Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (1): 127-136.doi: 10.16420/j.issn.0513-353x.2020-0208
• Research Notes • Previous Articles Next Articles
ZHANG Zhongxing, CHENG Li, WANG Shuangcheng, ZHANG De, LIU Bing, WANG Yanxiu*()
Received:
2020-05-06
Revised:
2020-07-10
Online:
2021-01-25
Published:
2021-01-29
Contact:
WANG Yanxiu
E-mail:wangxy@gsau.edu.cn
CLC Number:
ZHANG Zhongxing, CHENG Li, WANG Shuangcheng, ZHANG De, LIU Bing, WANG Yanxiu. Cloning of MhMYB114-Like from Malus halliana and Its Functional Identification of Iron Deficiency Tolerance in Apple Callus[J]. Acta Horticulturae Sinica, 2021, 48(1): 127-136.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0208
基因 Gene | 序列(5′-3′)Sequence |
---|---|
MYB114-like(qRT-PCR) MYB114-like(gene clone) | F:TGATCAGACCTCAACCCCGA;R:GACGACGACGTTTGTGGTGA F:ATGGAGGGATATAACGTTAACTTGA;R:CTAACTCAAGACTGGGACATACA |
Table 1 Primers used in this study
基因 Gene | 序列(5′-3′)Sequence |
---|---|
MYB114-like(qRT-PCR) MYB114-like(gene clone) | F:TGATCAGACCTCAACCCCGA;R:GACGACGACGTTTGTGGTGA F:ATGGAGGGATATAACGTTAACTTGA;R:CTAACTCAAGACTGGGACATACA |
Fig. 2 Phylogenetic analysis of this protein of MhMYB114-like from Malus halliana and other species families The number at the branch of the evolutionary tree indicates the confidence of the branch,the larger the value,and the higher the reliability.
元件名称 cis-Acting element | 核心序列 Sequence | 位点功能 Function of site | 位置 Location |
---|---|---|---|
GT1CONSENSUS | GRWAAW | 光响应元件cis-Acting element involved in light responsiveness | -586 |
DPBFCOREDCDC3 | ACACNNG | 脱落酸响应cis-Acting element involved in abscisic ascid responsiveness | -619 |
LTRECOREATCOR15 | CCGAC | 耐寒响应 cis-Acting element involved in resistance cold responsiveness | -1 549 |
CIACADIANLELHC | CAANNNNATC | 生理节律响应cis-Acting element involved in circadian responsiveness | -1 203 |
ACGTATERD1 | ACGT | 黄化响应元件cis-Acting element involved in chlorisis responsiveness | -804 |
DOFCOREZM | AAAG | 碳代谢响应元件cis-Acting element involved in carbon metabolism | + 704 |
CATATGGMSAUR | CATATG | 生长素响应元件cis-Acting element involved in the auxin responsiveness | + 1 217 |
SREATMSD | TTATCC | 糖响应元件cis-Acting element involved in sugar responsiveness | + 946 |
PYRIMIDINEBOXHVEPB1 | TTTTTTCC | 激素调控元件cis-Acting element involved in hormone responsiveness | + 1 877 |
ARR1AT | NGATT | 细胞分裂素响应cis-Acting element involved in cytokinin responsiveness | + 1 991 |
MYB2CONSENSUSAT | YAACKG | 耐旱响应cis-Acting element involved in drought-tolerant responsiveness | + 1 049 |
Table 2 Some important cis-acting regulatory elements in the upstream regulatory sequences of MhMYB114-Like
元件名称 cis-Acting element | 核心序列 Sequence | 位点功能 Function of site | 位置 Location |
---|---|---|---|
GT1CONSENSUS | GRWAAW | 光响应元件cis-Acting element involved in light responsiveness | -586 |
DPBFCOREDCDC3 | ACACNNG | 脱落酸响应cis-Acting element involved in abscisic ascid responsiveness | -619 |
LTRECOREATCOR15 | CCGAC | 耐寒响应 cis-Acting element involved in resistance cold responsiveness | -1 549 |
CIACADIANLELHC | CAANNNNATC | 生理节律响应cis-Acting element involved in circadian responsiveness | -1 203 |
ACGTATERD1 | ACGT | 黄化响应元件cis-Acting element involved in chlorisis responsiveness | -804 |
DOFCOREZM | AAAG | 碳代谢响应元件cis-Acting element involved in carbon metabolism | + 704 |
CATATGGMSAUR | CATATG | 生长素响应元件cis-Acting element involved in the auxin responsiveness | + 1 217 |
SREATMSD | TTATCC | 糖响应元件cis-Acting element involved in sugar responsiveness | + 946 |
PYRIMIDINEBOXHVEPB1 | TTTTTTCC | 激素调控元件cis-Acting element involved in hormone responsiveness | + 1 877 |
ARR1AT | NGATT | 细胞分裂素响应cis-Acting element involved in cytokinin responsiveness | + 1 991 |
MYB2CONSENSUSAT | YAACKG | 耐旱响应cis-Acting element involved in drought-tolerant responsiveness | + 1 049 |
Fig. 3 Expression level of MhMYB114-Like under iron deficiency stress * < 0.05,represents a significant level of difference compared to the control group.
[1] | An Hua-ming, Fan Wei-guo. 2003. Physiological effects of iron deficiency on Pyrus pashia Buch-Ham. Scientia Agricultura Sinica,(8):935-940. (in Chinese) |
安华明, 樊卫国. 2003. 缺铁胁迫对川梨的生理影响. 中国农业科学,(8):935-940. | |
[2] | Cao Dong-mei. 2003. Cloning and expression analysis of related genes under Fe-defieiency stress in Malus xiaojinensis[Ph. D. Dissertation]. Beijing:China Agricultural University. (in Chinese) |
曹冬梅. 2003. 苹果属小金海棠缺铁胁迫相关基因的克隆和表达分析[博士论文]. 北京:中国农业大学. | |
[3] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005 URL |
[4] |
Fan Wei-juan, Wang Hong-xia, Wu Yin-liang, Yang Nan, Zhang Peng. 2017. H+-pyrophosphatase IbVP 1 promotes efficient iron use in sweet potato [Ipomoea batatas(L.)lam.] . Plant Biotechnology Journal, 15(6):698-712.
doi: 10.1111/pbi.2017.15.issue-6 URL |
[5] |
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/MYB transcriptional complex in Arabidopsis seedlings. Plant Journal, 53(5):814-827.
doi: 10.1111/tpj.2008.53.issue-5 URL |
[6] | Hu Ya. 2018. Physiological characteristics and transcriptome analysis of apple rootstock seedlings Malus halliana under iron deficiency stress[M. D. Dissertation]. Lanzhou:Gansu Agricultural University. (in Chinese) |
胡亚. 2018. 缺铁胁迫下苹果砧木垂丝海棠幼苗的生理特性和转录组学分析[硕士论文]. 兰州:甘肃农业大学. | |
[7] |
Han Z H, Wang Q, Shen T. 1994. Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in the genus Malus. Journal of Plant Nutrition, 17(7):1257-1264.
doi: 10.1080/01904169409364803 URL |
[8] |
Hu D G, Sun M H, Sun C H, Liu X, Zhang Q Y, Zhao J, Hao Y J. 2015. Conserved vacuolar H+-ATPase subunit B1 improves salt stress tolerance in apple calli and tomato plants . Scientia Horticulturae, 197:107-116.
doi: 10.1016/j.scienta.2015.09.019 URL |
[9] |
Ivanov R, Brumbarova T, Bauer P. 2012. Fitting into the harsh reality:regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant, 5(1):27-42.
doi: 10.1093/mp/ssr065 pmid: 21873619 |
[10] | Jia Xu-mei, Zhu Yan-fang, Wang Hai, Wu Yu-xia, Zhao Tong, Cheng Li, Zhu Zu-lei, Wang Yan-xiu. 2019. Study on physiological response of Malus halliana to saline-alkali stress. Acta Ecologica Sinica, 39(17):6349-6361. (in Chinese) |
贾旭梅, 朱燕芳, 王海, 吴玉霞, 赵通, 程丽, 朱祖雷, 王延秀. 2019. 垂丝海棠应对盐碱复合胁迫的生理响应. 生态学报, 39(17):6349-6361. | |
[11] | Ju Lixiang, Lei Xin, Zhao Chengzhi, Shu Huangying, Wang Zhiwei, Cheng Shanhan. 2020. Identification of MYB family genes and its relationship with pungency of pepper. Acta Horticulturae Sinica, 47(5):875-892. (in Chinese) |
居利香, 雷欣, 赵成志, 舒黄英, 汪志伟, 成善汉. 2020. 辣椒MYB基因家族的鉴定及与辣味关系分析. 园艺学报, 47(5):875-892. | |
[12] |
Li Q, Yang A, Zhang W H. 2016. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice(Oryza sativa L.). Journal of Experimental Botany, 67(22):6431-6444.
doi: 10.1093/jxb/erw407 URL |
[13] | Liu Wei. 2017. Functional research of ethylene response factor ERF4/ERF72 involved in iron deficiency response of apple rootstocks[Ph. D. Dissertation]. Beijing:China Agriculture University. (in Chinese) |
刘伟. 2017. 乙烯响应因子ERF4/ERF72参与苹果砧木缺铁应答的功能研究[博士论文]. 北京:中国农业大学. | |
[14] |
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1):88-95.
doi: 10.1104/pp.108.129791 URL |
[15] |
Palmer C M, Hindt M N, Schmidt H, Clemens S, Guerinot M L. 2013. MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genetics, 9(11):e1003953.
doi: 10.1371/journal.pgen.1003953 URL |
[16] | Qin Yaqi, Hu Guibing, Zhao Jietang. 2020. Studies on Agrobacterium rhizogenesis-mediated transformation of LcMYB1 gene into tobacco leaves. Acta Horticulturae Sinica, 47(4):635-642. (in Chinese) |
秦雅琪, 胡桂兵, 赵杰堂. 2020. 发根农杆菌介导的荔枝LcMYB1转化烟草叶片的研究. 园艺学报, 47(4):635-642. | |
[17] |
Singh K B, Foley R C, Oñate-Sanchez L. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5(5):430-436.
doi: 10.1016/S1369-5266(02)00289-3 URL |
[18] |
Sinha S, Gupta M, Chandra P. 1997. Oxidative Stress induced by iron in Hydrilla verticillata(lf)Royle:response of antioxidants. Ecotoxicology and Environmental Safety, 38(3):286-291.
doi: 10.1006/eesa.1997.1598 URL |
[19] | Tian Zhi-guo, Wang Fei, Zhang Wen-e, Zhao Xiu-ming. 2011. Effects of heat stress on growth and physiology of marigold cultivars. Acta Horticulturae Sinica, 38(10):1947-1954. (in Chinese) |
田治国, 王飞, 张文娥, 赵秀明. 2011. 高温胁迫对孔雀草和万寿菊不同品种生长和生理的影响. 园艺学报, 38(10):1947-1954. | |
[20] | Wang F P, Xiao F, Zhang J C, Wang F. 2018. MdMYB58 modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant Cell Physiology, 59(12):2476-2489. |
[21] | Yang Yuyiing, Ren Yiran, Zheng Pengfei, You Chunxiang, Wang Xiaofei, Hao Yujin. 2020. Investigation on MdMYB2 from apple in response to abiotic stress. Acta Horticulturae Sinica, 47(4):613-622. (in Chinese) |
杨钰莹, 任怡然, 郑朋飞, 由春香, 王小非, 郝玉金. 2020. 苹果MdMYB2基因对非生物胁迫的响应. 园艺学报, 47(4):613-622. | |
[22] |
Yao G F, Ming M L, Allan A C, Gu C, Li L T, Wu X, Wu J. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 92(3):437-451.
doi: 10.1111/tpj.2017.92.issue-3 URL |
[23] | Zhang Huilin, Zhu Wan, Tian Li, Zhang Wei. 2019. Characterization and expression analysis of petunia PhZPT2-12 transcription factor related to cold response. Acta Horticulturae Sinica, 46(8):1543-1552. (in Chinese) |
张慧琳, 朱婉, 田丽, 张蔚. 2019. 矮牵牛冷响应转录因子PhZPT2-12的特性及表达分析. 园艺学报, 46(8):1543-1552. | |
[24] |
Zhang Yun, Wang Yi, Xu Xue-feng, Li Tian-zhong, Kong Jin, Han Zhen-hai. 2007. Expression analysis of ferric-chelate reductase gene of Malus xiaojinensis Cheng et Jiang. Plant Physiology Journal, 43(1):57-60. (in Chinese)
doi: 10.1104/pp.43.1.57 URL |
张芸, 王忆, 许雪峰, 李天忠, 孔瑾, 韩振海. 2007. 小金海棠中三价铁螯合物还原酶基因的表达分析. 植物生理学通讯, 43(1):57-60. | |
[25] | Zhou Kaibing, Li Shijun, Yuan Mengling, Yue Kun. 2019. Injuries and the responses on antioxidation of adult mango trees under the treatments of enhanced UV-B radiation. Acta Horticulturae Sinica, 46(7):1279-1289. (in Chinese) |
周开兵, 李世军, 袁孟玲, 岳堃. 2019. 杧果成年树在增强UV-B辐射处理下的损伤与抗氧化响应. 园艺学报, 46(7):1279-1289. |
[1] | WANG Xiaochen, NIE Ziye, LIU Xianju, DUAN Wei, FAN Peige, and LIANG Zhenchang, . Effects of Abscisic Acid on Monoterpene Synthesis in‘Jingxiangyu’Grape Berries [J]. Acta Horticulturae Sinica, 2023, 50(2): 237-249. |
[2] | YU Tingting, LI Huan, NING Yuansheng, SONG Jianfei, PENG Lulin, JIA Junqi, ZHANG Weiwei, and YANG Hongqiang. Genome-wide Identification of GRAS Gene Family in Apple and Expression Analysis of Its Response to Auxin [J]. Acta Horticulturae Sinica, 2023, 50(2): 397-409. |
[3] | ZHAI Hanhan, ZHAI Yujie, TIAN Yi, ZHANG Ye, YANG Li, WEN Zhiliang, CHEN Haijiang. Genome-wide Identification of Peach SAUR Gene Family and Characterization of PpSAUR5 Gene [J]. Acta Horticulturae Sinica, 2023, 50(1): 1-14. |
[4] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YANG An, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Zhongping Youlei’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 1-2. |
[5] | SUN Simiao, WANG Kun, GAO Yuan, WANG Dajiang, and LI Lianwen. A New Ornamental Crabapple Cultivar‘Zichen’ [J]. Acta Horticulturae Sinica, 2022, 49(S2): 267-268. |
[6] | HAN Xiaolei, ZHANG Caixia, LIU Kai, YAN Jiadi, LI Wuxing, KANG Liqun, and CONG Peihua. A New Mid-ripening Apple Cultivar‘Pingyou 2’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 1-2. |
[7] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Late Ripening Apple Cultivar‘Huayou Tianwa’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 3-4. |
[8] | WANG Qiang, CONG Peihua, and LIU Xiaofeng. A New Mid-ripening Apple Cultivar‘Huayou Baomi’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 5-6. |
[9] | YANG Ling, CONG Peihua, WANG Qiang, LI Wuxing, and KANG Liqun. A New Mid-ripening Apple Cultivar‘Huafeng’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 7-8. |
[10] | LIU Chuanhe, HE Han, SHAO Xuehua, LAI Duo, KUANG Shizi, XIAO Weiqiang, LIU Yan. A New Pineapple Cultivar‘Yuetong’ [J]. Acta Horticulturae Sinica, 2022, 49(9): 2053-2054. |
[11] | GAO Yanlong, WU Yuxia, ZHANG Zhongxing, WANG Shuangcheng, ZHANG Rui, ZHANG De, WANG Yanxiu. Bioinformatics Analysis of Apple ELO Gene Family and Its Expression Analysis Under Low Temperature Stress [J]. Acta Horticulturae Sinica, 2022, 49(8): 1621-1636. |
[12] | LIU Chaoyang, LIAO Zhichan, LU Xinxin, HE Yehua. Identification of CslD Gene Family in Pineapple and Functional Analysis of AcoCslD2a [J]. Acta Horticulturae Sinica, 2022, 49(8): 1650-1662. |
[13] | QIU Ziwen, LIU Linmin, LIN Yongsheng, LIN Xiaojie, LI Yongyu, WU Shaohua, YANG Chao. Cloning and Functional Analysis of the MbEGS Gene from Melaleuca bracteata [J]. Acta Horticulturae Sinica, 2022, 49(8): 1747-1760. |
[14] | ZHENG Xiaodong, XI Xiangli, LI Yuqi, SUN Zhijuan, MA Changqing, HAN Mingsan, LI Shaoxuan, TIAN Yike, WANG Caihong. Effects and Regulating Mechanism of Exogenous Brassinosteroids on the Growth of Malus hupehensis Under Saline-alkali Stress [J]. Acta Horticulturae Sinica, 2022, 49(7): 1401-1414. |
[15] | XIA Yan, HUANG Song, WU Xueli, LIU Yiqi, WANG Miaomiao, SONG Chunhui, BAI Tuanhui, SONG Shangwei, PANG Hongguang, JIAO Jian, ZHENG Xianbo. Identification and Analysis of Apple Viruses Diseases Based on Virome Sequencing Technology [J]. Acta Horticulturae Sinica, 2022, 49(7): 1415-1428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd