Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (2): 300-312.doi: 10.16420/j.issn.0513-353x.2020-0346
• Research Papers • Previous Articles Next Articles
BAI Lu, ZHANG Zhiguo, ZHANG Shijie, HUANG Dongmei, QIN Qiaoping*()
Received:
2020-07-27
Revised:
2020-12-07
Online:
2021-02-25
Published:
2021-03-09
Contact:
QIN Qiaoping
E-mail:qinqp@sit.edu.cn
CLC Number:
BAI Lu, ZHANG Zhiguo, ZHANG Shijie, HUANG Dongmei, QIN Qiaoping. Isolation of Three Types of Invertase Genes from Hemerocallis fulva and Their Responses to Low Temperature and Osmotic Stress[J]. Acta Horticulturae Sinica, 2021, 48(2): 300-312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0346
用途 Application | 引物名称 Primer | 引物序列(5′-3′) Sequence |
---|---|---|
cDNA克隆 | HfVIN1-F1/R1 | ATGGTACCGGACCAATGGTA/CAAGTTGGGGAAGTGTAAGGTGT |
cDNA clone | HfCWIN1-F1/ R1 | ATGGCTGCTGGTTCATTGCT/TTAGCTAATTATCGCTTTTGCCA |
HfCIN3-F1/ R1 | ATGGGAGTTTGTGATTTATC/TCATACGATATATGTCTTCTTCA | |
qPCR | HfVIN1-F2/R2 | CTCCTCCTCCCTTCCGATTC/CGGGCTTCATTAGTGTTGGG |
HfCWIN1-F2/R2 | TGGTTCCGTGACCCTTCTAC/AAGTCCGGACATTCCCACAT | |
HfCIN3-F2/R2 | TGGCAACTACACAGCAATCG/AGGCCAAGAACCTCCATTGT | |
pBI221-GFP载体构建补英文。 Construction of PBI221-GFP vector | HfCIN3-F3/R3 | gaggatctcgagcggtctagaATGGGAGTTTGTGATTTATC/agcggccgctgtacaggtaccTACGATATATGTCTTCTTCA |
HfVIN1-F3/R3 | gaggatctcgagcggtctagaATGGGGTCACGTGACTTGGA/agcggccgctgtacaggtaccCAAGTTGGGGAAGTGTAAGG | |
HfCWIN1-F3/R3 | gaggatctcgagcggtctagaATGGCTGCTGGTTCATTGCT/agcggccgctgtacaggtaccGCTAATTATCGCTTTTGCCA | |
pC131-YFP载体构建 Construction of pC131-YFP vector | HfCWIN1-F4/R4 | gaggatctcgagcgggaattcATGGCTGCTGGTTCATTGCT/agcggccgctgtacaactagtGCTAATTATCGCTTTTGCCA |
qPCR内参补英文 qRT-PCR reference gene | HfUBQ-F/R | AACGTGAAGGCCAAGATAC/AGACGGAGCACCAGGTGGA |
Table 1 PCR primer sequences used in this study
用途 Application | 引物名称 Primer | 引物序列(5′-3′) Sequence |
---|---|---|
cDNA克隆 | HfVIN1-F1/R1 | ATGGTACCGGACCAATGGTA/CAAGTTGGGGAAGTGTAAGGTGT |
cDNA clone | HfCWIN1-F1/ R1 | ATGGCTGCTGGTTCATTGCT/TTAGCTAATTATCGCTTTTGCCA |
HfCIN3-F1/ R1 | ATGGGAGTTTGTGATTTATC/TCATACGATATATGTCTTCTTCA | |
qPCR | HfVIN1-F2/R2 | CTCCTCCTCCCTTCCGATTC/CGGGCTTCATTAGTGTTGGG |
HfCWIN1-F2/R2 | TGGTTCCGTGACCCTTCTAC/AAGTCCGGACATTCCCACAT | |
HfCIN3-F2/R2 | TGGCAACTACACAGCAATCG/AGGCCAAGAACCTCCATTGT | |
pBI221-GFP载体构建补英文。 Construction of PBI221-GFP vector | HfCIN3-F3/R3 | gaggatctcgagcggtctagaATGGGAGTTTGTGATTTATC/agcggccgctgtacaggtaccTACGATATATGTCTTCTTCA |
HfVIN1-F3/R3 | gaggatctcgagcggtctagaATGGGGTCACGTGACTTGGA/agcggccgctgtacaggtaccCAAGTTGGGGAAGTGTAAGG | |
HfCWIN1-F3/R3 | gaggatctcgagcggtctagaATGGCTGCTGGTTCATTGCT/agcggccgctgtacaggtaccGCTAATTATCGCTTTTGCCA | |
pC131-YFP载体构建 Construction of pC131-YFP vector | HfCWIN1-F4/R4 | gaggatctcgagcgggaattcATGGCTGCTGGTTCATTGCT/agcggccgctgtacaactagtGCTAATTATCGCTTTTGCCA |
qPCR内参补英文 qRT-PCR reference gene | HfUBQ-F/R | AACGTGAAGGCCAAGATAC/AGACGGAGCACCAGGTGGA |
理化性质 Characteristics | 分子量/kD Molecular weight | pI | 不稳定性指数 Instability index | 亲水性平均系数 Grand average of hydropathicity | 磷酸化位点Phosphoryla- tion sites | 糖基化位点Glycosylation site | |
---|---|---|---|---|---|---|---|
N-Glycosyl- ation | O-β-GlcNAc | ||||||
HfCIN3 | 74.840 | 6.35 | 46.98(不稳定Unstable) | -0.275 | 5 | - | √ |
HfCWIN1 | 63.496 | 5.38 | 38.66(稳定Stable) | -0.326 | 0 | √ | √ |
HfVIN1 | 71.340 | 5.33 | 37.42(稳定Stable) | -0.312 | 6 | √ | √ |
Table 2 Predicted physical and chemical characteristics of three types of invertase from daylily
理化性质 Characteristics | 分子量/kD Molecular weight | pI | 不稳定性指数 Instability index | 亲水性平均系数 Grand average of hydropathicity | 磷酸化位点Phosphoryla- tion sites | 糖基化位点Glycosylation site | |
---|---|---|---|---|---|---|---|
N-Glycosyl- ation | O-β-GlcNAc | ||||||
HfCIN3 | 74.840 | 6.35 | 46.98(不稳定Unstable) | -0.275 | 5 | - | √ |
HfCWIN1 | 63.496 | 5.38 | 38.66(稳定Stable) | -0.326 | 0 | √ | √ |
HfVIN1 | 71.340 | 5.33 | 37.42(稳定Stable) | -0.312 | 6 | √ | √ |
Fig. 2 Alignment of amino acid sequences encoded by three types of invertase from daylily A:Clustal alignment,domain prediction by TMHMM and NCBI;B:Motif Prediction by MEME. Glyco_hydro_100:Glycosyl hydrolases family 100;Glyco_hydro_32N:Glycosyl hydrolases family 32 N terminal domain; Glyco_hydro_32C:Glycosyl hydrolases family 32 C terminal domain.
Fig. 5 Expression of daylily invertase genes in different tissues and under low temperature or osmotic stress Different lowercase letters indicate significant differences among different treatments for the same gene(P < 0.05).
Fig. 6 Enzyme activities in different tissues and under low temperature or osmotic stress Different lowercase letters indicate significant differences among different treatments for the same enzyme(P < 0.05).
[1] |
Chen Y S, Chao Y C, Tseng T W, Huang C K, Lo P C, Lu C A. 2016. Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis. Plant Molecular Biology, 93(3):299-311.
doi: 10.1007/s11103-016-0562-8 URL |
[2] |
Dahro B, Wang F, Peng T, Liu J H. 2016. PtrA/NINV,an alkaline/neutral invertase gene of Poncirus trifoliata,confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biology, 16:76.
doi: 10.1186/s12870-016-0761-0 URL |
[3] |
Daloso D M, dos Anjos L, Fernie A R. 2016. Roles of sucrose in guard cell regulation. New Phytologist, 211(3):809-818.
doi: 10.1111/nph.2016.211.issue-3 URL |
[4] |
Farci D, Collu G, Kirkpatrick J, Esposito F, Piano D. 2016. RhVI1 is a membrane-anchored vacuolar invertase highly expressed in Rosa hybrida L. petals. Journal of Experimental Botany, 67(11):3303-3312.
doi: 10.1093/jxb/erw148 URL |
[5] | Gao Jin, Zeng Guiping, Song Lisha, Zhao Zhi, Li Zhong. 2020. Identification and biological characteristics of pathogen causing leaf spot disease of Hemerocallis fulva. Acta Horticulturae Sinica, 47(1):169-178. (in Chinese) |
高晋, 曾桂萍, 宋莉莎, 赵致, 李忠. 2020. 萱草叶斑病的病原鉴定及其生物学特性. 园艺学报, 47(1):169-178. | |
[6] |
Gasic K, Hernandez A, Korban S S. 2004. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 22(4):437-438.
doi: 10.1007/BF02772687 URL |
[7] |
Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J. 2005. Structure,evolution,and expression of the two invertase gene families of rice. Journal of Molecular Evolution, 60(5):615-634.
doi: 10.1007/s00239-004-0242-1 URL |
[8] |
Li D, Xia Y, Lou J, Zhang D, Wang X, Zhang J. 2020. A comparative study between evergreen and deciduous daylily species reveals the potential contributions of winter shoot growth and leaf freezing tolerance to foliar habits. Journal of Plant Growth Regulation, 39(3):1030-1045.
doi: 10.1007/s00344-019-10042-x URL |
[9] |
Liu Y H, Offler C E, Ruan Y L. 2016. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiology, 172:163-180.
doi: 10.1104/pp.16.00959 URL |
[10] |
Liu J, Chen X, Wang S, Wang Y, Ouyang Y, Yao Y, Li R, Fu S, Hu X, Guo J. 2019. MeABL5,an ABA insensitive 5-like basic leucine zipper transcription factor,positively regulates MeCWINV3 in cassava(Manihot esculenta Crantz). Frontiers in Plant Science, 10:772.
doi: 10.3389/fpls.2019.00772 URL |
[11] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using Real Time Quantitative PCR and the 2-ΔΔCt method. Methods, 25(4):402-408.
pmid: 11846609 |
[12] |
Morey S R, Hirose T, Hashida Y, Miyao A, Hirochika H, Ohsugi R, Yamagishi J, Aoki N. 2019. Characterisation of a rice vacuolar invertase isoform,OsINV2,for growth and yield-related traits. Functional Plant Biology, 46(8):777-785.
doi: 10.1071/FP18291 URL |
[13] |
Niu Jun-qi, Wang Ai-qin, Huang Jing-li, Yang Li-tao, Li Yang-rui. 2014. Cloning and expression analysis of sugarcane alkaline/neutral invertase gene SoNIN1. Acta Agronomica Sinica, 40(2):253-263. (in Chinese)
doi: 10.3724/SP.J.1006.2014.00253 URL |
牛俊奇, 王爱勤, 黄静丽, 杨丽涛, 李杨瑞. 2014. 甘蔗中性/碱性转化酶基因SoNIN1的克隆和表达分析. 作物学报, 40(2):253-263. | |
[14] |
Qian Wen-jun, Yue Chuan, Cao Hong-li, Hao Xin-yuan, Wang Lu, Wang Yu-chun, Huang Yu-ting, Wang Bo, Wang Xin-chao, Xiao Bin, Yang Ya-jun. 2016. Cloning and expression analysis of a neutral/alkaline invertase gene(CsINV10)in tea plant(Camellia sinensis L. O. Kuntze). Acta Agronomica Sinica, 42(3):376-388. (in Chinese)
doi: 10.3724/SP.J.1006.2016.00376 URL |
钱文俊, 岳川, 曹红利, 郝心愿, 王璐, 王玉春, 黄玉婷, 王博, 王新超, 肖斌, 杨亚军. 2016. 茶树中性/碱性转化酶基因CsINV10 的克隆与表达分析. 作物学报, 42(3):376-388. | |
[15] |
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. 2018. CsINV5,a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biology, 18:228.
doi: 10.1186/s12870-018-1456-5 URL |
[16] |
Ru L, Osorio S, Wang L, Fernie A R, Patrick J W, Ruan Y L. 2017. Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. Journal of Experimental Botany, 68(15):4263-4279.
doi: 10.1093/jxb/erx219 URL |
[17] |
Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. 2010. Sugar input,metabolism,and signaling mediated by invertase: roles in development,yield potential,and response to drought and heat. Molecular Plant, 3, 942-955.
doi: 10.1093/mp/ssq044 URL |
[18] |
Ruan Y L. 2012. Signaling role of sucrose metabolism in development. Molecular Plant, 5:763-765.
doi: 10.1093/mp/sss046 URL |
[19] |
Ruan Y L. 2014. Sucrose metabolism:gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology, 65(1):33-67.
doi: 10.1146/annurev-arplant-050213-040251 URL |
[20] |
Sparkes I A, Runions J, Kearns A, Hawes C. 2006. Rapid,transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1(4):2019-2025.
pmid: 17487191 |
[21] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods. Molecular Biology & Evolution, 28(10):2731-2739. |
[22] |
Vargas W A, Pontis H G, Salerno G L. 2007. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. Planta, 226(6):1535-1545.
doi: 10.1007/s00425-007-0590-3 URL |
[23] |
Wan H, Wu L, Yang Y, Zhou G, Ruan Y L. 2018. Evolution of sucrose metabolism:the dichotomy of invertases and beyond. Trends in Plant Science, 23(2):163-177.
doi: 10.1016/j.tplants.2017.11.001 URL |
[24] |
Wang L, Zheng Y, Ding S, Zhang Q, Chen Y, Zhang J. 2017. Molecular cloning,structure,phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biology, 17(1):109.
doi: 10.1186/s12870-017-1052-0 URL |
[25] | Wei Qingjiang, Ma Zhangzheng, Le Si, Lei Changyu, Ma Qiaoli, Gu Qingqing. 2020. Identification and expression analysis of sucrose-phosphate synthase(SPS)genes in citrus. Acta Horticulturae Sinica, 47(2):334-344. (in Chinese) |
魏清江, 马张正, 勒思, 雷常玉, 马巧利, 辜青青. 2020. 柑橘磷酸蔗糖合酶基因CsSPS的鉴定和表达. 园艺学报, 47(2):334-344. | |
[26] |
Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, Chai J. 2019. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 572:270-274.
doi: 10.1038/s41586-019-1409-7 pmid: 31291642 |
[27] |
Xu X X, Hu Q, Yang W N, Jin Y. 2017. The roles of cell wall invertase inhibitor in regulating chilling tolerance in tomato. BMC Plant Biology, 17:195.
doi: 10.1186/s12870-017-1145-9 URL |
[28] |
Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. 2019. Cell Wall Invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Frontiers in Plant Science, 10:541.
doi: 10.3389/fpls.2019.00541 URL |
[29] |
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nature Protocols, 2:1565-1572.
doi: 10.1038/nprot.2007.199 URL |
[30] |
Zhu J, Qi J, Fang Y, Xiao X, Li J, Lan J, Tang C. 2018. Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Frontiers in Plant Science, 9:58.
doi: 10.3389/fpls.2018.00058 URL |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[3] | QIANG Wenyan, MENG Qingran, ZHANG Zhiguo, GAO Wenjie. Analysis of Petal Volatile Components Among Different Hemerocallis Cultivars Based on HS-SPME-GC-MS [J]. Acta Horticulturae Sinica, 2023, 50(1): 116-130. |
[4] | XU Xiaoping, CAO Qingying, CAI Roudi, GUAN Qingxu, ZHANG Zihao, CHEN Yukun, XU HAN, LIN Yuling, LAI Zhongxiong. Gene Cloning and Expression Analysis of miR408 and Its Target DlLAC12 in Globular Embryo Development and Abiotic Stress in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(9): 1866-1882. |
[5] | JIA Xin, ZENG Zhen, CHEN Yue, FENG Hui, LÜ Yingmin, ZHAO Shiwei. Cloning and Expression Analysis of RcDREB2A Gene in Rosa chinensis‘Old Blush’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 1945-1956. |
[6] | TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit [J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440. |
[7] | ZHANG Qiuyue, LIU Changlai, YU Xiaojing, YANG Jiading, FENG Chaonian. Screening of Reference Genes for Differentially Expressed Genes in Pyrus betulaefolia Plant Under Salt Stress by qRT-PCR [J]. Acta Horticulturae Sinica, 2022, 49(7): 1557-1570. |
[8] | MA Weifeng, LI Yanmei, MA Zonghuan, CHEN Baihong, MAO Juan. Identification of Apple POD Gene Family and Functional Analysis of MdPOD15 Gene [J]. Acta Horticulturae Sinica, 2022, 49(6): 1181-1199. |
[9] | LI Yamei, MA Fuli, ZHANG Shanqi, HUANG Jinqiu, CHEN Mengting, ZHOU Junyong, SUN Qibao, SUN Jun. Optimization of Jujube Callus Transformation System and Application of ZjBRC1 in Regulating ZjYUCCA Expression [J]. Acta Horticulturae Sinica, 2022, 49(4): 749-757. |
[10] | WANG Ying, AI Penghui, LI Shuailei, KANG Dongru, LI Zhongai, WANG Zicheng. Identification and Expression Analysis of Genes Related to DNA Methylation in Chrysanthemum × morifolium and C. nankingense [J]. Acta Horticulturae Sinica, 2022, 49(4): 827-840. |
[11] | ZHANG Rui, ZHANG Xiayi, ZHAO Ting, WANG Shuangcheng, ZHANG Zhongxing, LIU Bo, ZHANG De, WANG Yanxiu. Transcriptome Analysis of the Molecular Mechanism of Saline-alkali Stress Response in Malus halliana Leaves [J]. Acta Horticulturae Sinica, 2022, 49(2): 237-251. |
[12] | ZHOU Zhiming, YANG Jiabao, ZHANG Cheng, ZENG Linglu, MENG Wanqiu, SUN Li. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus [J]. Acta Horticulturae Sinica, 2022, 49(2): 352-364. |
[13] | WU Kongjie, HU Chengxiao, TAN Qiling, SUN Xuecheng, ZHAO Xiaohu, WU Songwei. Research Advanced on Character of Sugar Accumulation and Mechanism of Sucrose Transport in Citrus Fruit [J]. Acta Horticulturae Sinica, 2022, 49(12): 2543-2558. |
[14] | QIAO Jun, WANG Liying, LIU Jing, LI Suweng. Expression Analysis of Genes Related to Photosensitive Color Under the Caylx in Eggplant Based on Transcriptome Sequencing [J]. Acta Horticulturae Sinica, 2022, 49(11): 2347-2356. |
[15] | ZENG Yike, SHI Ying, CHEN Siyi, LI Guojing, HUANG Xianbiao, XIE Zongzhou, LI Chunlong, GUO Dayong, LIU Jihong. Effects of Film Mulching on Improving Fruit Quality of Ponkan and Possible Mechanisms [J]. Acta Horticulturae Sinica, 2022, 49(11): 2419-2430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd