Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (2): 265-275.doi: 10.16420/j.issn.0513-353x.2020-0343
• Research Papers • Previous Articles Next Articles
LIU Bing*, LI Mengyuan*, ZHANG Na, SHANG Boxing, LIU Guotian**(), XU Yan**()
Received:
2020-10-15
Revised:
2021-01-09
Online:
2021-02-25
Published:
2021-03-09
Contact:
LIU Guotian,XU Yan
E-mail:liuguotian555@163.com;yan.xu@nwsuaf.edu.cn
CLC Number:
LIU Bing, LI Mengyuan, ZHANG Na, SHANG Boxing, LIU Guotian, XU Yan. Cloning and Functional Analysis of the CDS and Promoter of VpPR4b Gene Response to Downy Mildew in Chinese Wild Grape[J]. Acta Horticulturae Sinica, 2021, 48(2): 265-275.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0343
用途Usage | 引物名称Name of primer | 引物序列(5′-3′)Primer Sequence |
---|---|---|
PR4b基因扩增 Amplification of PR4b | PR4b-CDS-F | ACGGGGGACGAGCTCGGTACCATGGAGAGGAGAGGCATATGCAAGG |
PR4b-CDS-R | CACCATGGTGTCGACTCTAGAGTCACCACAGTTCACAAACTGGTAATTGA | |
启动子扩增 Amplification of promoters | PR4b-pro-F | GTACTTTCTTATAGCTAAAAGTTATAGAGAAC |
PR4b-pro-R | TTTTGTTGAATGATTTTTGCTTCATCACCTC | |
实时荧光定量PCR qRT-PCR | VvActin-qPCR-F | CCATCCTTCGTCTTGACCTTGCTG |
VvActin-qPCR-R | AGTGGTGAACATGTAACCCCTCTC | |
VvPR4b-qPCR-F | GCCAGCAATGTGAGGGCCAC | |
VvPR4b-qPCR-R | GCTGGCATCCCAAGTGGAGC | |
酵母单杂交 Yeast one hybrid | VpPR4b-pAbAi-F | GAGCTCGGTACCCGGGCTATGAAGCTTGAAGCTTG |
VpPR4b-pAbAi-R | CAGAGCACATGCCTCGAGGAAGATTATGATCCAACG |
Table 1 Primers and their application
用途Usage | 引物名称Name of primer | 引物序列(5′-3′)Primer Sequence |
---|---|---|
PR4b基因扩增 Amplification of PR4b | PR4b-CDS-F | ACGGGGGACGAGCTCGGTACCATGGAGAGGAGAGGCATATGCAAGG |
PR4b-CDS-R | CACCATGGTGTCGACTCTAGAGTCACCACAGTTCACAAACTGGTAATTGA | |
启动子扩增 Amplification of promoters | PR4b-pro-F | GTACTTTCTTATAGCTAAAAGTTATAGAGAAC |
PR4b-pro-R | TTTTGTTGAATGATTTTTGCTTCATCACCTC | |
实时荧光定量PCR qRT-PCR | VvActin-qPCR-F | CCATCCTTCGTCTTGACCTTGCTG |
VvActin-qPCR-R | AGTGGTGAACATGTAACCCCTCTC | |
VvPR4b-qPCR-F | GCCAGCAATGTGAGGGCCAC | |
VvPR4b-qPCR-R | GCTGGCATCCCAAGTGGAGC | |
酵母单杂交 Yeast one hybrid | VpPR4b-pAbAi-F | GAGCTCGGTACCCGGGCTATGAAGCTTGAAGCTTG |
VpPR4b-pAbAi-R | CAGAGCACATGCCTCGAGGAAGATTATGATCCAACG |
Fig. 2 Expression pattern of VpPR4b and VvPR4b post inoculaiton with Plasmopara viticola in‘Liuba-8’and‘Pinot Nior’ One-Way ANOVA,* P < 0.05,** P < 0.01.
名称 Name | 序列 Sequence | 功能 Function | VpPR4启动子位置 Location of VpPR4 promoter | VvPR4启动子位置 Location of VvPR4 promoter | ||||
---|---|---|---|---|---|---|---|---|
正链 Positive strand | 负链 Negative strand | 正链 Positive strand | 负链 Negative strand | |||||
CAAT-box | CAAT | 光响应元件 Light response element | 391、399、761、 1 287 | 426、546、611、678、746、 1 059 | 380、388、750、1 281 | 16、170、322、415、535、600、667、735、1 052 | ||
CAAT-box | CAAAT | 启动子和增强子区域共有顺式作用元件 Common cis-element in promoter and enhancer | 109、118、369、433、534 | 131、340、393、487、666 | 109、118、358、422、523、888 | 329、382、476 | ||
MYC | CATGTG | 干旱和ABA响应元件 Drought and ABA response element | 665、1 227 | 521、534、861 | 1 221 | 850、888 | ||
ARE | AAACCA | 厌氧诱导必需元件 Anaerobic induction essential element | 470、857、1 272 | 731 | 459、846 | 720 | ||
Box 4 | ATTAAT | 参与光反应的部分保守DNA模块 Part of the conserved DNA module involved in light reactions | 92、176、580 | 92、569 | ||||
ABRE | ACGTG | 脱落酸响应元件 ABA response element | 1 184、1 185 | 508、510、511、1 178、1 179 | ||||
LTR | CCGAAA | 低温响应元件 Cold response element | 407、1 353 | 396、1 347 | 396、1 347 | |||
TATA | TATAAAAT | 转录起始位点上游核心元件Core promoter element of transcription start site | 201 | 98 | 98 | 98 | ||
W-box | TTGACC | 与WRKY转录因子特异结合 Specific binding to WRKY transcription factors | 827 | 1 299 | 816 | 1 293 | ||
DRE core | GCCGAC | 与DREB转录因子特异结合Specific binding to DREB transcription factors | 627 | 616 | ||||
名称 Name | 序列 Sequence | 功能 Function | VpPR4启动子位置 Location of VpPR4 promoter | VvPR4启动子位置 Location of VvPR4 promoter | ||||
正链 Positive strand | 负链 Negative strand | 正链 Positive strand | 负链 Negative strand | |||||
MBS | CAACTG | 参与干旱诱导的MYB结合位点 Drought-induced MYB binding site | 815 | 804 | ||||
MRE | AACCTAA | 参与光响应的MYB结合位点 Light response MYB binding site | 540 | 529 | ||||
P-box | CCTTTTG | 赤霉素响应元件 GA response element | 793 | |||||
STRE | AGGGG | 胁迫响应元件 Stress response element | 1 367 | 1 361 | ||||
chs-CMA1a | TTACTTAA | 光敏元件的一部分 Part of light response element | 38 | |||||
G-box | TACGTG/CACGTG | 光响应顺式作用元件 Light response cis-element | 1 184 | 1 178、510 | ||||
GA-motif | ATAGATAA | 光敏元件的一部分 Part of light-sensitive element | 64 | 64 |
Table 3 cis-Acting element prediction of VpPR4b and VvPR4b promoters
名称 Name | 序列 Sequence | 功能 Function | VpPR4启动子位置 Location of VpPR4 promoter | VvPR4启动子位置 Location of VvPR4 promoter | ||||
---|---|---|---|---|---|---|---|---|
正链 Positive strand | 负链 Negative strand | 正链 Positive strand | 负链 Negative strand | |||||
CAAT-box | CAAT | 光响应元件 Light response element | 391、399、761、 1 287 | 426、546、611、678、746、 1 059 | 380、388、750、1 281 | 16、170、322、415、535、600、667、735、1 052 | ||
CAAT-box | CAAAT | 启动子和增强子区域共有顺式作用元件 Common cis-element in promoter and enhancer | 109、118、369、433、534 | 131、340、393、487、666 | 109、118、358、422、523、888 | 329、382、476 | ||
MYC | CATGTG | 干旱和ABA响应元件 Drought and ABA response element | 665、1 227 | 521、534、861 | 1 221 | 850、888 | ||
ARE | AAACCA | 厌氧诱导必需元件 Anaerobic induction essential element | 470、857、1 272 | 731 | 459、846 | 720 | ||
Box 4 | ATTAAT | 参与光反应的部分保守DNA模块 Part of the conserved DNA module involved in light reactions | 92、176、580 | 92、569 | ||||
ABRE | ACGTG | 脱落酸响应元件 ABA response element | 1 184、1 185 | 508、510、511、1 178、1 179 | ||||
LTR | CCGAAA | 低温响应元件 Cold response element | 407、1 353 | 396、1 347 | 396、1 347 | |||
TATA | TATAAAAT | 转录起始位点上游核心元件Core promoter element of transcription start site | 201 | 98 | 98 | 98 | ||
W-box | TTGACC | 与WRKY转录因子特异结合 Specific binding to WRKY transcription factors | 827 | 1 299 | 816 | 1 293 | ||
DRE core | GCCGAC | 与DREB转录因子特异结合Specific binding to DREB transcription factors | 627 | 616 | ||||
名称 Name | 序列 Sequence | 功能 Function | VpPR4启动子位置 Location of VpPR4 promoter | VvPR4启动子位置 Location of VvPR4 promoter | ||||
正链 Positive strand | 负链 Negative strand | 正链 Positive strand | 负链 Negative strand | |||||
MBS | CAACTG | 参与干旱诱导的MYB结合位点 Drought-induced MYB binding site | 815 | 804 | ||||
MRE | AACCTAA | 参与光响应的MYB结合位点 Light response MYB binding site | 540 | 529 | ||||
P-box | CCTTTTG | 赤霉素响应元件 GA response element | 793 | |||||
STRE | AGGGG | 胁迫响应元件 Stress response element | 1 367 | 1 361 | ||||
chs-CMA1a | TTACTTAA | 光敏元件的一部分 Part of light response element | 38 | |||||
G-box | TACGTG/CACGTG | 光响应顺式作用元件 Light response cis-element | 1 184 | 1 178、510 | ||||
GA-motif | ATAGATAA | 光敏元件的一部分 Part of light-sensitive element | 64 | 64 |
Fig. 5 AbA background concentration detection of VpPR4b promoter(A)and the interaction verification of VpPR4b promoter with WRKY transcription factor(B)
[1] |
Broekaert I, Lee H I, Kush A, Chua N H, Raikhel N. 1990. Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree(Hevea brasiliensis). PNAS, 87:7633-7637.
doi: 10.1073/pnas.87.19.7633 URL |
[2] |
Christensen A B, Cho B H, Michael Naesby P L G, Brandt J, Madriz-ordenana K, Collinge D B, Thordal-Christensen H. 2002. The molecular characterization of two barley proteins stablishes the novel PR-17 family of pathogenesis-related proteins. Mol Plant Pathol, 3:135-144.
doi: 10.1046/j.1364-3703.2002.00105.x URL |
[3] | Dai L, Wang D, Xie X, Zhang C, Wang X, Xu Y, Wang Y, Zhang J. 2016. The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Front Plant Sci, 7:695. |
[4] | Feng Jing, Yang Can, Lu Juan-fang, Xi Wan-peng. 2020. Cloning and cis-acting element analysis of CCD1 and CCD4 promoter in apricot. Acta Horticulturae Sinica, 47(5):939-952. (in Chinese) |
冯靖, 杨灿, 卢娟芳, 席万鹏. 2020. 杏CCD1和CCD4启动子克隆及顺式作用元件分析. 园艺学报, 47(5):939-952. | |
[5] | Fung R W, Gonzalo M, Fekete C, Kovacs L G, He Y, Marsh E, McIntyre L M, Schachtman D P, Qiu W. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol, 146:236-249. |
[6] | Gessler C, Pertot I, Perazzolli M. 2011. Plasmopara viticola:a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Mediterr, 50:3-44. |
[7] |
Guo C, Guo R, Xu X, Gao M, Li X, Song J, Zheng Y, Wang X. 2014. Evolution and expression analysis of the grape(Vitis vinifera L.)WRKY gene family. J Exp Bot, 65:1513-1528.
doi: 10.1093/jxb/eru007 URL |
[8] |
Harris N, Taylor J E, Roberts J A. 1997. Characterization and expression of an mRNA encoding a wound-induced(Win)protein from ethylene-treated tomato leaf abscission zone tissue. J Exp Bot, 48:1223-1227.
doi: 10.1093/jxb/48.6.1223 URL |
[9] | He Pu-chao, Wang Yue-jin, Wang Guo-ying, Ren Zhi-bang, He Chun-cheng. 1991. The studies on the disease-resistance of vitis wild species originated in China. Scientia Agricultura Sinica, 24(3):50-56. (in Chinese) |
贺普超, 王跃进, 王国英, 任志邦, 和纯成. 1991. 中国葡萄属野生种抗病性的研究. 中国农业科学, 24(3):50-56. | |
[10] |
Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, Wang Y. 2010. Expression and functional analysis of two genes encoding transcription factors,VpWRKY1 and VpWRKY2,isolated from Chinese wild Vitis pseudoreticulata. Planta, 232:1325-1337.
doi: 10.1007/s00425-010-1258-y URL |
[11] | Li M Y, Jiao Y T, Wang Y T, Zhang N, Wang B B, Liu R Q, Yin X, Xu Y, Liu G T. 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine(Vitis vinifera L.). Hortic Res, 7. |
[12] | Li Qiang, Qi Jingjing, Dou Wanfu, Qin Xiujuan, He Yongrui, Chen Shanchun. 2020. Overexpression of CsNBS-LRR in citrus confers bacterial canker resistance by regulating SA signaling pathway. Acta Horticulturae Sinica, 47(5):817-826. (in Chinese) |
李强, 祁静静, 窦万福, 秦秀娟, 何永睿, 陈善春. 2020. 柑橘超量表达CsNBS-LRR通过SA信号途径增强对溃疡病抗性. 园艺学报, 47(5):817-826. | |
[13] |
Liu R, Wang L, Zhu J, Chen T, Wang Y, Xu Y. 2015. Histological responses to downy mildew in resistant and susceptible grapevines. Protoplasma, 252:259-270.
doi: 10.1007/s00709-014-0677-1 URL |
[14] |
Loon L C, Rep M, Pieterse1 C M J. 2006. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 44:135-162.
pmid: 16602946 |
[15] |
Ma H, Xiang G, Li Z, Wang Y, Dou M, Su L, Yin X, Liu R, Wang Y, Xu Y. 2018. Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. Plant Biotechnol J, 16:1488-1501.
doi: 10.1111/pbi.2018.16.issue-8 URL |
[16] |
Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 26:403-410.
pmid: 11101835 |
[17] |
Marchive C, Leon C, Kappel C, Coutos-Thevenot P, Corio-Costet M F, Delrot S, Lauvergeat V. 2013. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS ONE, 8:e54185.
doi: 10.1371/journal.pone.0054185 URL |
[18] |
Merz P R, Moser T, Holl J, Kortekamp A, Buchholz G, Zyprian E, Bogs J. 2015. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiol Plantarum, 153:365-380.
doi: 10.1111/ppl.2015.153.issue-3 URL |
[19] |
Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet M F, Drira N, Hamdi S, Lauvergeat V. 2007. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiol Plantarum, 131:434-447.
doi: 10.1111/ppl.2007.131.issue-3 URL |
[20] |
Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Topfer R. 2012. Rpv10:a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet, 124:163-176.
doi: 10.1007/s00122-011-1695-4 URL |
[21] |
Shinde B A, Dholakia B B, Hussain K, Aharoni A, Giri A P, Kamble A C. 2018. WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato,Solanum arcanum Peralta. Plant Biotechnol J, 16:1502-1513.
doi: 10.1111/pbi.2018.16.issue-8 URL |
[22] |
Tan Xiaoli, Fan Zhongqi, Li Lulu, Wu Ya, Kuang Jianfei, Lu Wangjin, Chen Jianye. 2016. Molecular characterization of a leaf senescence-related transcription factor BrWRKY75 of Chinese flowering cabbage. Horticultural Plant Journal, 2(5):272-278.
doi: 10.1016/j.hpj.2017.01.003 URL |
[23] |
Ulker B, Somssich I E. 2004. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 7:491-498.
doi: 10.1016/j.pbi.2004.07.012 URL |
[24] |
Wang L, Zhu W, Fang L, Sun X, Su L, Liang Z, Wang N, Londo J P, Li S, Xin H. 2014. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biol, 14:103.
doi: 10.1186/1471-2229-14-103 URL |
[25] |
Xiong X P, Sun S C, Zhang X Y, Li Y J, Liu F, Zhu Q H, Xue F, Sun J. 2020. GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways. Front Plant Sci, 11:69.
doi: 10.3389/fpls.2020.00069 URL |
[26] | Yang Tao, Wang Yan. 2017. Research progress of plant pathogenesis-related proteins PR-10. Plant Physiology Journal, 53(12):2057-2068. (in Chinese) |
杨涛, 王艳. 2017. 植物病程相关蛋白PR-10的研究进展. 植物生理学报, 53(12):2057-2068. | |
[27] | Yin X, Liu R Q, Su H, Su L, Guo Y R, Wang Z J, Du W, Li M J, Zhang X, Wang Y J, Liu G T, Xu Y. 2017. Pathogen development and host responses to Plasmopara viticola in resistant and susceptible grapevines: an ultrastructural study. Hortic Res, 4:10. |
[28] | Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y. 2013. 2013. The Chinese wild grapevine(Vitis pseudoreticulata)E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1(EIRP1)activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol, 2008: 834-846. |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[3] | YUAN Xin, XU Yunhe, ZHANG Yupei, SHAN Nan, CHEN Chuying, WAN Chunpeng, KAI Wenbin, ZHAI Xiawan, CHEN Jinyin, GAN Zengyu. Studies on AcAREB1 Regulating the Expression of AcGH3.1 During Postharvest Ripening of Kiwifruit [J]. Acta Horticulturae Sinica, 2023, 50(1): 53-64. |
[4] | WANG Baoliang, LIU Fengzhi, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, ZHANG Yican, LI Peng, and WANG Haibo. A New Early Ripening Grape Cultivar‘Huapu Zaoyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 33-34. |
[5] | WANG Baoliang, WANG Haibo, JI Xiaohao, WANG Xiaodi, SHI Xiangbin, WANG Zhiqiang, WANG Xiaolong, and LIU Fengzhi. A New Middle Ripening Grape Cultivar‘Huapu Huangyu’for Table [J]. Acta Horticulturae Sinica, 2022, 49(S2): 35-36. |
[6] | A Late-maturing Seedless Grape Cultivar‘Zilongzhu’. A Late-maturing Seedless Grape Cultivar‘Zilongzhu’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 37-38. |
[7] | SHI Xiaoxin, DU Guoqiang, YANG Lili, QIAO Yuelian, HUANG Chengli, WANG Suyue, ZHAO Yuexin, WEI Xiaohui, WANG Li, and QI Xiangli. A Late-ripening Seedless Grape Cultivar‘Hongfeng Wuhe’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 39-40. |
[8] | WU Yueyan, CHEN Tianchi, WANG Liru, HAN Shanqi, and FU Tao. A New Table Grape Cultivar‘Yongzaohong’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 41-42. |
[9] | LIU Zhiyuan, XU Zhaosheng, ZHANG Helong, and QIAN Wei. A New Oversummer Spinach Cultivar‘Shubo 16’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 95-96. |
[10] | WANG Xiaoyue, YAN Ailing, ZHANG Guojun, WANG Huiling, REN Jiancheng, LIU Zhenhua, SUN Lei, and XU Haiying, . A New Grape Cultivar‘Ruidu Wanhong’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 29-30. |
[11] | WANG Yongjian, KONG Junhua, FAN Peige, LIANG Zhenchang, JIN Xiuliang, LIU Buchun, DAI Zhanwu. Grape Phenome High-throughput Acquisition and Analysis Methods:A Review [J]. Acta Horticulturae Sinica, 2022, 49(8): 1815-1832. |
[12] | WEI Xiaoyu, WANG Yuejin. Correlation Between Anatomical Structure and Resistance to Powdery Mildew in Chinese Wild Vitis Species [J]. Acta Horticulturae Sinica, 2022, 49(6): 1200-1212. |
[13] | LIU Zhongjie, ZHENG Ting, ZHAO Fanggui, FU Weihong, ZHUGE Yaxian, ZHANG Zhichang, FANG Jinggui. Resistance Difference and Physiological Response Mechanism of Grape Rootstocks to Osmotic Stress [J]. Acta Horticulturae Sinica, 2022, 49(5): 984-994. |
[14] | LIANG Chen, SUN Ruyi, XIANG Rui, SUN Yimeng, SHI Xiaoxin, DU Guoqiang, WANG Li. Genome-wide Identification of Grape GRF Family and Expression Analysis [J]. Acta Horticulturae Sinica, 2022, 49(5): 995-1007. |
[15] | LI Shasha, YU Saisai, FU Yuheng, LUO Qiangwei, XU Yan, WANG Yuejin. The Embryo Rescue and Molecular Markers are Used to Breed New Seedless,Cold-Resistant Grapes [J]. Acta Horticulturae Sinica, 2022, 49(4): 723-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd