[5] | XU Guohui, AN Qi, LIU Guoling, ZHAO Lina, and WANG Hexin, . A New Blueberry Cultivar‘Chasing Dream’ [J]. Acta Horticulturae Sinica, 2021, 48(S2): 2797-2798. |
[6] | LIU Xingwang, ZHAI Xuling, ZHANG Yaqi, YIN Shuai, FENG Zhongxuan, and REN Huazhong, . A Review on Genetic and Molecular Biology of Fruit Morphogenesis in Cucumber [J]. Acta Horticulturae Sinica, 2020, 47(9): 1793-1809. |
[7] | QI Qige1,GE Lili1,ZHANG Qichang1,*,JIANG Weiqing2,and WU Banghua1. A New Blueberry Cultivar‘Beihua 1’ [J]. ACTA HORTICULTURAE SINICA, 2020, 47(6): 1217-1218. |
[8] | XU Jing,PAN Yupeng,and CHENG Zhihui*. Mechanism Analysis of Fruit Size Regulating Genes CsSUN and CsLNG1 in Cucumber [J]. ACTA HORTICULTURAE SINICA, 2020, 47(1): 53-62. |
[9] | LEI Lei2,WANG Hexin1,3,XU Guohui1,3,*,PENG Hengchen2,LIU Guoling3,ZHANG Mingjun2,4,and WEI Bingkang2,4. A New Blueberry Cultivar‘Senmao 2’ [J]. ACTA HORTICULTURAE SINICA, 2019, 46(S2): 2755-2756. |
[10] | PENG Hengchen2,WANG Hexin1,3,*,XU Guohui1,3,LEI Lei2,LIU Guoling3,YAN Dongling2,3,and ZHAO Lina4. A New Blueberry Cultivar‘Senmao 3’ [J]. ACTA HORTICULTURAE SINICA, 2019, 46(S2): 2757-2758. |
[11] | SONG Yang,LIU Hongdi,WANG Haibo,ZHANG Hongjun*,and LIU Fengzhi*. Molecular Cloning and Functional Characterization of Anthocyanin Synthesis Related Genes VcTTG1 of Blueberry [J]. ACTA HORTICULTURAE SINICA, 2019, 46(7): 1270-1278. |
[12] | FANG Qian,ZHANG Yuanyuan,YANG Yuting,HUANG Miaomiao,FU Qiaoli,ZHOU Huisha,CHEN Wenrong,ZONG Yu*,and GUO Weidong*. SSR Mining and Polymorphism Analysis in Leaf Transcriptome of Blueberry [J]. ACTA HORTICULTURAE SINICA, 2018, 45(7): 1359-1370. |
[13] | . Development of Retrotransposon-based Insertion Polymorphism Molecular Marker and Cultivar Identification of Blueberry [J]. ACTA HORTICULTURAE SINICA, 2018, 45(4): 753-763. |
[14] | LIAO Yajun*,ZHANG Qing*,and SHEN Yuanyue**. Methods Key to Annual Production of Fig Fruit in Greenhouse [J]. ACTA HORTICULTURAE SINICA, 2018, 45(12): 2437-2441. |
[15] | WANG Chunwei,WANG Yan*,ZHANG Xiqian,DONG Tian,WEN Zhihao,LIU Qianru,LI Tianli,WANG Yihui,WANG Saifeng,ZHANG Zuogang,WANG Jianming,and WANG Meiqin*. Isolation,Identification,Optimization of Fermentation Conditions and Biocontrol Effects of Antagonistic Bacterium Strain YJ15 [J]. ACTA HORTICULTURAE SINICA, 2018, 45(10): 1905-1916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd