Acta Horticulturae Sinica ›› 2021, Vol. 48 ›› Issue (1): 73-82.doi: 10.16420/j.issn.0513-353x.2020-0378
• Research Papers • Previous Articles Next Articles
ZHENG Hao1, ZHANG Fen1, JIAN Yue1, HUANG Wenli1, LIANG Sha1, JIANG Min1, YUAN Qiao1, WANG Qiaomei2, SUN Bo1,**()
Received:
2020-05-19
Revised:
2020-11-05
Online:
2021-01-25
Published:
2021-01-29
Contact:
SUN Bo
E-mail:bsun@sicau.edu.cn
CLC Number:
ZHENG Hao, ZHANG Fen, JIAN Yue, HUANG Wenli, LIANG Sha, JIANG Min, YUAN Qiao, WANG Qiaomei, SUN Bo. Cloning and Function Identification of Dihydroflavonol 4-Reductase Gene BoaDFR in Chinese Kale[J]. Acta Horticulturae Sinica, 2021, 48(1): 73-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.ahs.ac.cn/EN/10.16420/j.issn.0513-353x.2020-0378
用途 Use | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
CDS全长扩增 Amlification of CDS | DFR-CDS-F | ATGGTAGCTCACAAAGAGACCGTGT |
DFR-CDS-R | CTAAGCACAGATCTGCTGTGCCGA | |
qRT-PCR | DFR-qPCR-F | CGCATCAGGATTCATTGGTTCAT |
DFR-qPCR-R | CGTCTTCGCGTTTGGCAAATCA | |
定量内参引物 Primers for internal control | β-actin-F | CCACCAATCTTGTACACATCC |
β-actin-R | AGACCACCAAGTACTACTGCAC | |
亚细胞定位 Subcellular localization | DFR-GFP-XmaI-F | CCCCCCGGGATGGTAGCTCACAAAGA |
DFR-GFP-XbaI-R | GCTCTAGAAGCACAGATCTGCTGTG | |
过表达酶切位点引物 Primers for overexpression sites | DFR-pCAM-XbaI-F | GGGGGATCCACTAGTTCTAGAATGGTAGCTCACAAAGAGACCGTG |
DFR-pCAM-SalI-R | AAGCTTACGATACCGTCGACCTAAGCACAGATCTGCTGTGCC |
Table 1 Primer sequences used in this study
用途 Use | 引物名称 Primer name | 序列(5′-3′) Sequence |
---|---|---|
CDS全长扩增 Amlification of CDS | DFR-CDS-F | ATGGTAGCTCACAAAGAGACCGTGT |
DFR-CDS-R | CTAAGCACAGATCTGCTGTGCCGA | |
qRT-PCR | DFR-qPCR-F | CGCATCAGGATTCATTGGTTCAT |
DFR-qPCR-R | CGTCTTCGCGTTTGGCAAATCA | |
定量内参引物 Primers for internal control | β-actin-F | CCACCAATCTTGTACACATCC |
β-actin-R | AGACCACCAAGTACTACTGCAC | |
亚细胞定位 Subcellular localization | DFR-GFP-XmaI-F | CCCCCCGGGATGGTAGCTCACAAAGA |
DFR-GFP-XbaI-R | GCTCTAGAAGCACAGATCTGCTGTG | |
过表达酶切位点引物 Primers for overexpression sites | DFR-pCAM-XbaI-F | GGGGGATCCACTAGTTCTAGAATGGTAGCTCACAAAGAGACCGTG |
DFR-pCAM-SalI-R | AAGCTTACGATACCGTCGACCTAAGCACAGATCTGCTGTGCC |
Fig. 3 Relative expression levels of BoaDFR at different developmental stages(A)and different organs(B)in Chinese kale Different letters above the bars indicate significantly different values(P < 0.05).
Fig. 5 The phenotypes of wild type,the transgenic plant with empty vector and the BoaDFR overexpressed plants in Chinese kale ‘Siji Cutiao’and‘Fuzhou Huanghua’ The sampling leaves are pointed by the arrow. The left side of each sampling leaf is the leaf front and the right side is the leaf back.
品种 Cultivar | 植株 Plant lines | L* | a* | b* | |||
---|---|---|---|---|---|---|---|
叶正面 Leaf front | 叶背面 Leaf back | 叶正面 Leaf front | 叶背面 Leaf back | 叶正面 Leaf front | 叶背面 Leaf back | ||
四季粗条 Siji Cutiao | 野生型Wild type | 43.02 a | 51.96 a | -10.29 b | -11.81 d | 25.15 a | 24.45 a |
空载体Empty vector | 44.13 a | 53.13 a | -9.55 b | -11.13 d | 25.88 a | 25.80 a | |
过表达Overexpression #1 | 29.89 c | 40.55 b | 4.16 a | 5.95 b | 4.15 bc | 2.35 c | |
过表达Overexpression #2 | 35.31 b | 53.13 a | 3.67 a | -1.51 c | 6.40 b | 14.70 b | |
过表达Overexpression #3 | 29.57 c | 30.79 c | 3.64 a | 12.72 a | 4.01 c | -6.47 d | |
福州黄花 Fuzhou Huanghua | 野生型Wild type | 45.76 a | 53.77 a | -10.81 c | -10.49 b | 26.64 b | 23.66 a |
空载体Empty vector | 47.72 a | 55.99 a | -9.38 c | -12.27 b | 32.23 a | 27.45 a | |
过表达Overexpression #1 | 31.49 c | 54.10 a | 4.61 a | -2.83 a | 5.12 d | 13.77 b | |
过表达Overexpression #2 | 34.57 bc | 54.03 a | -1.63 b | -3.32 a | 9.50 c | 11.71 bc | |
过表达Overexpression #3 | 35.37 b | 51.09 b | -1.22 b | -1.06 a | 4.96 d | 7.20 c |
Table 2 The leaf color of wild type,the transgenic plant with empty vector and the BoaDFR overexpressed plants in Chinese kale
品种 Cultivar | 植株 Plant lines | L* | a* | b* | |||
---|---|---|---|---|---|---|---|
叶正面 Leaf front | 叶背面 Leaf back | 叶正面 Leaf front | 叶背面 Leaf back | 叶正面 Leaf front | 叶背面 Leaf back | ||
四季粗条 Siji Cutiao | 野生型Wild type | 43.02 a | 51.96 a | -10.29 b | -11.81 d | 25.15 a | 24.45 a |
空载体Empty vector | 44.13 a | 53.13 a | -9.55 b | -11.13 d | 25.88 a | 25.80 a | |
过表达Overexpression #1 | 29.89 c | 40.55 b | 4.16 a | 5.95 b | 4.15 bc | 2.35 c | |
过表达Overexpression #2 | 35.31 b | 53.13 a | 3.67 a | -1.51 c | 6.40 b | 14.70 b | |
过表达Overexpression #3 | 29.57 c | 30.79 c | 3.64 a | 12.72 a | 4.01 c | -6.47 d | |
福州黄花 Fuzhou Huanghua | 野生型Wild type | 45.76 a | 53.77 a | -10.81 c | -10.49 b | 26.64 b | 23.66 a |
空载体Empty vector | 47.72 a | 55.99 a | -9.38 c | -12.27 b | 32.23 a | 27.45 a | |
过表达Overexpression #1 | 31.49 c | 54.10 a | 4.61 a | -2.83 a | 5.12 d | 13.77 b | |
过表达Overexpression #2 | 34.57 bc | 54.03 a | -1.63 b | -3.32 a | 9.50 c | 11.71 bc | |
过表达Overexpression #3 | 35.37 b | 51.09 b | -1.22 b | -1.06 a | 4.96 d | 7.20 c |
Fig. 6 Relative expression levels of BoaDFR of wild type,the transgenic plant with empty vector and the BoaDFR overexpressed plants in Chinese kale Different letters above the bars indicate significantly different values(P < 0.05).
品种 Cultivar | 植株 Plant line | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|---|
四季粗条 Siji Cutiao | 野生型Wild-type | 0 c | 0 d | 0 b | 0 d | 0 c | 0 d | 0 d | 0 d | 0 d |
空载体Empty vector | 0 c | 0 d | 0 b | 0 d | 0 c | 0 d | 0 d | 0 d | 0 d | |
过表达Overexpression #1 | 4.31 b | 80.36 c | 3.79 a | 12.80 b | 42.13 a | 157.79 b | 54.85 b | 26.15 b | 382.17 b | |
过表达Overexpression #2 | 4.69 b | 102.39 a | 3.53 a | 6.53 c | 15.58 d | 100.52 c | 43.03 c | 15.22 c | 291.49 c | |
过表达Overexpression #3 | 5.97 a | 98.73 b | 4.30 a | 17.07 a | 43.85 a | 177.94 a | 74.21 a | 39.36 a | 461.43 a | |
福州黄花 Fuzhou Huanghua | 野生型Wild-type | 0 c | 1.58 d | 0 c | 0 c | 0 d | 4.40 d | 0 d | 0.98 b | 6.97 d |
空载体Empty vector | 0 c | 0 e | 0 c | 0 c | 0 d | 0 e | 0 d | 0 c | 0 e | |
过表达Overexpression #1 | 2.47 a | 71.20 a | 12.06 a | 4.80 a | 15.61 a | 202.46 a | 72.35 a | 3.51 a | 384.47 a | |
过表达Overexpression #2 | 1.14 b | 12.41 c | 0 c | 0 c | 5.32 c | 42.76 c | 18.32 c | 0 c | 79.95 c | |
过表达Overexpression #3 | 2.41 a | 33.63 b | 6.56 b | 2.04 b | 7.43 b | 86.70 b | 55.44 b | 0 c | 194.20 b |
Table 3 The anthocyanin contents of wild type,the transgenic plant with empty vector and the BoaDFR overexpressed plants in Chinese kale μg · g-1 FW
品种 Cultivar | 植株 Plant line | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|---|
四季粗条 Siji Cutiao | 野生型Wild-type | 0 c | 0 d | 0 b | 0 d | 0 c | 0 d | 0 d | 0 d | 0 d |
空载体Empty vector | 0 c | 0 d | 0 b | 0 d | 0 c | 0 d | 0 d | 0 d | 0 d | |
过表达Overexpression #1 | 4.31 b | 80.36 c | 3.79 a | 12.80 b | 42.13 a | 157.79 b | 54.85 b | 26.15 b | 382.17 b | |
过表达Overexpression #2 | 4.69 b | 102.39 a | 3.53 a | 6.53 c | 15.58 d | 100.52 c | 43.03 c | 15.22 c | 291.49 c | |
过表达Overexpression #3 | 5.97 a | 98.73 b | 4.30 a | 17.07 a | 43.85 a | 177.94 a | 74.21 a | 39.36 a | 461.43 a | |
福州黄花 Fuzhou Huanghua | 野生型Wild-type | 0 c | 1.58 d | 0 c | 0 c | 0 d | 4.40 d | 0 d | 0.98 b | 6.97 d |
空载体Empty vector | 0 c | 0 e | 0 c | 0 c | 0 d | 0 e | 0 d | 0 c | 0 e | |
过表达Overexpression #1 | 2.47 a | 71.20 a | 12.06 a | 4.80 a | 15.61 a | 202.46 a | 72.35 a | 3.51 a | 384.47 a | |
过表达Overexpression #2 | 1.14 b | 12.41 c | 0 c | 0 c | 5.32 c | 42.76 c | 18.32 c | 0 c | 79.95 c | |
过表达Overexpression #3 | 2.41 a | 33.63 b | 6.56 b | 2.04 b | 7.43 b | 86.70 b | 55.44 b | 0 c | 194.20 b |
[1] |
Büchert A M, Civello P M, Martínez G A. 2011. Effect of hot air,UV-C,white light and modified atmosphere treatments on expression of chlorophyll degrading genes in postharvest broccoli(Brassica oleracea L.)florets. Scientia Horticulturae, 127(3):214-219.
doi: 10.1016/j.scienta.2010.11.001 URL |
[2] | Duan Yanjiao, Zhang Lugang, He Qiong, Zhang Mingke, Shi Jiangchao. 2012. Expression of transcriptional factors and structural genes of anthocyanin biosynthesis in purple-heading Chinese cabbage. Acta Horticulturae Sinica, 39(11):2159-2167. (in Chinese) |
段岩娇, 张鲁刚, 何琼, 张明科, 石姜超. 2012. 紫心大白菜花青素积累特性及相关基因表达分析. 园艺学报, 39(11):2159-2167. | |
[3] |
Lee W S, You J A, Chung H, Lee Y H, Baek N I, Yoo J S, Park Y D. 2008. Molecular cloning and biochemical analysis of dihydroflavonol 4-reductase(DFR)from Brassica rapa ssp. pekinesis(Chinese cabbage)using a heterologous system. Journal of Plant Biology, 51(1):42-47.
doi: 10.1007/BF03030739 URL |
[4] |
Lei J J, Chen G J, Chen C M, Cao B H. 2017. Germplasm diversity of Chinese kale in China. Horticultural Plant Journal, 3(3):101-104.
doi: 10.1016/j.hpj.2017.07.006 URL |
[5] | Li Yali, Li Xin, Xiao Jie, Li Ruiling, Yang Huali, Sun Bo, Tang Haoru. 2018. Function and regulation characterization of dihydroflavonol 4-reductase in anthocyanin biosynthesis. Acta Botanica Boreali-Occidentalia Sinica, 38(1):187-196. (in Chinese) |
李亚丽, 李欣, 肖婕, 李瑞玲, 杨华丽, 孙勃, 汤浩茹. 2018. 二氢黄酮醇-4-还原酶在花青素合成中的功能及调控研究进展. 西北植物学报, 38(1):187-196. | |
[6] |
Liu H L, Lou Q, Ma J R, Su B B, Gao Z Z, Liu Y L. 2019. Cloning and functional characterization of dihydroflavonol 4-reductase gene involved in anthocyanidin biosynthesis of grape hyacinth. International Journal of Molecular Sciences, 20(19):4743.
doi: 10.3390/ijms20194743 URL |
[7] |
Liu X P, Gao B Z, Han F Q, Fang Z Y, Yang L M, Zhuang M, Lv H H, Liu Y M, Li Z S, Cai C C, Yu H L, Li Z Y, Zhang Y Y. 2017, Genetics and fine mapping of a purple leaf gene,BoPr,in ornamental kale(Brassica oleracea L. var. acephala). BMC Genomics, 18(1):230.
doi: 10.1186/s12864-017-3613-x URL |
[8] |
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4):402-408.
pmid: 11846609 |
[9] |
Marles M A S, Gruber M Y, Scoles G J, Scolesb A D. 2003. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry, 62(5):663-672.
pmid: 12620317 |
[10] |
Meyer P, Heidmann I, Forkmann G, Saedler H. 1987. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature, 330(6149):677-678.
pmid: 3683587 |
[11] |
Sun B, Yuan Q, Zheng H, Liang S, Jiang M, Wang M M, Chen Q, Li M Y, Zhang Y, Luo Y, Gong R G, Zhang F, Tang H R. 2019. An efficient and economical protocol for isolating,purifying and PEG-mediated transient gene expression of Chinese kale hypocotyl protoplasts. Plants, 8(10):385.
doi: 10.3390/plants8100385 URL |
[12] |
Sun B, Zhang F, Xue S L, Chang J Q, Zhang A H, Jiang M, Miao H Y, Wang Q M, Tang H R. 2018. Molecular cloning and expression analysis of the ζ-carotene desaturase gene in Chinese kale(Brassica oleracea var. alboglabra Bailey). Horticultural Plant Journal, 4(3):94-102.
doi: 10.1016/j.hpj.2018.03.005 URL |
[13] |
Tanaka Y, Ohmiya A. 2008. Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology, 19(2):190-197.
doi: 10.1016/j.copbio.2008.02.015 URL |
[14] |
Tian J, Han Z Y, Zhang J, Hu Y J, Song T T. 2015. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples. Scientific Reports, 5:12228.
doi: 10.1038/srep12228 pmid: 26192267 |
[15] | Tian Zhendong. 2018. Cloning and overexpression vector construction of DFR,a related gene to pink leaf in ornamental kale[M. D. Dissertation]. Shenyang:Shenyang Agricultural University. (in Chinese) |
田振东. 2018. 羽衣甘蓝粉色叶相关基因DFR的克隆及表达载体构建[硕士论文]. 沈阳:沈阳农业大学. | |
[16] |
Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B(DFR-B)locus in the Japanese morning glory Ipomoea(Pharbitis)nil. Scientific Reports, 7:10028.
doi: 10.1038/s41598-017-10715-1 pmid: 28855641 |
[17] |
Wu X L, Gu L W, Prior R L, Mckay S. 2004. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes,Aronia,and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 52(26):7846-7856.
doi: 10.1021/jf0486850 URL |
[18] |
Xie S, Zhao T, Zhang Z, Meng J. 2018. Reduction of dihydrokaempferol by Vitis vinfera dihydroflavonol 4-reductase to produceorange pelargonidin-type anthocyanins. Journal of Agricultural and Food Chemistry, 66(13):3524-3532.
doi: 10.1021/acs.jafc.7b05766 URL |
[19] | Xu Zhiru, Liu Tong, Cui Guoxin, Li Chunlei, Ma Jing, Li Yuhua. 2014. Cloning and function identification of dihydroflavonol 4-reductase genes in Turnip. Acta Horticulturae Sinica, 41(4):687-700. (in Chinese) |
许志茹, 刘通, 崔国新, 李春雷, 马静, 李玉花. 2014. 芜菁二氢黄酮醇4-还原酶基因的克隆与功能鉴定. 园艺学报, 41(4):687-700. | |
[20] | Yuan Yuhui, Zhu Shoujing, Zou Jie, Zeng Xianjun, Xiao Qiang, Xu Xinren, Liu Xianjun. 2019. Expression of BjuA09DFR gene in Brassica juncea and its promoter cloning,transformation and analysis. Acta Botanica Boreali-Occidentalia Sinica, 39(1):24-31. (in Chinese) |
袁玉辉, 朱守晶, 邹杰, 曾贤军, 肖强, 徐新仁, 刘显军. 2019. 芥菜型油菜BjuA09DFR基因及其启动子的克隆与转化和表达. 西北植物学报, 39(1):24-31. | |
[21] |
Yuan Y X, Chiu L W, Li L. 2009. Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta, 230(6):1141-1153.
doi: 10.1007/s00425-009-1013-4 URL |
[22] | Zhang Shujiang, Ma Yue, Xu Xueling, Qian Wei, Zhang Shifan, Li Fei, Zhang Hui, Sun Rifei. 2014. Components and amounts of anthocyanins in several Brassica vegetables. Acta Horticulturae Sinica, 41(7):1451-1460. (in Chinese) |
张淑江, 马越, 徐学玲, 钱伟, 章时蕃, 李菲, 张慧, 孙日飞. 2014. 芸薹属5种紫红色蔬菜花青素苷含量及组分分析. 园艺学报, 41(7):1451-1460. |
[1] | ZOU Xue, DING Fan, LIU Lifang, YU Hankaizong, CHEN Nianwei, and RAO Liping. A New Purple Potato Cultivar‘Mianziyu 1’ [J]. Acta Horticulturae Sinica, 2022, 49(S1): 93-94. |
[2] | WANG Sha, ZHANG Xinhui, ZHAO Yujie, LI Bianbian, ZHAO Xueqing, SHEN Yu, DONG Jianmei, YUAN Zhaohe. Cloning and Functional Analysis of PgMYB111 Related to Anthocyanin Synthesis in Pomegranate [J]. Acta Horticulturae Sinica, 2022, 49(9): 1883-1894. |
[3] | HUANG Ling, HU Xianmei, LIANG Zehui, WANG Yanping, CHAN Zhulong, XIANG Lin. Cloning and Function Identification of Anthocyanidin Synthase Gene TgANS in Tulipa gesneriana [J]. Acta Horticulturae Sinica, 2022, 49(9): 1935-1944. |
[4] | LI Maofu, YANG Yuan, WANG Hua, FAN Youwei, SUN Pei, JIN Wanmei. Analysis the Function of R2R3 MYB Transcription Factor RhMYB113c on Regulating Anthocyanin Synthesis in Rosa hybrida [J]. Acta Horticulturae Sinica, 2022, 49(9): 1957-1966. |
[5] | YANG Yuyan, DUAN Xinyuan, HE Zhilin, BING Qihao, CHEN Suoying, LIU Xiaoman, ZENG Ming, LIU Xiaogang. Cloning and Function Characterization of UDP-L-rhamnose Synthase from Fortunella crassifolia [J]. Acta Horticulturae Sinica, 2022, 49(8): 1663-1672. |
[6] | TAO Xin, ZHU Rongxiang, GONG Xin, WU Lei, ZHANG Shaoling, ZHAO Jianrong, ZHANG Huping. Fructokinase Gene PpyFRK5 Plays an Important Role in Sucrose Accumulation of Pear Fruit [J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440. |
[7] | QIAN Jieyu, JIANG Lingli, ZHENG Gang, CHEN Jiahong, LAI Wuhao, XU Menghan, FU Jianxin, ZHANG Chao. Identification and Expression Analysis of MYB Transcription Factors Regulating the Anthocyanin Biosynthesis in Zinnia elegans and Function Research of ZeMYB9 [J]. Acta Horticulturae Sinica, 2022, 49(7): 1505-1518. |
[8] | ZHANG Lugang, LU Qianqian, HE Qiong, XUE Yihua, MA Xiaomin, MA Shuai, NIE Shanshan, YANG Wenjing. Creation of Novel Germplasm of Purple-orange Heading Chinese Cabbage [J]. Acta Horticulturae Sinica, 2022, 49(7): 1582-1588. |
[9] | MA Mingying, HAO Chenxing, ZHANG Kai, XIAO Guihua, SU Hanying, WEN Kang, DENG Ziniu, MA Xianfeng. CsSWEET2a Promotes the Infection of Xanthomonas citri subsp. citri [J]. Acta Horticulturae Sinica, 2022, 49(6): 1247-1260. |
[10] | CHEN Daozong, LIU Yi, SHEN Wenjie, ZHU Bo, TAN Chen. Identification and Analysis of PAP1/2 Homologous Genes in Brassica rapa,B. oleracea and B. napus [J]. Acta Horticulturae Sinica, 2022, 49(6): 1301-1312. |
[11] | LI Xiaoming, YU Junchi, WANG Chunxia. Comparison of Growth and Secondary Metabolites of Purple and White Flower Dracocephalum moldavica Under Field,Greenhouse and Greenhouse Shading Conditions [J]. Acta Horticulturae Sinica, 2022, 49(6): 1363-1370. |
[12] | LI Lixian, WANG Shuo, CHEN Ying, WU Yingtao, WANG Yaqian, FANG Yue, CHEN Xuesen, TIAN Changping, FENG Shouqian. PavMYB10.1 Promotes Anthocyanin Accumulation by Positively Regulating PavRiant in Sweet Cherry [J]. Acta Horticulturae Sinica, 2022, 49(5): 1023-1030. |
[13] | DENG Jiao, SU Mengyue, LIU Xuelian, OU Kefang, HU Zhengrong, YANG Pingfang. Transcriptome Analysis Revealed the Formation Mechanism of Floral Color of Lotus‘Dasajin’with Bicolor Petal [J]. Acta Horticulturae Sinica, 2022, 49(2): 365-377. |
[14] | WANG Zhiyu, CHANG Beibei, LIU Qi, CHENG Xiaofan, DU Xiaoyun, YU Xiaoli, SONG Laiqing, ZHAO Lingling. Study on Expression and Anthocyanin Accumulation of Solute Carrier Gene MdSLC35F2-like in Apple [J]. Acta Horticulturae Sinica, 2022, 49(11): 2293-2303. |
[15] | SUN Wei, SUN Shiyu, CHEN Yiran, WANG Yuhan, ZHANG Yan, JU Zhigang, YI Yin. Cloning and Function Analysis of Chalcone Isomerase Gene RdCHI1 in Rhododendron delavayi [J]. Acta Horticulturae Sinica, 2022, 49(11): 2407-2418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2012 Acta Horticulturae Sinica 京ICP备10030308号-2 国际联网备案号 11010802023439
Tel: 010-82109523 E-Mail: yuanyixuebao@126.com
Support by: Beijing Magtech Co.Ltd